A SIMPLY CONNECTED MANIFOLD WITH TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES WITH DISTINCT SIGNS OF SCALAR CURVATURES

Jongsu Kim

Abstract. We present a smooth simply connected closed eight dimensional manifold with distinct symplectic deformation equivalence classes $[[\omega_i]], i=1,2$ such that the symplectic Z invariant, which is defined in terms of the scalar curvatures of almost Kähler metrics in [5], satisfies $Z(M,[[\omega_1]]) = \infty$ and $Z(M,[[\omega_2]]) < 0$.

1. Introduction

Kazdan and Warner classified closed smooth manifolds of dimension > 2 into three classes according to what the scalar curvature functions can be on a manifold [2, Chapter 4].

Recently, we studied an analogous problem on symplectic manifolds with almost Kähler metrics. An almost Kähler metric is a Riemannian metric compatible with a symplectic structure, see the beginning of Section 2. Two symplectic forms ω_0 and ω_1 on M are called deformation equivalent, if there exists a diffeomorphism ψ of M such that $\psi^*\omega_1$ and ω_0 can be joined by a smooth homotopy of symplectic forms, [6]. For a symplectic form ω, its deformation equivalence class shall be denoted by $[[\omega]]$. We denote by $\Omega_{[[\omega]]}$ the set of all almost Kähler metrics compatible with a symplectic form in $[[\omega]]$.

We recall the symplectic Z invariant from [5]. For a smooth closed manifold M of dimension $2n \geq 4$ which admits a symplectic structure, we defined $Z(M,[[\omega]]) = \sup_{g \in \Omega_{[[\omega]]}} \frac{\int_M s_g d\text{vol}_g}{(\text{Vol}_g)^{\frac{n-1}{n}}}$.
where dvol_g, s_g, Vol_g are the volume form, the scalar curvature and the volume of g respectively, and also defined

$$Z(M) = \sup_{[\omega]} Z(M, [[\omega]]).$$

Then we have a basic inequality:

\begin{equation}
Z(M, [[\omega]]) \leq \sup_{\omega \in [[\omega]]} \frac{4\pi c_1(\omega) \left[\left(\frac{\omega^{n-1}}{n-1}\right)^{\frac{1}{n-1}}\right]}{(\frac{\omega_n}{n})^n},
\end{equation}

where $c_1(\omega)$ is the first Chern class of ω.

With Z invariants we have posed the following question:

Question 1.1. Let M be a smooth closed manifold of dimension $2n \geq 4$ admitting a symplectic structure.

Is the (necessary and sufficient) condition for a smooth function f on M to be the scalar curvature of some smooth almost-Kähler metric on M as follows?

(a) f is arbitrary, if $0 < Z(M) \leq \infty$,

(b) f is identically zero or somewhere negative, if $Z(M) = 0$ and M admits a scalar-flat almost-Kähler metric,

(c) f is negative somewhere, if otherwise.

Also, is the condition for a smooth function f on M to be the scalar curvature of some smooth almost-Kähler metric in $\Omega_{[[\omega]]}$ as follows?

(a') f is arbitrary, if $0 < Z(M, [[\omega]]) \leq \infty$,

(b') f is identically zero or somewhere negative, if $Z(M, [[\omega]]) = 0$ and M admits a scalar-flat almost-Kähler metric in $\Omega_{[[\omega]]}$,

(c') f is negative somewhere, if otherwise.

This question in turn supplies a motivation to study Z invariants. In previous work [5], we presented a six dimensional non-simply connected closed manifold which admits two symplectic deformation classes $[[\omega_i]]$, $i = 1, 2$, such that their Z values have distinct signs.

The main result in this article is to present a simply connected manifold with two symplectic deformation equivalence classes with similar properties.

2. Catanese-LeBrun example

An almost-Kähler metric on a smooth manifold M^{2n} of real dimension $2n$ is a Riemannian metric g compatible with a symplectic structure ω, i.e., $\omega(X, Y) = g(X, JY)$ for an almost complex structure J, where X, Y are tangent vectors at a point of the manifold; [3]. We call a Riemannian metric g ω-almost Kähler if g is compatible with ω. An almost-Kähler metric (g, ω, J) is Kähler if and only if J is integrable. We shall prove the following:

Theorem 2.1. There exists a smooth closed simply connected 8-dimensional manifold N with symplectic deformation equivalence classes $[[\omega_i]]$, $i = 1, 2$ such that $Z(N, [[\omega_1]]) = \infty$ and $Z(N, [[\omega_2]]) < 0$.
The manifold \(N \) in the theorem will be the one studied by Catanese and LeBrun [4]. In fact, \(N \) is (diffeomorphic to) the product of two copies of a complex surface of general type with ample canonical line bundle which is homeomorphic to \(R_8 \), the blow up of the complex projective plane \(\mathbb{CP}_2 \) at 8 points in general position. This general type complex surface is obtained as a small deformation of Barlow’s explicit complex surfaces [1].

In their work, they showed that \(N \) admits two distinct holomorphic deformation classes. But it was not seen whether \(N \) admits two distinct symplectic deformation classes. Examples of smooth manifolds with more than one symplectic deformation class have been an interesting subject to study; refer to [7], [9] or [10]. To prove this theorem, we need the following:

Proposition 2.2. Let \(W \) be a complex surface of general type with ample canonical line bundle, homeomorphic to \(R_8 \), the blow up of \(\mathbb{CP}_2 \) at eight points in general position. Consider a Kähler Einstein metric of negative scalar curvature on \(W \) with Kähler form \(\omega_W \) on \(W \). Set \(N := W \times W \).

Then \(Z(N, [[\omega_W + \omega_W]]) = -8 \sqrt{2} \pi \), and it is attained by a Kähler Einstein metric.

Proof. The argument here follows the scheme in [5, Section 3]. We recall a few known facts about \(W \) from [9, Section 4]; there is a homeomorphism of \(W \) onto \(R_8 \) which preserves the Chern class \(c_1 \) and there is a diffeomorphism of \(W \times W \) onto \(R_8 \times R_8 \). Note that \(R_8 \) admits a Kähler Einstein metric of positive scalar curvature obtained by Calabi-Yau solution.

Then, the first Chern class of \(W \) can be written as \(c_1(W) = 3E_0 - \sum_{i=1}^{8} E_i \in H^2(W, \mathbb{R}) \cong \mathbb{R}^9 \), where \(E_i, i = 0, \ldots , 8 \), is the Poincare dual of a homology class \(\tilde{E}_i \), \(i = 0, \ldots , 8 \), form a basis of \(H_2(W, \mathbb{Z}) \cong \mathbb{Z}^9 \) and their intersections satisfy \(\tilde{E}_i \cdot \tilde{E}_j = \epsilon_i \delta_{ij} \), where \(\epsilon_0 = 1 \) and \(\epsilon_i = -1 \) for \(i \geq 1 \).

So, in this basis the intersection form becomes

\[
I = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & -1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & -1
\end{bmatrix}
\]

We have the orientation of \(W \) induced by the complex structure and the fundamental class \([W] \in H_4(W, \mathbb{Z}) \cong \mathbb{Z} \). As \(\omega_W \) is Kähler Einstein of negative scalar curvature, we may get \([\omega_W] = -3E_0 + \sum_{i=1}^{8} E_i \) by scaling if necessary.

With \(N = W \times W \), by Künneth theorem

\[
H^2(N, \mathbb{R}) \cong \pi_1^* H^2(W) \oplus \pi_2^* H^2(W) \cong \mathbb{R}^9 \oplus \mathbb{R}^9,
\]

where \(\pi_i \) are the projection of \(N \) onto the \(i \)-th factor. Then,

\[
c_1(N) = \pi_1^* c_1(W) + \pi_2^* c_1(W) = \pi_1^* (3E_0 - \sum_{i=1}^{8} E_i) + \pi_2^* (3E_0 - \sum_{i=1}^{8} E_i).
\]
Consider any smooth path of symplectic forms \(\omega_t \), \(0 \leq t \leq \delta \), on \(N \) such that \(\omega_0 = \omega_W + \omega_W \). We may write
\[
[\omega_t] = \sum_{i=0}^{8} \{n_i(t)\pi_i^*E_i + l_i(t)\pi_i^*E_i\} \in H^2(N, \mathbb{R})
\]
for some smooth functions \(n_i(t), l_i(t), i = 0, \ldots, 8 \). As they are connected, their first Chern class \(c_1(\omega_t) = c_1(N) \). Using the intersection form we compute;
\[
(2) \quad [\omega_t]^4([W \times W]) = \left[\sum_{i=0}^{8} \{n_i(t)\pi_i^*E_i + l_i(t)\pi_i^*E_i\} \right]^4([W \times W])
\]
\[
= 6\{n_0^2(t) - \sum_{i=1}^{8} n_i^2(t)\}\{l_0^2(t) - \sum_{i=1}^{8} l_i^2(t)\} > 0.
\]
As \(n_0(0) = -3 \) and \(n_i(0) = 1, i = 1, \ldots, 8 \), so \(n_0^2(t) > \sum_{i=1}^{8} n_i^2(t) \). We get \(n_0(t) < 0 \). Similarly we also have \(l_0(0) = -3, l_i(0) = 1, i = 1, \ldots, 8 \), \(l_0^2(t) > \sum_{i=1}^{8} l_i^2(t) \) and \(l_0(t) < 0 \).
\[
\sum_{i=1}^{8} n_i(t) \leq \sqrt{8} \sqrt{\sum_{i=1}^{8} n_i^2(t)},
\]
\[
(3) \quad 3n_0(t) + \sum_{i=1}^{8} n_i(t) \leq 3n_0(t) + 2\sqrt{2} \sqrt{\sum_{i=1}^{8} n_i^2(t)}
\]
\[
< 3n_0(t) + 2\sqrt{2} \sqrt{n_0^2(t)} = (3 - 2\sqrt{2})n_0(t) < 0.
\]
So, \(c_1 : [\omega_t]^3([W \times W]) < 0 \). Set \(A_n = n_0^2(t) - \sum_{i=1}^{8} n_i^2(t) \), \(A_l = l_0^2(t) - \sum_{i=1}^{8} l_i^2(t) \), \(B_n = 3n_0(t) + \sum_{i=1}^{8} n_i(t) \) and \(B_l = 3l_0(t) + \sum_{i=1}^{8} l_i(t) \). From above, \(A_n, A_l > 0 \) and \(B_n, B_l < 0 \). By the inequality of arithmetic and geometric means we have
\[
\frac{c_1}{[\omega_t]^{3/4}} = \frac{3}{6^{1/4}} \left\{ \frac{A_nB_l + A_lB_n}{A_n^{3/4}A_l^{3/4}} \right\} = \frac{3}{6^{1/4}} \left\{ \left(\frac{A_n}{A_l} \right)^{3/4} \frac{B_l}{\sqrt{A_l}} + \left(\frac{A_l}{A_n} \right)^{3/4} \frac{B_n}{\sqrt{A_n}} \right\}
\]
\[
\leq -6^{1/4} \sqrt{B_lB_n}. \sqrt{A_lA_n}.
\]
From (3),

$$\frac{B_n^2}{A_n^2} \geq \frac{(3n_0(t) + 2\sqrt{2 \sum_{i=1}^8 n_i^2(t)})^2}{n_0^2(t) - \sum_{i=1}^8 n_i^2(t)} = \frac{(3 - 2\sqrt{2/(y - 1)})^2}{1 - y}$$

where \(y = \sum_{i=1}^8 n_i^2(t) \). By calculus, \(\frac{(3 - 2\sqrt{2/(y - 1)})^2}{1 - y} \geq 1 \) for \(y \in [0, 1) \) with equality at \(y = \frac{8}{27} \). So, we get \(\frac{B_n^2}{A_n^2} \geq 1 \) and similarly \(\frac{b_n^2}{a_n^2} \geq 1 \).

We have \(c_1([\omega_i])^3 \leq -6\pi \); the equality is achieved exactly when \(n_0(t) = -3, n_i(t) = 1, i = 1, \ldots, 8 \) modulo scaling, i.e., when \([\omega_i]\) is a positive multiple of \(-c_1(N)\). The Kähler form of a product Kähler Einstein metric of negative scalar curvature on \(N = W \times W' \) belongs to this class.

As the expression \(\frac{4\pi c_1([\omega])}{\|\omega\|^3} \) is invariant under a change \(\omega \mapsto \phi^{*}(\omega) \) by any diffeomorphism \(\phi \), so from (1) the above inequality gives

$$Z(N, [[\omega_0]]) \leq \sup_{\omega \in [[\omega_0]]} \frac{4\pi}{6} \cdot 24^{1/4} C_1 \cdot [\omega]^3 \leq -8\sqrt{2\pi}.$$

As the equality is attained by a Kähler Einstein metric, \(Z(N, [[\omega_0]]) = -8\sqrt{2\pi} \).

□

Proof of Theorem 2.1. Consider the positive Kähler Einstein metric on \(R_8 \) and let \(\omega_1 \) be the Kähler form of the product positive Kähler Einstein metric on \(R_8 \times R_8 \), which is diffeomorphic to \(N \). We have \(Z(N, [[\omega_1]]) = \infty \) (scaling by different constants on each factor gives \(\infty \)). And let \(\omega_2 \) be \(\omega_W + \omega_W \). Then \(Z(N, [[\omega_2]]) < 0 \) from Proposition 2.2. From the fact that these values are different, we conclude that \([\omega_1]\) and \([\omega_2]\) are distinct symplectic deformation equivalence classes. This proves Theorem 2.1.

□

In contrast to \(Z(N, [[\omega_2]]) < 0 \), for dimension \(n \geq 5 \) there are no examples known to have negative Yamabe invariant and Petean proved that the Yamabe invariant of any simply connected smooth closed manifold is nonnegative; [8]. Of course the Yamabe invariant \(Y(N) \) is positive.

Remark 2.3. We get \(Z(N, [[\omega_1]]) = \infty \), \(Z(N, [[\omega_2]]) < 0 \) and \(Z(N) = \infty \) from Theorem 2.1. As led by Question 1.1, we therefore expect for \(N \) that a smooth function is the scalar curvature of some almost-Kähler metrics in \([\omega]\) if and only if it is somewhere negative, and that any smooth function is the scalar curvature of some almost-Kähler metrics.

In fact, we may need certain surjectivity of the derivative of a scalar curvature map at the Kähler negative Einstein metric as well as the Kähler positive Einstein metric. This kind of argument is already outlined in [5, Section 4].

Question 2.4. Does there exist a simply connected closed 6-dimensional smooth manifold with two symplectic deformation classes with distinct signs of \(Z(\cdot, [[\omega]]) \)?
Question 2.5. Does there exist a closed 4-dimensional smooth manifold with two symplectic deformation classes \([\omega_i], \ i = 1, 2\) such that \(Z(\cdot, [[\omega_1]]) > 0\) (or \(Z(\cdot, [[\omega_1]]) = 0\)) and \(Z(\cdot, [[\omega_2]]) < 0\)?

Using further products, one may obtain, for each \(n \geq 3\), examples of closed symplectic \(2n\)-dimensional manifolds admitting two symplectic deformation equivalence classes with distinct signs of \(Z(\cdot, [\cdot])\) invariants.

References

Department of Mathematics
Sogang University
Seoul 121-742, Korea
E-mail address: jskim@sogang.ac.kr