INTUITIONISTIC FUZZY θ-CLOSURE AND θ-INTERIOR

SEOK JONG LEE AND YOUN SUK EOMUX

ABSTRACT. The concept of intuitionistic fuzzy θ-interior operator is introduced and discussed in intuitionistic fuzzy topological spaces. As applications of this concept, intuitionistic fuzzy strongly θ-continuous, intuitionistic fuzzy θ-continuous, and intuitionistic fuzzy weakly continuous functions are characterized in terms of intuitionistic fuzzy θ-interior operator.

1. Introduction

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy set was introduced by Atanassov [1]. Recently, Çoker and his colleagues [2, 3, 4] introduced intuitionistic fuzzy topological space using intuitionistic fuzzy sets. Mukherjee introduced the concepts of fuzzy θ-closure operator in [9] and the notions of fuzzy θ-continuous and fuzzy weakly continuous functions in [8]. Hanafy et al. introduced and investigated intuitionistic fuzzy θ-closure operator, intuitionistic fuzzy strongly θ-continuous, intuitionistic fuzzy θ-continuous and intuitionistic fuzzy weakly continuous functions in [6]. In this paper, we define intuitionistic fuzzy θ-interior operator and study the properties of intuitionistic fuzzy θ-interior operator in intuitionistic fuzzy topological spaces. As applications of this concept, intuitionistic fuzzy strongly θ-continuous, intuitionistic fuzzy θ-continuous, and intuitionistic fuzzy weakly continuous functions are characterized in terms of intuitionistic fuzzy θ-interior operator.

2. Preliminaries

Let X be a nonempty set and I the unit interval [0,1]. An intuitionistic fuzzy set (IFS for short) A is an object having the form

$$A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\},$$

where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and $\mu_A + \gamma_A \leq 1$.

©2010 The Korean Mathematical Society
Sometimes we denote $A = (\mu_A, \gamma_A)$ for simplicity. Let $I(X)$ denote the set of all intuitionistic fuzzy sets in X.

Obviously, every fuzzy set μ_A in X is an intuitionistic fuzzy set of the form
$\{ (x, \mu_A(x), 1 - \mu_A(x)) : x \in X \}$.

Definition 2.1 ([1]). Let X be a nonempty set and the IFSs A and B be of the form
$A = \{ (x, \mu_A(x), \gamma_A(x)) : x \in X \}, \quad B = \{ (x, \mu_B(x), \gamma_B(x)) : x \in X \}$.

Then

1. $A \leq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for all $x \in X$,
2. $A = B$ if and only if $A \leq B$ and $B \leq A$,
3. $A^c = \{ (x, \gamma_A(x), \mu_A(x)) : x \in X \}$,
4. $A \cap B = \{ (x, \mu_A \wedge \mu_B(x), \gamma_A \vee \gamma_B(x)) : x \in X \}$,
5. $A \cup B = \{ (x, \mu_A \vee \mu_B(x), \gamma_A \wedge \gamma_B(x)) : x \in X \}$,
6. $0_+ = \{ (x, 0, 1) : x \in X \}$ and $1_- = \{ (x, 1, 0) : x \in X \}$.

Definition 2.2 ([2]). Let X and Y be two nonempty sets, and let $f : X \to Y$ be a function.

1. If $B = \{ (y, \mu_B(y), \gamma_B(y)) : y \in Y \}$ is an IFS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by
$f^{-1}(B) = \{ (x, f^{-1}(\mu_B(x)), f^{-1}(\gamma_B(x))) : x \in X \}$.
2. If $A = \{ (x, \lambda_A(x), \delta_A(x)) : x \in X \}$ is an IFS in X, then the image of A under f, denoted by $f(A)$, is the IFS in Y defined by
$f(A) = \{ (y, f(\lambda_A(y)), (1 - f(1 - \delta_A))(y)) : y \in Y \}$, where

$$f(\lambda_A)(y) = \begin{cases}
\sup_{x \in f^{-1}(y)} \lambda_A(x) & \text{if } f^{-1}(y) \neq \emptyset \\
0 & \text{otherwise,}
\end{cases}$$

and

$$f(1 - \delta_A)(y) = \begin{cases}
\inf_{x \in f^{-1}(y)} \lambda_A(x) & \text{if } f^{-1}(y) \neq \emptyset \\
1 & \text{otherwise.}
\end{cases}$$

Theorem 2.3 ([2]). Let A and $A_j (j \in J)$ be IFSs in X, B and $B_j (j \in K)$ IFSs in Y. Let $f : X \to Y$ be a function. Then

1. $A_1 \leq A_2 \Rightarrow f(A_1) \leq f(A_2)$,
2. $B_1 \leq B_2 \Rightarrow f^{-1}(B_1) \leq f^{-1}(B_2)$,
3. $A \leq f^{-1}(f(A))$ (If f is injective, then $A = f^{-1}(f(A))$),
4. $f(f^{-1}(B)) \leq B$ (If f is surjective, then $B = f(f^{-1}(B))$),
5. $f^{-1}(\bigcup B_j) = \bigcup f^{-1}(B_j)$,
6. $f^{-1}(\bigcap B_j) = \bigcap f^{-1}(B_j)$,
7. $f(\bigcup A_j) = \bigcup f(A_j)$,
8. $f(\bigcap A_j) \leq \bigcap f(A_j)$, (If f is injective, then $f(\bigcap A_j) = \bigcap f(A_j)$),
9. $f^{-1}(1) = 1$, if f is surjective,
10. $f(0) = 0$,
11. $f(A)^c \leq f(A^c)$, if f is surjective,
(12) \(f^{-1}(B^c) = f^{-1}(B)^c \).

Definition 2.4 ([2]). An *intuitionistic fuzzy topology* (IFT for short) on a nonempty set \(X \) is a family \(\mathcal{T} \) of IFSs in \(X \) which satisfies the following axioms:

1. \(0_x, 1_x \in \mathcal{T} \).
2. \(G_1 \cap G_2 \in \mathcal{T} \) for any \(G_1, G_2 \in \mathcal{T} \).
3. \(\bigcup G_i \in \mathcal{T} \) for any arbitrary \(\{G_i : i \in J\} \subseteq \mathcal{T} \).

In this case the pair \((X, \mathcal{T}) \) is called an *intuitionistic fuzzy topological space* (IFTS for short) and any IFS in \(\mathcal{T} \) is known as an *intuitionistic fuzzy open set* (IFOS for short) in \(X \).

Definition 2.5 ([2]). Let \((X, \mathcal{T}) \) be an IFTS and \(A = \langle x, \mu_A, \lambda_A \rangle \) an IFS in \(X \). Then the *intuitionistic fuzzy interior of \(A \)* and the *intuitionistic fuzzy closure of \(A \)* are defined by

\[
\text{int}(A) = \bigcup \{G \mid G \subseteq A, G \in \mathcal{T}\}
\]

and

\[
\text{cl}(A) = \bigcap \{K \mid A \subseteq K, K^c \in \mathcal{T}\}.
\]

Theorem 2.6 ([2]). For any IFS \(A \) in \((X, \mathcal{T}) \), we have

\[
\text{cl}(A^c) = (\text{int}(A))^c \quad \text{and} \quad \text{int}(A^c) = (\text{cl}(A))^c.
\]

Definition 2.7 ([3, 4]). Let \(\alpha, \beta \in [0, 1] \) and \(\alpha + \beta \leq 1 \). An *intuitionistic fuzzy point* (IFP for short) \(x_{(\alpha, \beta)} \) of \(X \) is an IFS in \(X \) defined by

\[
x_{(\alpha, \beta)}(y) = \begin{cases} \alpha, & y = x, \\ 0, & y \neq x. \end{cases}
\]

In this case, \(x \) is called the *support* of \(x_{(\alpha, \beta)} \), \(\alpha \) the value of \(x_{(\alpha, \beta)} \) and \(\beta \) the *nonvalue* of \(x_{(\alpha, \beta)} \). An IFP \(x_{(\alpha, \beta)} \) is said to belong to an IFS \(A = (\mu_A, \gamma_A) \) in \(X \), denoted by \(x_{(\alpha, \beta)} \in A \), if \(\alpha \leq \mu_A(x) \) and \(\beta \geq \gamma_A(x) \).

Remark 2.8. If we consider an IFP \(x_{(\alpha, \beta)} \) as an IFS, then we have the relation \(x_{(\alpha, \beta)} \in A \) if and only if \(x_{(\alpha, \beta)} \leq A \).

Definition 2.9 ([3, 4]). Let \(x_{(\alpha, \beta)} \) be an IFP in \(X \) and \(U = (\mu_U, \gamma_U) \) an IFS in \(X \). Suppose further that \(\alpha \) and \(\beta \) are real numbers between 0 and 1. The IFP \(x_{(\alpha, \beta)} \) is said to be *properly contained* in \(U \) if and only if \(\alpha < \mu_U(x) \) and \(\beta > \gamma_U(x) \).

Definition 2.10 ([4]). (1) An IFP \(x_{(\alpha, \beta)} \) is said to be *quasi-coincident* with the IFS \(U = (\mu_U, \gamma_U) \), denoted by \(x_{(\alpha, \beta)} \sim U \), if and only if \(\alpha > \gamma_U(x) \) or \(\beta < \mu_U(x) \).

(2) Let \(U = (\mu_U, \gamma_U) \) and \(V = (\mu_V, \gamma_V) \) be two IFSs in \(X \). Then \(U \) and \(V \) are said to be *quasi-coincident*, denoted by \(U \sim V \), if and only if there exists an element \(x \in X \) such that \(\mu_U(x) > \gamma_V(x) \) or \(\gamma_U(x) < \mu_V(x) \).

The word ‘not quasi-coincident’ will be abbreviated as \(\not\sim \).

Proposition 2.11 ([4]). Let \(U, V \) be IFSs and \(x_{(\alpha, \beta)} \) an IFP in \(X \). Then
(1) \(U \tilde{q} V^c \iff U \leq V \),
(2) \(U q V \iff U \not\leq V^c \),
(3) \(x_{(\alpha, \beta)} \leq U \iff x_{(\alpha, \beta)} \tilde{q} U^c \),
(4) \(x_{(\alpha, \beta)} q U \iff x_{(\alpha, \beta)} \not\leq U^c \).

Definition 2.12 ([4]). Let \((X, T)\) be an IFTS and \(x_{(\alpha, \beta)}\) an IFP in \(X\). An IFS \(A\) is called a neighborhood \((q\)-neighborhood, respectively\) of \(x_{(\alpha, \beta)}\), if there exists an IFOS \(U\) in \(X\) such that \(x_{(\alpha, \beta)} \in U \leq A\) \((x_{(\alpha, \beta)} q U \leq A\), respectively\). The family of all neighborhoods \((q\)-neighborhoods, respectively\) of \(x_{(\alpha, \beta)}\) will be denoted by \(N(x_{(\alpha, \beta)})(N^q(x_{(\alpha, \beta)}),\) respectively\).

3. **Intuitionistic fuzzy \(\theta\)-closure and \(\theta\)-interior**

In this section, we study some properties of intuitionistic fuzzy \(\theta\)-interior.

Definition 3.1 ([6]). An IFP \(x_{(\alpha, \beta)}\) is said to be intuitionistic fuzzy \(\theta\)-cluster point of an IFS \(U\) if and only if \(\text{cl}(A) \tilde{q} U^c\) for each \(q\)-neighborhood \(A\) of \(x_{(\alpha, \beta)}\). The set of all intuitionistic fuzzy \(\theta\)-cluster points of \(U\) is called the intuitionistic fuzzy \(\theta\)-closure of \(U\) and denoted by \(\text{cl}_\theta(U)\). An IFS \(U\) will be called intuitionistic fuzzy \(\theta\)-closed (IF\(\theta\)CS for short) if and only if \(U = \text{cl}_\theta(U)\). The complement of an IF\(\theta\)CS is called an intuitionistic fuzzy \(\theta\)-open set (IF\(\theta\)OS for short).

Remark 3.2. Usually, the complement of a fuzzy set \(A\) is defined by \(1 - A\), but the complement of an intuitionistic fuzzy set \(A = \langle x, \mu_A, \gamma_A \rangle\) is defined by \(A^c = \langle x, \gamma_A, \mu_A \rangle\). So \(1 - A = \langle x, 1 - \mu_A, 1 - \gamma_A \rangle \neq \langle x, \gamma_A, \mu_A \rangle = A^c\).

Moreover, although \(A\) is an intuitionistic fuzzy set, the set \(1 - A\) is not necessarily an IFS. In [6], Hanafy defined the intuitionistic fuzzy \(\theta\)-interior of \(U\) by
\[
\text{int}_\theta(U) = 1 - \text{cl}_\theta(1 - U).
\]
This definition could be misunderstood because of the expression \(1 - U\). So we rephrase the definition of intuitionistic fuzzy \(\theta\)-interior as follows.

Definition 3.3. Let \((X, T)\) be an IFTS and \(U\) an IFS in \(X\). The intuitionistic fuzzy \(\theta\)-interior of \(U\) is denoted and defined by
\[
\text{int}_\theta(U) = (\text{cl}_\theta(U^c))^c.
\]

From the above definition, we have the following relations:
(1) \(\text{cl}_\theta(U^c) = (\text{int}_\theta(U))^c\),
(2) \((\text{cl}_\theta(U))^c = \text{int}_\theta(U^c)\).

Lemma 3.4. Let \(U, V\) and \(A\) be IFSs in an IFTS \((X, T)\). If \(A q(U \cup V)\), then \(A q U\) or \(A q V\).

Proof. Suppose that \(A q U\) and \(A q V\). Then \(A \leq U^c\) and \(A \leq V^c\). Thus \(A \leq U^c \cap V^c = (U \cup V)^c\). Hence \(A q(U \cup V)\). \(\Box\)
Theorem 3.5. Let U and V be two IFSs in an IFTS (X, T). Then we have the following:

1. $\text{cl}_0(0_-) = 0_-$,
2. $U \leq \text{cl}_0(U)$,
3. $U \leq V \Rightarrow \text{cl}_0(U) \leq \text{cl}_0(V)$,
4. $\text{cl}_0(U) \cup \text{cl}_0(V) = \text{cl}_0(U \cup V)$,
5. $\text{cl}_0(U \cap V) \leq \text{cl}_0(U) \cap \text{cl}_0(V)$.

Proof. (1) Obvious.

(2) Suppose that there is an IFP $x_{(a, \beta)}$ in X such that $x_{(a, \beta)} \notin \text{cl}_0(U)$ and $x_{(a, \beta)} \in U$. Then there is a q-neighborhood A of $x_{(a, \beta)}$ such that $\text{cl}(A)qU$. Thus $A \leq U^c$. Since A is a q-neighborhood of $x_{(a, \beta)}$, there is an IFOS V such that $x_{(a, \beta)} \notin V$. Since $A \leq U^c$, we have $x_{(a, \beta)} \notin V$, and hence $x_{(a, \beta)} \in U^c$. On the other hand, we have $x_{(a, \beta)} \leq U$, because $x_{(a, \beta)} \in U$. It is a contradiction.

(3) Let $x_{(a, \beta)}$ be an IFP in X such that $x_{(a, \beta)} \notin \text{cl}_0(V)$. Then there is a q-neighborhood A of $x_{(a, \beta)}$ such that $\text{cl}(A)qV$. Since $U \leq V$, we have $\text{cl}(A)qU$. Therefore $x_{(a, \beta)} \notin \text{cl}_0(U)$.

(4) Since $U \leq U \cup V$, $\text{cl}_0(U) \leq \text{cl}_0(U \cup V)$. Similarly, $\text{cl}_0(V) \leq \text{cl}_0(U \cup V)$. Hence $\text{cl}_0(U) \cup \text{cl}_0(V) \leq \text{cl}_0(U \cup V)$. On the other hand, take any $x_{(a, \beta)} \in \text{cl}_0(U \cup V)$. Then for any q-neighborhood A of $x_{(a, \beta)}$, $\text{cl}(A)q(U \cup V)$. By Lemma 3.4, $\text{cl}(A)qU$ or $\text{cl}(A)qV$. Therefore $x_{(a, \beta)} \in \text{cl}_0(U)$ or $x_{(a, \beta)} \in \text{cl}_0(V)$. Hence $\text{cl}_0(U \cup V) \leq \text{cl}_0(U) \cup \text{cl}_0(V)$.

(5) Since $U \cap V \leq U$, $\text{cl}_0(U \cap V) \leq \text{cl}_0(U)$. Similarly, $\text{cl}_0(U \cap V) \leq \text{cl}_0(V)$. Therefore $\text{cl}_0(U \cap V) \leq \text{cl}_0(U) \cap \text{cl}_0(V)$. \(\square\)

Remark 3.6. For an IFS A in an IFTS (X, T), intuitionistic fuzzy θ-closure $\text{cl}_0(A)$ is not necessarily an IFCS, and hence $\text{cl}_0(\text{cl}_0(A)) \neq \text{cl}_0(A)$, which is shown in the following example. Thus cl_0 operator does not satisfies the Kuratowski closure axioms.

Example 3.7. Let $X = \{a, b, c\}$ and $U = \langle (0.5, 0.3, 0.2), (0.6, 0.7, 0.4) \rangle, V = \langle (0.4, 0.5, 0.1), (0.5, 0.7, 0.3) \rangle$. Then the family $T = \{U, V\}$ of IFSs of X is an IFP on X. Let $A = \langle (0.3, 0.4, 0.5), (0.4, 0.7, 0.3) \rangle$ be an IFS in X. Then $a_{(0.8, 0.1)} \notin \text{cl}_0(A)$ and $a_{(0.6, 0.4)} \in \text{cl}_0(A)$. But $a_{(0.8, 0.1)} \in \text{cl}_0(a_{(0.6, 0.4)}) \leq \text{cl}_0(\text{cl}_0(A))$. Hence $\text{cl}_0(\text{cl}_0(A)) \neq \text{cl}_0(A)$.

Remark 3.8 (\cite{6}). For any IFS U in IFTS (X, T), $\text{cl}(U) \leq \text{cl}_0(U)$. Moreover $\text{cl}(U) = \text{cl}_0(U)$ for an IFOS. Thus for any IFS U in IFTS (X, T),

$$\text{cl}_0(U) = \bigcap \{\text{cl}(A) \mid A \in T, U \leq A\}$$

$$= \bigcap \{\text{cl}(A) \mid A \in T, U \leq A\}.$$

So, in an intuitionistic fuzzy regular space (X, T), every IFCS is an IFCS and hence for any IFS U in X, $\text{cl}_0(U)$ is an IFCS.

Clearly, U is an IFCS if and only if $\text{int}_0(U) = U$. Also we have following properties for the interior operator.
Theorem 3.9. Let U and V be two IFSs in an IFTS (X, T). Then we have the following:

1. $\text{int}_\theta(1_\sim) = 1_\sim$,
2. $\text{int}_\theta(U) \subseteq U$,
3. $U \subseteq V \Rightarrow \text{int}_\theta(U) \subseteq \text{int}_\theta(V)$,
4. $\text{int}_\theta(U \cap V) = \text{int}_\theta(U) \cap \text{int}_\theta(V)$,
5. $\text{int}_\theta(U) \cup \text{int}_\theta(V) \subseteq \text{int}_\theta(U \cup V)$.

Proof. (1) Obvious.

(2) Let $x_{(\alpha, \beta)} \in \text{int}_\theta(U)$. From the fact that $\text{int}_\theta(U) = (\text{cl}_\theta(U^c))^c = (x, \gamma_{\text{cl}_\theta(U^c)}, \mu_{\text{cl}_\theta(U^c)})$, we have $\alpha \leq \gamma_{\text{cl}_\theta(U^c)}(x)$ and $\beta \geq \mu_{\text{cl}_\theta(U^c)}(x)$. Since $U^c \subseteq \text{cl}_\theta(U^c)$, we have $\mu_{U^c} \leq \mu_{\text{cl}_\theta(U^c)}$ and $\gamma_{U^c} \geq \gamma_{\text{cl}_\theta(U^c)}$. Thus $\alpha \leq \gamma_{U^c}(x) = \mu_{U^c}(x)$ and $\beta \geq \mu_{U^c}(x) = \gamma_{U^c}(x)$. Hence $x_{(\alpha, \beta)} \in U$.

(3) Let $U \subseteq V$. Then $U^c \supseteq V^c$. By Theorem 3.5, $\text{cl}_\theta(U^c) \supseteq \text{cl}_\theta(V^c)$. Thus $(\text{cl}_\theta(U^c))^c \subseteq (\text{cl}_\theta(V^c))^c$. Hence $\text{int}_\theta(U) = (\text{cl}_\theta(U^c))^c \subseteq (\text{cl}_\theta(V^c))^c = \text{int}_\theta(V)$.

(4) $\text{int}_\theta(U \cap V) = (\text{cl}_\theta((U \cap V)^c))^c = (\text{cl}_\theta(U^c \cup V^c))^c = (\text{cl}_\theta(U^c) \cup \text{cl}_\theta(V^c))^c = (\text{cl}_\theta(U^c))^c \cap (\text{cl}_\theta(V^c))^c = \text{int}_\theta(U) \cap \text{int}_\theta(V)$.

(5) Since $U \subseteq U \cup V$, we have $\text{int}_\theta(U) \subseteq \text{int}_\theta(U \cup V)$. Since $V \subseteq U \cup V$, we have $\text{int}_\theta(V) \subseteq \text{int}_\theta(U \cup V)$. Therefore $\text{int}_\theta(U) \cup \text{int}_\theta(V) \subseteq \text{int}_\theta(U \cup V)$. □

Corollary 3.10. For an IFS U, $\text{int}_\theta(U) \subseteq \text{int}(U)$.

Proof. Let U be an IFS. Then U^c is an IFS. Thus $\text{cl}(U^c) \subseteq \text{cl}_\theta(U^c)$ by [6, Theorem 3.3 (iii)]. Hence $\text{int}_\theta(U) = (\text{cl}_\theta(U^c))^c \subseteq (\text{cl}(U^c))^c = \text{int}(U)$. □

Theorem 3.11. If U is an IFCS in an IFTS (X, T), then $\text{int}_\theta(U) = \text{int}(U)$.

Proof. Let U be an IFCS. Then U^c is an IFOS. Thus $\text{cl}(U^c) = \text{cl}_\theta(U^c)$ by [6, Theorem 3.6]. Hence $\text{int}_\theta(U) = (\text{cl}_\theta(U^c))^c = (\text{cl}(U^c))^c = \text{int}(U)$. □

Theorem 3.12. Let U be an IFS in an IFTS (X, T). Then

$$\text{int}_\theta(U) = \bigvee \{\text{int}_\theta(A) \mid A^c \in T, A \subseteq U\}$$

$$= \bigvee \{\text{int}(A) \mid A^c \in T, A \subseteq U\}.$$

Proof. Using [6, Theorem 3.15], we have

$$\text{int}_\theta(U) = (\text{cl}_\theta(U^c))^c = (\bigcap \{\text{cl}_\theta(B) \mid B \in T, U^c \subseteq B\})^c$$

$$= \bigvee \{\text{cl}_\theta(B)^c \mid B \in T, U^c \subseteq B\}$$

$$= \bigvee \{\text{int}_\theta(B^c) \mid B \in T, U^c \subseteq B\}.$$

Let $A = B^c$. Then

$$\text{int}_\theta(U) = \bigvee \{\text{int}_\theta(A) \mid A^c \in T, A \subseteq U\}.$$

The second equality holds from Theorem 3.11. □

Corollary 3.13. For an IFS U in an IFTS (X, T), $\text{int}_\theta(U)$ is an IFOS.
Remark 3.14. For an IFS \(U \) in an IFTS \((X,T)\), \(\text{int}_\theta(U) \) is not necessarily IF\(\theta\)OS.

4. Characterizations for some types of functions

Hanafy et al. already characterized some types of functions by intuitionistic fuzzy \(\theta \)-closure. Here, we will characterize an intuitionistic fuzzy strongly \(\theta \)-continuous, intuitionistic fuzzy \(\theta \)-continuous, and intuitionistic fuzzy weakly continuous functions in terms of intuitionistic fuzzy \(\theta \)-interior.

Lemma 4.1. Let \(f : (X, T) \to (Y, T') \) be a function and \(U, V \) be an IFSs. If \(UqV \), then \(f(U)qf(V) \).

Proof. Suppose that \(f(U)\tilde{q}f(V) \). Then \(f(U) \leq (f(V))^c \). Since \(U \leq f^{-1}(f(U)) \), we have \(U \leq f^{-1}(f(U)) \leq f^{-1}((f(V))^c) \). Thus we have \(U\tilde{q}f^{-1}((f(V))^c) = f^{-1}(((f(V))^c))^c = f^{-1}(f(V)). \) Since \(V \leq f^{-1}(f(V)) \) and \(U\tilde{q}f^{-1}(f(V)) \), we have \(UqV \). \(\square \)

Recall that a function \(f : (X, T) \to (Y, T') \) is said to be intuitionistic fuzzy strongly \(\theta \)-continuous if and only if for each IFP \(x_{(\alpha,\beta)} \) in \(X \) and \(V \in N^q(f(x_{(\alpha,\beta)})) \), there exists \(U \in N^q(x_{(\alpha,\beta)}) \) such that \(f(U) \leq V \) (See [6]).

Theorem 4.2. Let \(f : (X, T) \to (Y, T') \) be a function. Then the following statements are equivalent:

1. \(f \) is an intuitionistic fuzzy strongly \(\theta \)-continuous function.
2. \(f(\text{cl}_\theta(U)) \leq \text{cl}(f(U)) \) for each IFS \(U \) in \(X \).
3. \(\text{cl}_\theta(f^{-1}(V)) \leq f^{-1}(\text{cl}(V)) \) for each IFS \(V \) in \(Y \).
4. \(f^{-1}(V) \) is an IFCS in \(X \) for each IFCS \(V \) in \(Y \).
5. \(f^{-1}(V) \) is an IF\(\theta\)OS in \(X \) for each IFOS \(V \) in \(Y \).
6. \(f^{-1}(\text{int}(V)) \leq \text{int}_\theta(f^{-1}(V)) \) for each IFS \(V \) of \(Y \).

Proof. (1) \(\Leftrightarrow \) (2) \(\Leftrightarrow \) (3) \(\Leftrightarrow \) (4) \(\Leftrightarrow \) (5). See [6].

(3) \(\Rightarrow \) (6). Let \(V \) be an IFS in \(Y \). Then \(V^c \) is an IFS in \(Y \). Since \(f \) is an intuitionistic fuzzy strongly \(\theta \)-continuous function, by the hypothesis, \(\text{cl}_\theta(f^{-1}(V^c)) \leq f^{-1}(\text{cl}(V^c)) \). Thus

\[
\text{cl}_\theta(f^{-1}(V^c)) = (\text{cl}_\theta(f^{-1}(V)))^c = (\text{cl}(f^{-1}(V)))^c
\]

\[
\leq (\text{cl}_\theta(f^{-1}(V))) = (\text{cl}_\theta(f^{-1}(V)))^c
\]

\[
\leq f^{-1}(\text{int}(V)) \leq \text{int}_\theta(f^{-1}(V^c)).
\]

(6) \(\Rightarrow \) (3). Let \(V \) be an IFS in \(Y \). Then \(V^c \) is an IFS in \(Y \). By the hypothesis, \(f^{-1}(\text{int}(V)) \leq \text{int}_\theta(f^{-1}(V^c)) \). Thus

\[
\text{cl}_\theta(f^{-1}(V)) = (\text{cl}_\theta(f^{-1}(V)))^c = (\text{int}_\theta(f^{-1}(V)))^c
\]

\[
\leq f^{-1}(\text{int}(V^c)) = f^{-1}(\text{int}(V)) = f^{-1}(\text{cl}(V)). \quad \square
\]

Theorem 4.3. Let \(f : (X, T) \to (Y, T') \) be a bijection. Then the following statements are equivalent:

1. \(f \) is an intuitionistic fuzzy strongly \(\theta \)-continuous function.
(2) \(f^{-1}(\text{int}(V)) \leq \text{int}_\theta(f^{-1}(V)) \) for each IFS \(V \) of \(Y \).
(3) \(\text{int}(f(U)) \leq f(\text{int}_\theta(U)) \) for each IFS \(U \) in \(X \).

Proof. By Theorem 4.4, it suffices to show that (2) is equivalent to (3).

(2) \(\Rightarrow \) (3). Let \(U \) be an IFS in \(X \). Then \(f(U) \) is an IFS in \(Y \). By the hypothesis, \(f^{-1}(\text{int}(f(U))) \leq \text{int}_\theta(f^{-1}(f(U))) \). Since \(f \) is one-to-one,
\[
 f^{-1}(\text{int}(f(U))) \leq \text{int}_\theta(f^{-1}(f(U))) = \text{int}_\theta(U).
\]

Since \(f \) is onto,
\[
 \text{int}(f(U)) = f(f^{-1}(\text{int}(f(U)))) \leq f(\text{int}_\theta(U)).
\]

(3) \(\Rightarrow \) (2). Let \(V \) be an IFS in \(Y \). Then \(f^{-1}(V) \) is an IFS in \(Y \). By the hypothesis, \(\text{int}(f(f^{-1}(V))) \leq f(\text{int}_\theta(f^{-1}(V))) \). Since \(f \) is onto,
\[
 \text{int}(V) \leq f(\text{int}_\theta(f^{-1}(V))).
\]

Since \(f \) is one-to-one,
\[
 f^{-1}(\text{int}(V)) \leq f^{-1}(f(\text{int}_\theta(f^{-1}(V)))) = \text{int}_\theta(f^{-1}(V)). \quad \Box
\]

Recall that function \(f : (X, T) \to (Y, T') \) is said to be an intuitionistic fuzzy \(\theta \)-continuous if and only if for each IFPF \(x_{(\alpha, \beta)} \) in \(X \) and \(V \in N^\theta(x_{(\alpha, \beta)}) \), there exists \(U \in N^\theta(x_{(\alpha, \beta)}) \) such that \(f(\text{cl}(U)) \leq \text{cl}(V) \) (See [6]).

Theorem 4.4 ([6]). Let \(f : (X, T) \to (Y, T') \) be a function. Then the following statements are equivalent:

1. \(f \) is an intuitionistic fuzzy \(\theta \)-continuous function.
2. \(f(\text{cl}_\theta(U)) \leq \text{cl}_\theta(f(U)) \) for each IFS \(U \) in \(X \).
3. \(\text{cl}_\theta(f^{-1}(V)) \leq f^{-1}(\text{cl}_\theta(V)) \) for each IFS \(V \) in \(Y \).
4. \(\text{cl}_\theta(f^{-1}(V)) \leq f^{-1}(\text{cl}(V)) \) for each IFPS \(V \) in \(Y \).
5. \(f^{-1}(\text{int}_\theta(V)) \leq \text{int}_\theta(f^{-1}(V)) \) for each IFS \(V \) of \(Y \).

Proof. (1) \(\Leftrightarrow \) (2) \(\Leftrightarrow \) (3) \(\Leftrightarrow \) (4). See [6].

(3) \(\Rightarrow \) (5). Let \(V \) be an IFS in \(Y \). Then \(V^c \) is an IFS in \(Y \). Since \(f \) is an intuitionistic fuzzy \(\theta \)-continuous function, by the hypothesis, \(\text{cl}_\theta(f^{-1}(V^c)) \leq f^{-1}(\text{cl}(V^c)) \). Thus
\[
f^{-1}(\text{int}_\theta(V)) = f^{-1}((\text{cl}_\theta(V^c))^c) = (f^{-1}((\text{cl}_\theta(V^c))^c))^c \leq (\text{cl}_\theta(f^{-1}(V^c))^c) = (\text{cl}_\theta(f^{-1}(V)))^c = \text{int}_\theta(f^{-1}(V)).
\]

(5) \(\Rightarrow \) (3). Let \(U \) be an IFS in \(Y \). Then \(V^c \) is an IFS in \(Y \). By the hypothesis,
\[
 f^{-1}(\text{int}_\theta(V^c)) \leq \text{int}_\theta(f^{-1}(V^c)).
\]
Thus
\[
 \text{cl}_\theta(f^{-1}(V)) = (\text{int}_\theta((f^{-1}(V))^c))^c = (\text{int}_\theta(f^{-1}(V)))^c \leq (f^{-1}(\text{int}_\theta(V^c))^c) = f^{-1}(\text{int}(V)). \quad \Box
\]

Theorem 4.5. Let \(f : (X, T) \to (Y, T') \) be a bijection. Then the following statements are equivalent:

1. \(f \) is an intuitionistic fuzzy \(\theta \)-continuous function.
(2) \(f^{-1}(\text{int}_\theta(V)) \leq \text{int}_\theta(f^{-1}(V)) \) for each IFS \(V \) of \(Y \).

(3) \(\text{int}_\theta(f(U)) \leq f(\text{int}_\theta(U)) \) for each IFS \(U \) in \(X \).

Proof. By Theorem 4.4, it suffices to show that (2) is equivalent to (3).

(2) \(\Rightarrow \) (3). Let \(U \) be an IFS in \(X \). Then \(f(U) \) is an IFS in \(Y \). By the hypothesis, \(f^{-1}(\text{int}_\theta(f(U))) \leq \text{int}_\theta(f^{-1}(f(U))) \). Since \(f \) is one-to-one,

\[
f^{-1}(\text{int}_\theta(f(U))) \leq \text{int}_\theta(f^{-1}(f(U))) = \text{int}_\theta(U).
\]

Since \(f \) is onto,

\[
\text{int}_\theta(f(U)) = f(f^{-1}(\text{int}_\theta(f(U)))) \leq f(\text{int}_\theta(U)).
\]

(3) \(\Rightarrow \) (2). Let \(V \) be an IFS in \(Y \). Then \(f(\text{int}_\theta(V)) \leq \text{int}_\theta(f(\text{int}_\theta(V))) \). Since \(f \) is onto,

\[
\text{int}_\theta(V) = \text{int}_\theta(f(f^{-1}(V))) \leq f(\text{int}_\theta(f^{-1}(V))).
\]

Since \(f \) is one-to-one,

\[
f^{-1}(\text{int}_\theta(V)) \leq f^{-1}(f(\text{int}_\theta(f^{-1}(V)))) = \text{int}_\theta(f^{-1}(V)). \quad \blacksquare
\]

Recall that function \(f : (X, \mathcal{T}) \to (Y, \mathcal{T}') \) is said to be an intuitionistic fuzzy weakly continuous if and only if for each IFOS \(V \) in \(Y \), \(f^{-1}(V) \leq \text{int}(f^{-1}((\text{cl}_\theta(V))) \) (See [6]).

Theorem 4.6 ([6]). Let \(f : (X, \mathcal{T}) \to (Y, \mathcal{T}') \) be a function. Then the following statements are equivalent:

1. \(f \) is an intuitionistic fuzzy weakly continuous function.
2. \(f(\text{cl}_\theta(U)) \leq \text{cl}_\theta(f(U)) \) for each IFS \(U \) in \(X \).
3. \(\text{cl}_\theta(f^{-1}(V)) \leq f^{-1}(\text{cl}_\theta(V)) \) for each IFS \(V \) in \(Y \).
4. \(f^{-1}(\text{int}_\theta(V)) \leq \text{int}_\theta(f^{-1}(V)) \) for each IFS \(V \) of \(Y \).
5. \(f^{-1}(\text{int}_\theta(V)) \leq \text{int}(f^{-1}(V)) \) for each IFS \(V \) of \(Y \).

Proof. (1) \(\Leftrightarrow \) (2) \(\Leftrightarrow \) (3) \(\Leftrightarrow \) (4). See [6].

(3) \(\Rightarrow \) (5). Let \(V \) be an IFS in \(Y \). Then \(V^c \) is an IFS in \(Y \). Since \(f \) is an intuitionistic fuzzy weakly continuous function, by the hypothesis, \(\text{cl}(f^{-1}(V^c)) \leq f^{-1}(\text{cl}_\theta(V^c)) \). Thus

\[
f^{-1}(\text{int}_\theta(V)) = f^{-1}((\text{cl}_\theta(V^c))^c) = (f^{-1}(\text{cl}_\theta((V^c))))^c \leq (\text{cl}(f^{-1}(V^c)))^c = (\text{cl}((f^{-1}(V))^c))^c = \text{int}(f^{-1}(V)).
\]

(5) \(\Rightarrow \) (3). Let \(V \) be an IFS in \(Y \). Then \(V^c \) is an IFS in \(Y \). By the hypothesis,

\[
f^{-1}(\text{int}_\theta(V^c)) \leq \text{int}(f^{-1}(V^c)).
\]

Thus

\[
\text{cl}(f^{-1}(V)) = (\text{int}((f^{-1}(V^c))^c) = (\text{int}(f^{-1}(V))^c)^c \leq (\text{int}(f^{-1}(V^c))^c)^c = f^{-1}((\text{int}_\theta(V^c)))^c = f^{-1}(\text{cl}_\theta(V)). \quad \blacksquare
\]

Theorem 4.7. Let \(f : (X, \mathcal{T}) \to (Y, \mathcal{T}') \) be a bijection. Then the following statements are equivalent:

1. \(f \) is an intuitionistic fuzzy weakly continuous function.
(2) $f^{-1}(\text{int}_\theta(V)) \leq \text{int}(f^{-1}(V))$ for each IFS V of Y.
(3) $\text{int}_\theta(f(U)) \leq f(\text{int}(U))$ for each IFS U in X.

Proof. By Theorem 4.6, it suffices to show that (2) is equivalent to (3).
(2) \Rightarrow (3). Let U be an IFS in X. Then $f(U)$ is an IFS in Y. By the hypothesis, $
abla^{-1}(\text{int}(f(U))) \leq \text{int}(f^{-1}(f(U)))$. Since f is one-to-one,

$$f^{-1}(\text{int}_\theta(f(U))) \leq \text{int}(f^{-1}(f(U))) = \text{int}(U).$$

Since f is onto,

$$\text{int}_\theta(f(U)) = f(f^{-1}(\text{int}(U))) \leq f(\text{int}(U)).$$

(3) \Rightarrow (2). Let V be an IFS in Y. Then $f^{-1}(V)$ is an IFS in X. By the hypothesis, $\text{int}_\theta(f^{-1}(V)) \leq f(\text{int}(f^{-1}(V)))$. Since f is onto,

$$\text{int}_\theta(V) \leq f(\text{int}(f^{-1}(V))).$$

Since f is one-to-one,

$$f^{-1}(\text{int}_\theta(V)) \leq f^{-1}(f(\text{int}(f^{-1}(V)))) = \text{int}(f^{-1}(V)).$$

□

References

Seok Jong Lee
Department of Mathematics
Chungbuk National University
Cheongju 361-763, Korea
E-mail address: sjl@cbnu.ac.kr

Youn Suk Eoum
Department of Mathematics
Chungbuk National University
Cheongju 361-763, Korea
E-mail address: math1518@naver.com