특정 상호작용을 갖는 논랜덤 혼합 격자 용액의 깁스 에너지

정 해영*
디성여자대학교 화학과
(접수 2009. 10. 6; 수정 2009. 10. 27; 게재확정 2009. 11. 6)

Gibbs Energy of Nonrandomly Mixed Lattice Solutions with a Specific Interaction

Hae-Young Jung*
Department of Chemistry, DukSung Women's University, Seoul 132-714, Korea
(Received October 6, 2009; Revised October 27, 2009; Accepted November 6, 2009)

요약. 논랜덤 혼합의 2-성분 격자용액에서 특정상호작용을 갖는 경우의 수에 대한 분포를 난수 모의실험을 통하여 구하였다. 이 분포로부터 2-성분격자용액의 과잉킴스에너지 G^E에 대한 근사식을 유도하였다. 이를 사용하여 15개의 2-성분용액에 대한 일정압력에서의 액체-증기 상평형 계산을 하였고 Wilson식, Van Laar식, Redlich-Kister식의 계산 결과와 비교하여 보았다.

주제어: 특정상호작용, 논랜덤혼합, 과잉킴스에너지, 격자

ABSTRACT. Performing random number simulations, we obtained an approximate distribution of the number of ways arranging molecules in a binary lattice solution of nonrandom mixing with a specific interaction. From the distribution an approximate equation of excess Gibbs energy for a binary lattice solution was derived. Using the equation, liquid-vapor equilibrium at constant pressure for 15 binary solutions were calculated and compared with the result from Wilson equation, Van Laar equation and Redlich-Kister equation.

Keywords: Specific interaction, Nonrandom mixing, Excess Gibbs Energy, Lattice

서론

액체용액에 대한 열역학적 설명을 하기 위하여 cell, hole, free volume 또는 격자(lattice)의 개념에 근거를 둔 여러 모델들이 제안되어 왔다. 특히 격자 모델의 경우 취급과 이해가 용이하여 많은 연구가 진행되어 왔으며 현재도 격자에 근거를 둔 이론들이 풍부히 사용되고 있다.

실제용액에서는 이상적인 용액의 경우와는 달리 분자의 혼합이 랜덤하게 이루어지지 않으며, 이러한 논랜덤 혼합(nonrandom mixing)은 용액의 열역학적 성질에 상당한 영향을 주고 있다. 논랜덤 혼합은 분자간 상호작용(주로 인력)이 혼합 후 차이가 나면서 미시적 수준에서 분자들의 응집현상이 일어나 분포가 균일하지 않게 되는 경우를 말한다.1,2 이것은 설명하는 대표적인 이론중의 하나가 격자의 개념에 근거를 둔 quasi-chemical 이론이다. 이를 바탕으로 하여 여러 모델3,4이 제시되어 왔으며, Wilson4가 제안한 수정된 식은 2성분 액체-증기 상평형의 실수적이고 일관된 결론을 잘 제시해 주고 있다. 이후 Wilson식에 근거를 둔 여러 이론들이 제시되어 왔으며 공학적으로 많이 응용되고 있다. 이저는5 난수모의실험을 통하여 2성분 격자용액에서 입자를 격자에 배열하는 경우의 수의 분포는 서로 다른 입자간의 긴급한 상호작용수 N_{ij}에 대한 정규분포로 근사할 수 있음을 보이고, 2성분 논랜덤 혼합 격자용액에서의 과잉킴스에너지 G^E에 대한 근사식을 유도한 바 있다. 그리고
고 이 결과를 확장하여 3성분 격자용액에서 입자 배열에 대한 경우의 수의 분포가 서로 다른 입자 간의 근근한 상호작용수 \(N_2, N_3, N'_3 \)의 일차결합에 대한 정규분포로 근사할 수 있을음을 응용을 통하여 보인 바 있다.6 그런데 실제 용액에서의 분자간 상호작용 차이에 의한 논랜덤 혼합 이외에도 혼합 전에는 존재하지 않았던 수소결합과 같은 강한 특정상호작용(specific interaction)7,8이 서로 다른 분자 사이에 나타날 수 있다. Sanchez와 Lacombe은8 고분자용액에 특정상호작용 효과를 고려하여 고분자용액에서 나타나는 원형모양 온도-조성 상태도의 부분혼합도(partial miscibility)를 설명한 바 있다. 본 연구에서는 이전 연구5를 바탕으로 2성분 격자용액에서 서로 다른 분자 사이에 특정상호작용이 존재하는 경우에 대한 경우의 수를 난수모의실험을 통하여 정규분포로 근사하였고 이로부터 특정상호작용을 갖는 논랜덤 혼합 2성분 격자용액의 확률분포를 다음과 같은 논리적 근거와 비교하여 보았다.

러던 혼합 격자 용액에서 특정 상호작용을 갖는 경우의 수에 대한 분포

먼저 \(N_1 \)개의 입자-1과 \(N_2 \)개의 입자-2가 \(N_1 + N_2 \)개의 격자에 무작위하게 배열되는 랜덤 혼합의 2성분 격자용액에서 특정상호작용을 갖는 경우의 수에 대한 계산식을 알아보기로 한다. 입자간의 상호작용은 근근한 입자에 대한 것만 고려하였다. \(N_1 \)과 \(N_2 \)가 매우 클 때 입자-1,2간의 상호작용 수 \(N_{12} \)에 대한 분포는 격자의 종류에 상관없이 같은 정규분포로 수렴한다.5

\[
\frac{\sigma_X^2}{N_2/2} = x_1^2 + x_2^2 \quad ; \quad \sigma_X = X의 분산
\]

식(3),(4)에서 \(x_1, x_2 \)는 각 성분의 분분율, \(z \)는 근근한 입자의 수이며 \(N_1 \)은 전체 입자의 수 \(N_1 + N_2 \)를 나타낸다. 입자-1,2 사이에 특정상호작용이 존재하고 특정상호작용의 수 \(N_{12} \)가 하나, 문제를 단순화시키기 위하여 동일 종류의 입자사이에 나타날 수 있는 특정상호작용은 고려하지 않았다. 그러므로 중심극한정리의 사례 \(N_1\)과 \(N_2 \)가 매우 클 때 \(N_{12} \)가 마찬가지로 \(N_{12} \)도 정규분포에 수렴하고 두 변수 \(N_{12}, N_{12} \)에 대한 분포는 이변량 정규분포에 수렴할 것으로 직관적인 예상을 할 수 있다. 그러므로 두 변수에 대한 확률분포를 다음과 같은 이변량 정규분포로 가정해본다.

\[
\begin{align*}
F(X, Y) &= \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1-\rho^2}} \\
&\times \exp \left[-\frac{1}{2(1-\rho^2)} (X^2-2\rho XY + Y^2) \right]
\end{align*}
\]

식(5)에서 \(Y \)는 다음과 같이 정의되며 \(\sigma_X \)와 \(\sigma_Y \)는 \(X \)와 \(Y \)의 표준편차이다.

\[
Y = \frac{N_{12}}{2}
\]

그리고, \(\tilde{X} \)와 \(\tilde{Y} \)는 다음과 같이 정의된다.

\[
\tilde{X} = \frac{X - <X>}{\sigma_X}
\]

\[
\tilde{Y} = \frac{Y - <Y>}{\sigma_Y} \quad ; \quad <Y> \text{는 } Y의 평균값}
\]

즉, \(\tilde{X} \)와 \(\tilde{Y} \)는 평균 0, 표준편차 1인 정규분포를 따른다. \(\rho \)는 \(X \)와 \(Y \)의 상관계수로 다음과 같이 정의된다.5

\[
\rho = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}
\]

식(9)에서 \(\text{Cov}(X, Y) \)는 \(X, Y \)의 공분산으로 다
음과 같이 정의된다.

\[\text{Cov}(X, Y) = \langle XY \rangle - \langle X \rangle \langle Y \rangle \] \tag{10}

난수 모의 실험 결과
본 연구에서 가정한 식(5)을 엄밀히 유도하기는 어려우므로 난수모의 실험을 통하여 얻은 \((X, Y) \)의 분포로부터 식(5)의 매개변수를 구하였다. 입자-1,2사이의 상호작용이 특정상호작용일 확률을 \(p \)라 놓았다. 특정상호작용의 여부는 엄밀하게 따지면 3차원 공간에서 입자-1,2간의 배향을 다각도로 고려하여야 하지만 문제가 매우 복잡해지므로 본 연구에서는 0과 1사이의 실수 난수를 발생시켜 그 값을 \(p \)보다 작거나 같으면 특정상호작용으로 간주하는 방식을 취하여 문제를 단순화하였다. 이 방식은 \(p \)가 커질수록 오차가 커지는 문제로 관계식이 단순화되어 최종적으로 반직선적인 일원식방정식을 만드는데 편리한 점이 있다.

난수모의실험이 선형(Linear), 평방(Square), 입방(Cubic), 체심입방(Body Centered Cubic), 면심입방(Face Centered Cubic) 격자에 대하여 폭넓게 시행하였다. 입자의 수 \(N \)은 10,000 정도의 값을 띄웠다. 특정상호작용 확률 \(p \)는 0.1 ~ 0.5 범위의 5개 값, \(x_1x_2 \)는 0.05 ~ 0.25 범위의 5개 값을 택하였고 난수 발생을 통한 격자에서 입자의 무작위 배열은 10^2회씩 시행하였다. 본 논문에서는 면심입방거자의 결과만을 Table 1-3에 수록하였다. 다른 격자의 경우도 결과에서 차이는 거의 없다. Table 1-3 에서 \(R^2 \)은 난수모의실험값 \[\frac{\langle Y \rangle}{Nz/2} = x_1x_2 \]에 대한 결정계수로 1에 가까울수록 실험값이 식에 일치한다는 것을 뜻한다.

\[\frac{\sigma^2_Y}{Nz^2/2} = x_1x_2 \left(\frac{1-p}{2} + px_1x_2 \right) \] \tag{12}

\[\text{Cov}(X, Y) = \frac{x_1^2x_2}{Nz^2/2} \] \tag{13}

Table 1. \(\frac{\langle Y \rangle}{Nz/2} \) for \(p = 0.1 \sim 0.5 \) and \(x_1x_2 = 0.05 \sim 0.25 \)

<table>
<thead>
<tr>
<th>(x_1x_2)</th>
<th>Probability of a specific interaction, (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.049974</td>
</tr>
<tr>
<td>0.10</td>
<td>0.100000</td>
</tr>
<tr>
<td>0.15</td>
<td>0.150011</td>
</tr>
<tr>
<td>0.20</td>
<td>0.200030</td>
</tr>
<tr>
<td>0.25</td>
<td>0.250021</td>
</tr>
<tr>
<td>(R^2)</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Table 2. \(\frac{\sigma^2_Y}{Nz^2/2} \) for \(p = 0.1 \sim 0.5 \) and \(x_1x_2 = 0.05 \sim 0.25 \)

<table>
<thead>
<tr>
<th>(x_1x_2)</th>
<th>Probability of a specific interaction, (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.022750</td>
</tr>
<tr>
<td>0.10</td>
<td>0.045989</td>
</tr>
<tr>
<td>0.15</td>
<td>0.069717</td>
</tr>
<tr>
<td>0.20</td>
<td>0.094057</td>
</tr>
<tr>
<td>0.25</td>
<td>0.118639</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.999997</td>
</tr>
</tbody>
</table>

2009, Vol. 53, No. 6
Table 3. \(\frac{\text{Cov}(X,Y)}{N_z/2} \) for \(p = 0.1 \sim 0.5 \) and \(x_1x_2 = 0.05 \sim 0.25 \)

<table>
<thead>
<tr>
<th>(x_1x_2)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.002500</td>
<td>0.002491</td>
<td>0.002493</td>
<td>0.002491</td>
<td>0.002493</td>
</tr>
<tr>
<td>0.10</td>
<td>0.010000</td>
<td>0.009989</td>
<td>0.009999</td>
<td>0.009977</td>
<td>0.009981</td>
</tr>
<tr>
<td>0.15</td>
<td>0.022455</td>
<td>0.022527</td>
<td>0.022475</td>
<td>0.022495</td>
<td>0.022453</td>
</tr>
<tr>
<td>0.20</td>
<td>0.040004</td>
<td>0.039960</td>
<td>0.040080</td>
<td>0.040024</td>
<td>0.039942</td>
</tr>
<tr>
<td>0.25</td>
<td>0.062636</td>
<td>0.062639</td>
<td>0.062520</td>
<td>0.062439</td>
<td>0.062430</td>
</tr>
</tbody>
</table>

\(R^2 \) 0.999991 0.999990 0.999997 0.999998 0.999995

\(N_{2p}/2 \)로 나눈 값은 격자의 종류와 무관하다는 것을 알 수 있다.

특정 상호작용을 갖는 논랜던 혼합 격자 용액의 과잉 깁스 에너지

\[E = N_{11} \epsilon_{11} + N_{22} \epsilon_{22} + N_{12} \epsilon_{12} + N_{12} \delta \epsilon \] \((14) \)

\(N_{ij} \)는 분자-\(i,j \)간의 상호작용 수, \(N_{ii} \)는 1-2 분자간의 특정상호작용의 수, \(\epsilon_{ij} \)는 분자-\(i,j \)간의 상호작용에너지, \(\epsilon_{12} + \delta \epsilon \)은 분자-1,2사이에 특정상호작용이 나타나는 경우의 상호작용에너지를 나타낸다. 본 연구에서는 분자간의 상호작용 범위를 최근접 분자로 국한시킴으로써 식(14)는 다음과 같이 쓸 수 있다.

\[E(X,Y) = \frac{z}{2} (N_{11} \epsilon_{11} + N_{22} \epsilon_{22}) + 2 \Delta \epsilon X + 2 \delta \epsilon Y \] \((15) \)

\[\Delta \epsilon_{ij} = \epsilon_{ij} - \frac{\epsilon_{ii} + \epsilon_{jj}}{2} \] \((16) \)

실제 용액에 대한 통계역학적인 분배함수 \(Q \)는 다음과 같이 정의된다.\(^{10} \)

\[Q = \sum_{X,Y} \Omega(X,Y) \exp[-\beta E(X,Y)] ; \beta = \frac{1}{kT} \] \((17) \)

\[\Omega(X,Y) = \frac{(N_i + N_j)!}{N_i!N_j!} F(X,Y) \] \((18) \)

분배함수 \(Q \)는 최대항 법칙\(^{10} \)을 적용하여 다음과 같이 쓸 수 있다.

\[Q \approx \Omega(X^*, Y^*) \exp[-\beta E(X^*, Y^*)] \] \((19) \)

\(\text{식}(19) \)에서 \(X^* \)와 \(Y^* \)는 \(\Omega(X,Y) \exp[-\beta E(X,Y)] \) 가 최대일 경우의 \(X, Y \)값이다.

즉 \(X^* \)와 \(Y^* \)는 다음 식을 만족하는 값이다.

\[\frac{\partial}{\partial \tilde{X}} (\ln \Omega - \beta E) = 0, \quad \frac{\partial}{\partial \tilde{Y}} (\ln \Omega - \beta E) = 0 \] \((20) \)

\(\text{식}(5), (18) \)로부터 \(N_i \)과 \(N_j \)가 매우 클 때

\[\ln Q \approx -N_1 \ln x_1 - N_2 \ln x_2 - \frac{1}{2(1-\rho^2)} \left(\tilde{X} - 2 \rho \tilde{X} \tilde{Y} + \tilde{Y}^2 \right) \] \((21) \)

\(\text{식}(7), (8), (20) \)로부터

\[\tilde{X} = -2 \beta (\Delta \epsilon \sigma_x + \rho \delta \epsilon \sigma_y) , \quad \tilde{Y} = -2 \beta (\rho \Delta \epsilon \sigma_x + \delta \epsilon \sigma_y) \] \((22) \)

\(\text{식}(22) \)를 식(21)에 대입하여 정리하면

\[\ln Q \approx N_1 \ln x_1 - N_2 \ln x_2 - 2 \beta (\Delta \epsilon < X > + \delta \epsilon < Y >) + 2 \beta^2 (\Delta \epsilon^2 \sigma_x^2 + 2 \rho \delta \epsilon \Delta \epsilon \sigma_x \sigma_y + \delta \epsilon^2 \sigma_y^2) - \frac{\beta}{2} (N_i \epsilon_{11} + N_j \epsilon_{22}) \] \((23) \)

Journal of the Korean Chemical Society
특정 상호작용을 갖는 랜덤 혼합 격자 용액의 깁스 에너지

격자용액에서 혼합부피에너지의 변화가 없다고 가정하면 통계열역학적인 관계식\(^1\)을 이용하여 식(23)로부터 과잉 깁스에너지 \(G^E\)는 다음과 같이 표시된다.

\[
\beta G^E = 2\beta (\Delta \varepsilon < X > + \delta \varepsilon < Y >) - 2\beta^2 (\Delta \varepsilon \sigma_X^2 + 2\rho \delta \varepsilon \sigma_X \sigma_Y + \delta \varepsilon^2 \sigma_Y^2)
\]

식(24)를 정리하면

\[
\frac{GE}{RT} = z \left(\frac{A}{T} - \frac{B}{T^2} \right) x_1 x_2 - \left(\frac{A}{T} x_1 x_2 \right)^2
\]

식(25)에서

\[
A = \frac{\Delta \varepsilon + p \delta \varepsilon}{k} \quad \text{또는} \quad B = \sqrt{\frac{p(1-p)}{2}} \left| \frac{\delta \varepsilon}{k} \right|
\]

식(25)는 \(x_1\)과 \(x_2\)의 교환에 대하여 대칭적인 성질을 갖는데 이것은 분자-1,2의 크기, 구조등의 차이를 고려하지 않았기 때문이다. 본 연구에서는 분자의 구조, 크기등을 고려한 식(27)의 분율을 사용하기로 한다.\(^5\)

\[
\phi_1 = \frac{x_1}{1 + r x_2} \quad \text{또는} \quad \phi_2 = 1 - \phi_1
\]

식(27)에서 \(r\)은 분자-1,2의 크기, 구조등의 차이를 고려한 반실험적인 매개변수이다.

식(25)에서 \(x_1\)을 \(\phi_1\)로 대체하면 다음과 같은 식이 최종적으로 나온다.

\[
\frac{G^E}{RT} = z \left(\frac{A}{T} - \frac{B}{T^2} \right) \phi_1 x_2 - \left(\frac{A}{T} \phi_1 x_2 \right)^2
\]

식(28)은 \(z\)를 임의한 값으로 놓으면 \(r, A, B\)의 3-매개변수를 갖는 식이 된다.

일정압력에서의 액체-증기 상평형 계산 및 결과

본 연구에서는 1-Propanol+2-Propanol,\(^1\) Acetone+ Benzene,\(^1\) Acetone+ Chloroform,\(^1\) Acetone+Methanol,\(^1\) Chloroform+Benzene,\(^1\) Chloroform+Methanol,\(^1\) Ethanol+Methylcyclohexane,\(^1\) Ethanol+p-Xylene,\(^1\)Ethanol+Water,\(^1\) Methylcyclohexane+p-Xylene,\(^1\) Methanol+Ethanol,\(^1\) Methanol+Water,\(^1\) Methanol+Benzene,\(^1\) Water+1-Propanol,\(^1\) Water+2-Propanol\(^1\)의 15개 이상분계 용액에 대하여 액체-증기 상평형 계산을 하였다. 1-Propanol+2-Propanol, Water+1-Propanol, Water+2-Propanol의 경우는 1bar, 나머지 계는 1atm에서 온도에 따른 액체-증기 상평형을 나타내고 있다. 계산에는 식(28)을 포함하여 Wilson 식, Van Laar 식, 3-매개변수 Redlich-Kister식을 사용하였다. 식들에 대한 설명은 인용문헌\(^3\)에 상세하게 나와 있다.

Wilson 식

\[
\frac{G^E}{RT} = -x_1 \ln (x_1 + A_{12} x_2) - x_2 \ln (x_2 + A_{21} x_1)
\]

Van Laar 식

\[
\ln \gamma_1 = \frac{A'}{1 + \frac{A' x_1}{B' x_2}} \quad \text{또는} \quad \ln \gamma_2 = \frac{B'}{1 + \frac{B' x_2}{A' x_1}}
\]

식(30)에서 \(\gamma_1, \gamma_2\)는 각 성분의 활동도계수를 나타낸다.

3-매개변수 Redlich-Kister 식

\[
\frac{G^E}{RT} = x_1 x_2 \left(A'' + B'' (x_1 - x_2) + C'' (x_1 - x_2)^2 \right)
\]

식(28)에서 \(z\)는 12의 값을 사용하였다. 실제 \(z\)는 10 ~ 12 근방의 값으로 계산결과에는 큰 영향을 주지 않는다. 각 식에서 최적화된 매개변수는 상평형 온도에 대한 실험값과 계산값의 근평균평방 오차인 식(32)를 최소화시키는 방법을 사용하여 구하였다.

\[
\Delta T' = \sqrt{\frac{\sum_{i=1}^{N_{\text{data}}} (T_{\text{exp}}') - T_{\text{calc}})^2}{N_{\text{data}}}}
\]

주어진 평형증기압 \(P\)와 액상의 물분용 \(x_i\)로 부
Table 4. Parameters for 2-parameter equations used in this work

<table>
<thead>
<tr>
<th></th>
<th>Wilson</th>
<th></th>
<th>VanLaar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A₁</td>
<td>A₂</td>
<td>A'</td>
<td>B</td>
</tr>
<tr>
<td>1-Propanol+2-Propanol</td>
<td>1.2234</td>
<td>0.7365</td>
<td>1.2156</td>
<td>0.0236</td>
</tr>
<tr>
<td>Acetone+Benzene</td>
<td>0.7136</td>
<td>0.8760</td>
<td>0.4626</td>
<td>0.4151</td>
</tr>
<tr>
<td>Acetone+Chloroform</td>
<td>1.1132</td>
<td>1.5874</td>
<td>-0.6912</td>
<td>-0.5715</td>
</tr>
<tr>
<td>Acetone+MeOH</td>
<td>0.7578</td>
<td>0.6657</td>
<td>0.6076</td>
<td>0.6427</td>
</tr>
<tr>
<td>Chloroform+Benzene</td>
<td>0.7805</td>
<td>1.4296</td>
<td>-1.835</td>
<td>-0.1367</td>
</tr>
<tr>
<td>Chloroform+MeOH</td>
<td>0.8166</td>
<td>0.1203</td>
<td>0.9969</td>
<td>2.0872</td>
</tr>
<tr>
<td>EtOH+MCHXN</td>
<td>0.1489</td>
<td>0.2463</td>
<td>2.4547</td>
<td>1.8013</td>
</tr>
<tr>
<td>EtOH+p-Xylene</td>
<td>0.4180</td>
<td>0.2557</td>
<td>1.5664</td>
<td>1.7091</td>
</tr>
<tr>
<td>EtOH+Water</td>
<td>0.1522</td>
<td>0.8890</td>
<td>1.8432</td>
<td>0.9110</td>
</tr>
<tr>
<td>MCHXN+p-Xylene</td>
<td>1.2084</td>
<td>0.6439</td>
<td>0.1625</td>
<td>0.2378</td>
</tr>
<tr>
<td>MeOH+EtOH</td>
<td>1.5430</td>
<td>0.5768</td>
<td>-3.665E-03</td>
<td>-4.039E-03</td>
</tr>
<tr>
<td>MeOH+Benzene</td>
<td>0.3564</td>
<td>1.1018</td>
<td>0.9139</td>
<td>0.5579</td>
</tr>
<tr>
<td>Water+1-Propanol</td>
<td>0.1511</td>
<td>0.3420</td>
<td>2.2027</td>
<td>1.7027</td>
</tr>
<tr>
<td>Water+2-Propanol</td>
<td>0.6545</td>
<td>0.0536</td>
<td>1.1180</td>
<td>2.8923</td>
</tr>
<tr>
<td>EtOH+MCHXN</td>
<td>1.2084</td>
<td>0.6439</td>
<td>0.1625</td>
<td>0.2378</td>
</tr>
<tr>
<td>MeOH+EtOH</td>
<td>1.5430</td>
<td>0.5768</td>
<td>-3.665E-03</td>
<td>-4.039E-03</td>
</tr>
<tr>
<td>MeOH+Benzene</td>
<td>0.3564</td>
<td>1.1018</td>
<td>0.9139</td>
<td>0.5579</td>
</tr>
<tr>
<td>Water+1-Propanol</td>
<td>0.1511</td>
<td>0.3420</td>
<td>2.2027</td>
<td>1.7027</td>
</tr>
<tr>
<td>Water+2-Propanol</td>
<td>0.6545</td>
<td>0.0536</td>
<td>1.1180</td>
<td>2.8923</td>
</tr>
</tbody>
</table>

MCHXN means Methylcyclohexane

Table 5. Parameters for 3-parameter equations used in this work

<table>
<thead>
<tr>
<th>Eqn. (28)</th>
<th>r</th>
<th>A</th>
<th>B</th>
<th>A'</th>
<th>B'</th>
<th>C'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8926</td>
<td>2.2868</td>
<td>0</td>
<td>0.0428</td>
<td>6.947E-03</td>
<td>0.1887</td>
</tr>
<tr>
<td></td>
<td>0.9188</td>
<td>0.1512</td>
<td>0.7867</td>
<td>0.4340</td>
<td>-0.0306</td>
<td>0.1610</td>
</tr>
<tr>
<td></td>
<td>0.9016</td>
<td>-17.408</td>
<td>0</td>
<td>-0.6422</td>
<td>0.0693</td>
<td>0.0251</td>
</tr>
<tr>
<td></td>
<td>1.0156</td>
<td>0.1914</td>
<td>23.687</td>
<td>0.6217</td>
<td>0.0171</td>
<td>0.0251</td>
</tr>
<tr>
<td></td>
<td>0.8398</td>
<td>-4.5469</td>
<td>0</td>
<td>-0.1652</td>
<td>0.0179</td>
<td>0.0886</td>
</tr>
<tr>
<td></td>
<td>1.4384</td>
<td>0.4670</td>
<td>47.903</td>
<td>1.3477</td>
<td>0.4723</td>
<td>0.2329</td>
</tr>
<tr>
<td></td>
<td>0.9083</td>
<td>0.1511</td>
<td>0.3420</td>
<td>2.2027</td>
<td>1.7027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0084</td>
<td>0.5131</td>
<td>0</td>
<td>1.6406</td>
<td>0.0448</td>
<td>-0.0609</td>
</tr>
<tr>
<td></td>
<td>0.6926</td>
<td>43.231</td>
<td>40.630</td>
<td>1.2117</td>
<td>-0.4162</td>
<td>0.1929</td>
</tr>
<tr>
<td></td>
<td>1.1572</td>
<td>6.4009</td>
<td>0.5677</td>
<td>0.1914</td>
<td>0.0292</td>
<td>0.0390</td>
</tr>
<tr>
<td></td>
<td>1.0377</td>
<td>-0.1106</td>
<td>0</td>
<td>-4.647E-03</td>
<td>-6.200E-05</td>
<td>6.226E-03</td>
</tr>
<tr>
<td></td>
<td>0.7435</td>
<td>22.684</td>
<td>26.425</td>
<td>0.6781</td>
<td>-0.1880</td>
<td>9.781E-03</td>
</tr>
<tr>
<td></td>
<td>0.8877</td>
<td>84.508</td>
<td>93.388</td>
<td>1.8961</td>
<td>-0.1913</td>
<td>0.2734</td>
</tr>
<tr>
<td></td>
<td>1.5137</td>
<td>6.4009</td>
<td>0.5677</td>
<td>0.1914</td>
<td>0.0292</td>
<td>0.0390</td>
</tr>
<tr>
<td></td>
<td>1.4186</td>
<td>62.923</td>
<td>68.593</td>
<td>1.5291</td>
<td>0.4543</td>
<td>0.3484</td>
</tr>
</tbody>
</table>

식 (33)에서 \(P \) 는 \(x_1 y_1 P^\text{ext}_1 \) 의 식 (6-84)으로 정의되는 변수이고 \(P^\text{ext}_1 \) 는 성분 \(i \) 의 평형 증기압이다. 계산과정은 인용문헌 6의 방법을 사용하였다. 사용한 매개변수의 값과 계산 결과는 Table 4~7에 수록하였다. Table 5에서 이성분계는 Table 4와 같은 순서로 지정되어 있다. Table 6, 7에서 보는 바와 같이 2-매개변수인 Wilson식과 Van Laar식보다 3-매개변수인 식(28)과 3-매개변수 Redlich-Kister식이 약간 작은 오차를 보여 주고 있으나 데 식 모두 큰 차이 없이 상평형에서의 온도와 증기상의 물 분율을 잘 맞추어 주고 있음을 알 수 있다. 이전 연구 5에 비해 계산 결과는 크게 개선되지 않았음을 알 수 있다. 이것은 식 (28)의 형태가 이전연구와 마찬가지로 기존의 3-매개변수 Redlich-Kister식과 유사하게 조성에 대한 다항식으로 표시되었기 때문이다. 그러나 특정상호작용 효과가
특정 상호작용을 갖는 랜덤 혼합 격자용액의 깁스 에너지

Table 6. Root mean square error in equilibrium temperature, Eqn. (32)

<table>
<thead>
<tr>
<th></th>
<th>Wilson</th>
<th>Van Laar</th>
<th>Eqn.(28)</th>
<th>RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Propanol+2-Propanol</td>
<td>0.240</td>
<td>0.229</td>
<td>0.232</td>
<td>0.140</td>
</tr>
<tr>
<td>Acetone+Benzene</td>
<td>0.081</td>
<td>0.083</td>
<td>0.078</td>
<td>0.030</td>
</tr>
<tr>
<td>Acetone+Chloroform</td>
<td>0.177</td>
<td>0.174</td>
<td>0.174</td>
<td>0.093</td>
</tr>
<tr>
<td>Acetone+MeOH</td>
<td>0.040</td>
<td>0.043</td>
<td>0.040</td>
<td>0.035</td>
</tr>
<tr>
<td>Chloroform+Benzene</td>
<td>0.167</td>
<td>0.166</td>
<td>0.166</td>
<td>0.125</td>
</tr>
<tr>
<td>Chloroform+MeOH</td>
<td>0.120</td>
<td>0.105</td>
<td>0.117</td>
<td>0.138</td>
</tr>
<tr>
<td>EtOH+MCHXN</td>
<td>0.445</td>
<td>0.720</td>
<td>0.337</td>
<td>0.374</td>
</tr>
<tr>
<td>EtOH+p-Xylene</td>
<td>0.979</td>
<td>0.859</td>
<td>0.660</td>
<td>0.840</td>
</tr>
<tr>
<td>EtOH+Water</td>
<td>0.099</td>
<td>0.083</td>
<td>0.076</td>
<td>0.078</td>
</tr>
<tr>
<td>MCHXN+p-Xylene</td>
<td>0.133</td>
<td>0.132</td>
<td>0.133</td>
<td>0.120</td>
</tr>
<tr>
<td>MeOH+EtOH</td>
<td>0.023</td>
<td>0.014</td>
<td>0.014</td>
<td>0.012</td>
</tr>
<tr>
<td>MeOH+Water</td>
<td>0.116</td>
<td>0.100</td>
<td>0.101</td>
<td>0.070</td>
</tr>
<tr>
<td>MeOH+Benzene</td>
<td>0.024</td>
<td>0.311</td>
<td>0.108</td>
<td>0.091</td>
</tr>
<tr>
<td>Water+1-Propanol</td>
<td>0.335</td>
<td>0.396</td>
<td>0.189</td>
<td>0.442</td>
</tr>
<tr>
<td>Water+2-Propanol</td>
<td>0.432</td>
<td>0.341</td>
<td>0.294</td>
<td>0.272</td>
</tr>
<tr>
<td>average error</td>
<td>0.227</td>
<td>0.250</td>
<td>0.181</td>
<td>0.191</td>
</tr>
</tbody>
</table>

RK means 3-parameter Redlich-Kister equation.

Table 7. Root mean square error in vapor mole fraction

<table>
<thead>
<tr>
<th></th>
<th>Wilson</th>
<th>Van Laar</th>
<th>Eqn.(28)</th>
<th>RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Propanol+2-Propanol</td>
<td>0.0079</td>
<td>0.0060</td>
<td>0.0067</td>
<td>0.0039</td>
</tr>
<tr>
<td>Acetone+Benzene</td>
<td>0.0058</td>
<td>0.0091</td>
<td>0.0044</td>
<td>0.0017</td>
</tr>
<tr>
<td>Acetone+Chloroform</td>
<td>0.0093</td>
<td>0.0014</td>
<td>0.0013</td>
<td>0.0017</td>
</tr>
<tr>
<td>Acetone+MeOH</td>
<td>0.0014</td>
<td>0.0058</td>
<td>0.0058</td>
<td>0.0039</td>
</tr>
<tr>
<td>Chloroform+Benzene</td>
<td>0.0044</td>
<td>0.0044</td>
<td>0.0042</td>
<td>0.0040</td>
</tr>
<tr>
<td>Chloroform+MeOH</td>
<td>0.0085</td>
<td>0.0075</td>
<td>0.0056</td>
<td>0.0057</td>
</tr>
<tr>
<td>EtOH+MCHXN</td>
<td>0.0109</td>
<td>0.0191</td>
<td>0.0080</td>
<td>0.0093</td>
</tr>
<tr>
<td>EtOH+p-Xylene</td>
<td>0.0154</td>
<td>0.0147</td>
<td>0.0149</td>
<td>0.0148</td>
</tr>
<tr>
<td>EtOH+Water</td>
<td>0.0109</td>
<td>0.0099</td>
<td>0.0111</td>
<td>0.0104</td>
</tr>
<tr>
<td>MCHXN+p-Xylene</td>
<td>0.0175</td>
<td>0.0174</td>
<td>0.0179</td>
<td>0.0180</td>
</tr>
<tr>
<td>MeOH+EtOH</td>
<td>0.0053</td>
<td>0.0056</td>
<td>0.0056</td>
<td>0.0057</td>
</tr>
<tr>
<td>MeOH+Water</td>
<td>0.0083</td>
<td>0.0082</td>
<td>0.0094</td>
<td>0.0079</td>
</tr>
<tr>
<td>MeOH+Benzene</td>
<td>0.0015</td>
<td>0.0142</td>
<td>0.0040</td>
<td>0.0045</td>
</tr>
<tr>
<td>Water+1-Propanol</td>
<td>0.0127</td>
<td>0.0126</td>
<td>0.0081</td>
<td>0.0181</td>
</tr>
<tr>
<td>Water+2-Propanol</td>
<td>0.0184</td>
<td>0.0149</td>
<td>0.0150</td>
<td>0.0157</td>
</tr>
<tr>
<td>average error</td>
<td>0.0092</td>
<td>0.0099</td>
<td>0.0086</td>
<td>0.0091</td>
</tr>
</tbody>
</table>

추가되면서 기존의 식에 비해 매개변수의 의미가 보다 명확하고 세밀해졌다. Table 4, 5에 수록된 매개변수 값들은 식(32)를 최소화시키기 위하여 수학적으로 최적화된 값이므로 정량적으로는 반실험적인 매개변수의 의미를 갖는다.

결론

본 연구에서는 랜덤 혼합의 2-성분 격자용액에서 입자를 무작위하게 배열하는 난수모의실험을 통해 상호작용 수 N_{12}와 특정상호작용 수 N_{12}에 대한 분포를 이변량 정규분포로 근사하여 구하였다. 이것은으로부터 특정상호작용을 갖는 랜덤 혼합의 2-성분 격자용액의 과잉진산 에너지 G^\pm에 대한 반실험적인 식(28)을 구하였다. 계산 결과는 기존의 3-매개변수 Redlich-Kister식과 비슷한 오차를 보여 주었다. Redlich-Kister식의 매개변수는 단순한 실험상수인데 비해 식(28)에서 나타나는 3개의 매개변수는 랜덤 혼합, 특정상호작용, 분자의 구조와 크기 등의 정성적인 의미를 나타
내고 있다. 정량적으로 기존의 식보다 크게 개선된 점은 없지만 난수모의 실험을 통하여 얻은 간단한 모델을 사용하여 이전 연구들에서 고려되지 않았던 특정상호작용에 대한 항을 추가하여 용액의 열역학적 성질을 정성적으로 이해하는 데 유용하게 사용될 수 있는 하나의 방정식을 얻어버렸다. 이런 점에서 의의를 찾을 수 있다. 그런데 특정상호작용이 일어나는 배향에 대한 경우의 수를 확률로 처리하여 단순화시켰는데 이것은 p 값이 클 때는 실제 상황과 많이 차이가 나게 된다. 또한 난수모의 실험을 할 때 격자를 빈틈없이 채우진 것으로 가정하였으나 실제로는 비어있는 격자도 존재한다고 볼 수 있다. 이러한 부분들에 대한 개선을 하게 되면 더 정확하고 실제적인 격자용액 모델이 될 것으로 생각된다.

본 연구는 2008년도 덕성여자대학교 교내연구비 지원으로 이루어졌음.

REFERENCES