Effects of Oxygen Flow Ratio on the Crystallographic Orientation of NiO Thin Films Deposited by RF Magnetron Sputtering

Hyun Wook Ryu, Gwang Pyo Choi, Whyo-Sup Noh, Yong-Joo Park, and Jin Seong Park

Research Institute of Energy Resources Technology, Chosun University, Gwangju 501-759, Korea
*Department of Advanced Materials Engineering, Chosun University, Gwangju 501-759, Korea

(Received September 26, 2003; Accepted February 6, 2004)

ABSTRACT

Nickel oxide (NiO) thin films were prepared on Si(100) substrates at room temperature by RF magnetron sputtering using a NiO target. The effects of oxygen flow ratio for the plasma gas on the preferred orientation and surface morphology of the NiO films were investigated. Highly crystalline NiO film with (100) orientation was obtained when it was deposited in pure Ar gas. For NiO film deposited in pure O₂ gas, on the other hand, the orientation of the film changed from (100) to (111) and its deposition rate decreased. The origin of the preferred orientation of the films was discussed. NiO films also showed different surface morphologies and roughnesses with the oxygen flow ratio.

Key words: NiO thin film, RF magnetron sputtering, NiO target, Preferred orientation

1. 서 론

NiO는 NaCl 결정구조를 가진 개방적 3d 전이금속 산화물로서, 523 K에서 반가자성 변태(antiferromagnetic transition)가 일어난다. 화학량이 오존의 순수한 NiO는 상온에서 비저항이 약 10⁻¹³ Ω·cm 정도로 저의 체결체에 가깝지만, Li와 같은 1가 이온의 천나나 유일 공공 또는 격자간 산소의 존재로 인하여 나타나는 Ni³⁺ 이온의 증가에 의하여 전도저항이 감소함으로써, 금속결합의 비화학량의 (Ni₁₈O)을 가지는 p-형 반도성 산화물로 알려져 있다.¹

NiO 박막(thin film)은 자기적, 전기적 및 광학적 특성뿐만 아니라 화학적 안정성이 뛰어나, 반가자성막(antiferromagnetic layer),² p-형 트림전도막,³ 전기번역 소자(electrochromic device),⁴ 기능성 센서막(functional sensor layer),⁵ 등의 용용에 관심을 끌고 있다. 특히 반가자성(epitaxial) 성장된 NiO 박막은, 산소의 광자의 대칭이나 다른 별상성 산화물 박막과의 격자상수 비가 비슷하고 화학적 안정성이 좋기 때문에, c-축 방향의 페로브스카이트형 곡사시막(perovskite-type ferromagnetic film)이나 초전도 박막 등과 같은 밴상성 산화물 박막을 증착하기 위한 완충층(buffer layer)으로 이용이 기대되고 있다.⁶ 따라서 NiO 박막이 buffer layer로 이용되기 위해서는 막의 결정학적 배치와 표면 거칠기의 세어가 매우 중요하다고 할 수 있다.

NiO 박막의 제조는 스플래터링법,¹⁴ 전자빔(electron beam) 증착법,¹⁵ MOCVD법,¹⁶ 전자빔 충-지형(thermal evaporation) 등의 방법이다. 이 중에서 스플래터링법은 중온도가 비교적 낮고 표면이
규칙하고 치밀한 막을 얻을 수 있다는 장점 때문에 널리 이용되고 있다. 본 연구에서는 NiO 산화물 태كت을 이용한 RF 마그네트론 스피트로 상온에서 Si(100) 기판 위에 NiO 박막을 제조하고, 중층시 스피트로 가스의 산소 유량비가 NiO 박막의 결정 배향성과 표면 형상에 미치는 영향을 조사하였으며, 우선평활상의 변화 요인에 대해서 고찰하였다.

2. 실험방법

NiO 박막을 RF 마그네트론 스피트로를 이용하여 Ar:O\textsubscript{2}의 비율 변화시키며 Si(100) 기판 위에 중층 시켰으며, 이 때 RF 전력은 80 W(3.95 W/cm2), 주파수는 13.56 MHz로 하였다. 태켓은 NiO 분말(99.99%, Aldrich Co.)을 성형, 소결한 직경 2 in 크기의 산화물 태كت을 이용하였으며, 태كت과 기판의 거리는 약 10 cm, 태كت 축과 기판 표면과의 각도는 약 55°(off-axis)였다. 스피트로 가스 주입전의 스피트로 챔버의 진공도는 3×10-6 Torr 이하로, 중층시 진공도는 5 mTorr로 유지하였다. 스피트로 가스의 총 유량은 50 sccm으로 고정하였으며, Ar에 대한 O\textsubscript{2}의 유량비를 각각 0%, 50%, 100%로 변화시켰다. 태كت 표면의 불순물 제거를 위하여 Ar 가스 하에서 30분간 pre-sputtering 한 후 중층하였으며, 막의 급격도 형상을 위해 중층시 기판을 25 rpm으로 회전시켰다. 또한 기판은 가열하지 않고 상온에서 중층하였다.

3. 결과 및 고찰

X선 회절 분석을 통해서 NiO 박막의 결정상 형성 여부와 우선평활상을 확인하였다. Fig. 1은 Si(100)기판 위에 30분간 중층한 NiO 박막의 산소유량비에 따른 X선 회절 분석 결과이다. 순수한 Ar 가스(0% O\textsubscript{2})에서 중층한 막은 좁고 날카로운 (200) 피크만 나타나고 있어 비교적 결정성이 뛰어난 (100)면으로 배향된 결정구조를 가지고 있음을 알 수 있다. 반면에 100% O\textsubscript{2} 분위기에서 중층한 NiO 박막의 경우에는, 비교적 강도가 낮은 (111) 피크만이 나타났으며, Ar 가스에서 중층한 박막과는 달리 (111) 면으로 배향된 박막임을 확인할 수 있었다. 그러나 Ar/O\textsubscript{2}

혼합가스(50% Ar + 50% O\textsubscript{2})에서 중층한 박막은 결정피크가 나타나지 않았다. Sato 등1은 O\textsubscript{2}를 20% 이상 함유한 Ar/O\textsubscript{2} 혼합가스에서 RF 마그네트론 스피트로를 중층한 NiO 박막이 (111)과 (200)면의 약한 결정피크가 나타났다고 보고하고 있다.

일반적으로 산화물 박막의 우선평활상은 기판에 의한 영향 및 표면에너지(surface energy)와 변형에너지(strain energy) 등에 의한 영향을 고려해 볼 수 있다. 본 연구에서 사용한 Si-wafer 기판의 경우, 기판표면에 비정상 산화층이 존재한다고 볼 때 기판에 의한 영향은 미미하다고 할 수 있으며, 또한 변형에너지의 최소화하려는 경향은 막의 두께가 1~2 μm을 초과하거나 그 이상의 두께를 가지는 경우에 두드러진다고 볼 수 있으므로, 본 연구의 XRD 결과에서 나타난 스피트로 가스의 산소 유량비에 따른 NiO 박막의 결정배향성 변화는, 박막형성 초기에 최소 표면에너지지를 가지는 면으로 우선배향 하려는 진정 우선배향도 (degree of intrinsic preferred orientation)에 의한 것으로 설명할 수 있다. 즉 막 형성 초기에 불규칙한 방향을 가진 막이 먼저 생성되어 성장하게 되는데, 이를 최소 표면에너지지를 가지는 면은 그 성장속도가 다른 면에 비해 느리기 때문에 기판 표면에 형성한 면으로 성장하게 되고, 따라서 막은 최소 표면에너지를 가지 면으로 우선배향될 가능성이 커지게 된다.

NaCl 구조의 이온결정인 NiO 경우에는, 원자간결합의 방향성이 없고 O2−의 이온반경(0.140 nm)이 Ni2+ (0.069 nm)보다 크기 때문에, NiO 막의 결정학적 방위는 O2− 이온의 우선 배열에 의해 결정될 것이다. NiO 결정구조에서 O2− 이온으로 이루어진 최밀층구조, 즉 최소 표면에너지지를 가지는 면은 (111)면이므로 O2− 이온의 배열에 의해 결정방위가 정해지는 조건에서는 O2− 이온과 Ni2+ 중
이 교대로 빗게 되어 박막은 (111)면이 우선 배향될 가능성이 크다. 즉, 스퍼터 가스가 100% O2인 경우, 태켓에서 스퍼터된 산소 원자와 함께 플라즈마 분해(plasma decomposition) 등에 의해 생성된 산소 원자의 수가 태켓에서 스퍼터된 나무 원자의 수보다 훨씬 더 많게 되어 중착된 NiO 박막의 결정방위는 O2^-이온의 배열에 의해 정지는 (111)면의 우선 배향성을 가지는 것으로 생각한다.

한편 순수한 Ar (0% O2) 가스에서 스퍼터링한 경우, NiO 태켓으로부터 Ni 원자의 우선적인 스퍼터링(partial sputtering)이 일어나게 되는데, 이는 산화물 태켓의 스퍼터링시 아르곤-금속원자의 에너지-전달 (energy-transfer) 효율이 아르곤-산소원자 간의 효율보다 크기 때문으로,11 Ar 온 스퍼터 가스로 이용하여 중착된 NiO 박막의 전기적, 광학적 특성이 금속가 película적인 특성을 나타내는 것에서도 확인 할 수 있다.11 더욱이 태켓에서 스퍼터된 산소 원자 이외에는 플라즈마 분해 등에 의한 산소 원자가 존재하지 않게 되므로, 스퍼터된 NiO2^-이온이나 NiO2^-이온보다 O2^-이온이 상대적으로 매우 부족한 조건이 형성되며, 결정성장 초기의 O2^-이온의 배열에 의한 (111)면의 우선 배향은 이뤄지게 될 것이다. 오히려 산화물 형태로 스퍼터된 NiO 이온이나, NiO2^-이온으로 이루어진 면의 성장에 의해서 박막성장 초기의 결정방위가 정해졌기 때문으로, NaCl 구조의 NiO 결정에서 Ni2+와 O2^-이온으로 이루어진 100면이므로, Ar 가스에서 중착된 NiO 박막이 (100)면의 우선 배향성을 보이는 것으로 판단된다.

Ar (0% O2), Ar/O2 혼합가스(50% Ar + 50% O2) 및 100% O2 가스에서 각각 30분간 중착한 NiO 박막의 두께는 각각 90 nm, 34 nm, 37 nm로 Ar을 스퍼터 가스로 사용한 경우에 중착속도가 가장 높았으며, O2 유량비가 50%, 100%일 때 중착속도가 아르곤에서 증가된 경우에 비해 약 25 정도로 감소하였다. 이는 산소에 비해 더 무거운 아르곤이 운동량-전달(momentum transfer) 프로세스가 산소보다 효율적이기 때문으로,12 일반적으로 가비온 가스인 산소나 질소를 스퍼터 가스로 사용했을 때보다 아르곤을 사용했을 때 중착속도가 더 크게 된다. 이러한 스퍼터 가스에 따른 중착속도의 차이는 얇은 표면 형상의 변화도 관련 지어 생각할 수 있다. Fig. 2에 NiO 박막 표면과 단면의 SEM 사진을 나타내었다. 산소 유량비에 관계없이 모든 박막 표면에 수직으로 방향의 주상(columnaar) 구조를 보이고 있으나, 각 표면구조는 Ar/O2 혼합가스 및 O2 가스에서 중착된 압의 경우 매우 작은 입자들로 구성된 치밀하고 균일한 표면 구조를 하고 있는데 비해, Ar 가스에서 중착된 압은 입자가 크고 균일 표면 구조를 하고 있다. NiO 박막의 좀더 자세한 표면형상과 거칠기의 변화를 조사하기 위하여 AFM(Atomic Force Microscopy)로 표면의 미세구조와 표면 거칠기를 분석하였으며, Fig. 3에 박막의 표면과 단면 형상 및 AFM 스크린(0.5 x 0.5 μm²)으로부터 얻어진 RMS (Root Mean Square) 거칠기를 갖는 것으로 나타내었다. Ar/O2 혼합가스 및 O2 가스에서 중착된 압은 미세임자로 구성된 매우 균일한 입자성장 형태를 보이고 있으며, RMS 거칠기 값 또한 각각 0.64 nm, 0.47 nm로 매우 평탄한 표면구조를 가지고 있다. 반면에 Ar를 스퍼터 가스로 사용한 경우, 결정 입자 크기가 크고 불규칙한 입자들의 과대성장이 일어나 매우 거친 표면 상태를 보이고 있으며, RMS 거칠기 값은 1.99 nm로 증가하고 있다. 이러한 NiO 박막의 표면 형상과 거칠기의 변화는 스퍼터 가스의 산소 유량비가 박막의 입자성장 형태에 크게 영향을 미친다는 것을 알 수 있다.

Fig. 2. Top surface and cross-sectional images of NiO thin films deposited in (a) Ar (0% O2), (b) Ar/O2 mixture (50% Ar + 50% O2), and (c) 100% O2.

한국세라믹학회지
4. 결 론

NiO 산화물 타겟을 장착한 RF 마그네트론 스피터로 Si(100) 기판 위에 상온에서 증착된 NiO 박막의 결정성과 우선 배향성은, 스피터 가스의 산소 유량비에 따라 각각 다르게 나타났다. Ar 가스에서 증착된 NiO 박막의 경우 비교적 결정성이 좋은 (100)면이 우선 배향된 결정구조를 나타내었으나, O₂ 분위기에서 증착된 박막의 경우에는 (111)면이 우선 배향성을 보였다. 그러나 Ar/O₂ 혼합가스에서 증착된 박막은 결정포크가 나타나지 않은 비정질 상태를 보였다.

또한 스피터 가스의 산소 유량비에 따라 NiO 박막의 표면 구조와 거칠기가 다른 형태를 나타내었다. Ar/O₂ 혼합 가스 및 O₂ 가스에서 증착된 박막은 매우 균일한 입자성장 형태를 보였으며, RMS 거칠기 값은 각각 0.64 nm, 0.47 nm였다. 반면에 Ar을 스피터 가스로 사용한 경우, NiO 박막의 결정 입자 크기가 매우 불규칙한 뿐만 아니라 일부 입자의 과대성장이 일어나 매우 거칠 표면 구조를

Fig. 3. AFM images (0.5 x 0.5 μm²) and cross-sectional profiles of NiO thin films deposited in (a) Ar (0% O₂), (b) Ar/O₂ mixture (50% Ar + 50% O₂), and (c) 100% O₂.
가지고 있었으며, RMS 거절값 값 또한 1.99 nm로 증가하였다.

감사의 글

본 연구는 2002년도 학술진흥재단의 지원에 의하여 수행되었으며(KRF-2002-005-D00012), 이에 감사드립니다.

REFERENCES