보행형 배추정식기 개발

박석호 김진영 최덕규 김중길 곽태용 조성찬

Development of Walking Type Chinese Cabbage Transplanter

Abstract

Manual transplanting Chinese cabbage needs 184 hours per ha in Korea. Mechanization of Chinese cabbage transplanting operation has been highly required because it needs highly intensive labor during peak season. This study was conducted to developed walking-type Chinese cabbage transplanter. In order to find out design factor of the transplanter, a kinematic analysis software, RecurDyn, was used. The prototype was tested in the circular soil bin and its operating motion was captured and analyzed using high speed camera system.

Prototype was one row type which utilized original parts of engine, transmission and etc. from walking-type rice transplanter in order to save the manufacturing cost. Success ratio of pick-up device of hole-pin type and latch type were 96.0% and 99.2%, respectively. which was highly affected by feeding accuracy of feeding device of seedling. Transplanting device of the prototype produced a elliptic loci which were coincident with those produced by the computer simulation. Prototype proved good performance in transplanting with mulching and without mulching operation, either. Working performance of prototype was 22 hours per ha and operation cost of the prototype was 961,757 won per ha. So, it would reduce 88% of the labor and 29% of operation cost.

Keywords : Agricultural machinery, Transplanter, Vegetable transplanter, Chinese cabbage transplanter

1. 서론

배추정식작업은 인력에 의존하고 있으며, 노동투과시간은 18.4시간/10a의 소요량이 전체노동시간의 18.7%를 차지하고 있다(농촌정착, 2003). 배추정식작업은 헤리는 길게 구부린 상태로 계속적인 반복 작업을 하여야 하고 단기간에 고도 점약적인 노동력을 필요로 하기 때문에 일정간격을 기계화의 필요성에 강조되어 왔다. 또한 노동인구의 극감한 감소로 농촌 노동이 상승되어 생산비 절감을 위해서는 정식작업의 기계화가 더욱 절실한 실정이다.

미국이나 유럽의 대규모 채소 재배지역에서의 정식작업은 주로 트랙터 부착형 또는 자주형 반자동 채소정식기를 사용하고 있다. 이 작업기는 사람이 기계에 탑승하여 직접 모종을 모금정지기에 배치하는 대형 작업기이기 때문에 규모가 작은 우리나라 영농계에 적합하지 않다(민영봉 등, 1998).

일본에서는 평배추, 배추, 양상추 등의 플러그모를 자동으로 1시간에 10a를 심을 수 있는 승용관리기 부착형이나 자주식 채소정식기와 폐지를 용료용 포트에 재활용한 종이포트 모 채소정식기 등 다양한 방식의 채소정식기가 보급되고 있다(효과 향등, 1997). 그러나 일본의 채소정식기에 채택되어
있는 핵심장치들은 모두 특별히 보호되어 있기 때문에 기술 도입이 용이하지 않으며, 이 기술을 수입할 경우 기술도입비용을 자율해야 한다(박홍재, 2000). 일본 기계류도 도입할 경우 기술도입비용 저항이 매우 높기 때문에, 이는 기계가격 상승으로 이어지고 결국 농가경제력을 약화시키는 요인으로 작용하게 될 것이다.

국내에서는 농업공학연구소에서 승용관리기 부작형 2조식 전자동 제조장치를 비롯한 두두께형기, 중경형기, 방전자, 바우수형기, 운반기계를 개발하여 영농현장에 보급한 바 있다(NAMRI, 2001). 그러나 아직 기계가격이 비싸고 연간수요량이 적어 생산업체에서 산출량을 미루고 있는 실정이다.

승용관리기 부작형 제조장치는 기술적으로 포장의 양쪽 꼭 부분에서 제조장치가 완성될 때 사양을 개조하거나 많이 발생하기 때문에 구조적리가 되어 있지 않은 밑에서의 이용하기 어려운 단점이 있다.

따라서 본 연구에서는 인력에 의존하고 있는 배추정식작업의 생력기계화를 촉진하기 위하여 승용형 배추정식기를 개발하고자 수행하였다. 3차원 동역학적프로그램을 이용하여 각주장치의 작동상태와 운동을 분석하고, 핵심장치의 성능을 검증한 후 시각기를 설계 제작하여 포장시험을 실시하였다.

2. 재료 및 방법

가. 각주장치 운동분석

배추정식기의 핵심장치인 모 취출장치와 식부장치의 운동분석은 동력학적프로그램(RecurDyn Version 5.24, Function Bay Inc., Korea)을 이용하였다. 운동분석에 이용한 모 취출장치는 밀크와 슬라이더를 조합한 방식이다. 운동분석방법은 모 취출장치와 식부장치를 3차원 설계프로그램(IDEAS Ver. 11)으로 설계하여 UG파일로 변환시킨 다음, RecurDyn 프로그램의 Para Solid로 변환시켰다. 강체로 정의된 각각의 파트를 Joint, Contact, Forces등의 명령을 입력하여 운동분석을 실시하였다. 분석된 결과는 벽력, 변위, 속도, 가속도로 출력이 가능하며, 본 연구에서는 시각기를 제작하기 전에 기계장치의 설계와 적합한 대로 작동하는지 확인하고자 모 취출장치는 취출계획과 속도를 분석하였으며, 식부장치는 배추정식기의 정지상태에서의 취출방식과 속도를 분석하였다.

나. 각주장치 운동경중

1) 모 취출장치

모 취출장치의 경중은 모 취출장치에 따른 모 취출률을 조사하여 성능을 검증하였다. 모 취출장치는 그림 1과 같이 판을 육모트레이에 밑에 삽입하여 모취하는 홀린 천인마방식과 육모트레이 양쪽 태두리의 구멍을 이용하여 태로 이송하는 레치이송방식을 비교하여 모 취출률을 조사하였다.

성능시험에 사용한 모는 총 20~25일 기근 모가 정식기에 가장 적합하다고 보고된 바 있으며(GNU, 1995) 표 1과 같이 노란색배추로 육모획이가 23일, 초장이 5~8 cm, 주당 임수가 5~6개인 모를 사용하였다.

2) 식부장치

식부장치의 성능검증은 그림 2와 같이 복합 4경 링크방식의 식부장치를 제작하여 원형 회전조조에서 성능시험을 실시하였다. 고속카메라로 촬영된 결과는 동영상해석 프로그램(Motion Plus)을 이용하여 식부제작, 속도를 분석하였다.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Seeding status of Chinese cabbage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety</td>
<td>Seedling days (days)</td>
</tr>
<tr>
<td>NORANJA</td>
<td>23</td>
</tr>
</tbody>
</table>

Fig. 1 Experimental device of seedling feeding.

(a) Hole pin chain type (b) Latch feeding type
시작기는 조간 600 mm, 주간 300 400 mm의 동근두목 1 열에배로 설정된 표준배배양식을 기준으로 설계하였으나(오인식 등, 1999). 시작기는 그림 3과 같이 모 이송장치, 모 취출장치, 식부장치, 복토전입장치, 동력전달장치 등을 구성하였다. 시작기는 128공 플러그 육모트레이어를 이용하여 모 취출, 식부, 복토전입 작업이 일관적이 될 수 있도록 설계하였다. 시작기의 주요 재원은 표 2와 같다.

1) 모 이송 및 취출장치
모 이송장치는 그림 4와 같이 128공 플러그 육모트레이어 가로로 8간 이송시킨 다음 세로로 한 간씩 자동으로 이송시키며 모 취출장치가 모를 하나씩 빼낼 수 있도록 설계하였다. 가로이송은 스커프 이송방식으로 피치는 31.75 mm이다. 세로이송은 플러그 육모트레이어 좌우 바퀴의 폭을 벽치로 가로이송방식으로 피치는 31.75 mm이다. 모 취출장치가 육모트레이어에서 모를 빼내는 순간에 육모트레이어가 정지할 수 있도록 하기 위하여 간신히 전기를 사용하였다(Martin, 1985).
모 취출장치는 육모트레이어에서 모를 빼어내서 식부장치로 전달

Table 2 Specification of the prototype.

<table>
<thead>
<tr>
<th>Items</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (L×W×H, mm)</td>
<td>2,100×812×1,000</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>220</td>
</tr>
<tr>
<td>Row space (mm)</td>
<td>600, 700, 800, 900</td>
</tr>
<tr>
<td>Wheel diameter (mm)</td>
<td>600</td>
</tr>
<tr>
<td>Ground clearance (mm)</td>
<td>100/300</td>
</tr>
<tr>
<td>Inclination control range (°)</td>
<td>±5</td>
</tr>
<tr>
<td>Hill space (mm)</td>
<td>300, 350, 400, 450</td>
</tr>
<tr>
<td>Working speed (m/sec)</td>
<td>0.2 0.3</td>
</tr>
</tbody>
</table>

![Fig. 2 Experimental device of transplanting device.](image1)

![Fig. 3 Picture of the prototype.](image2)

![Fig. 4 Isometric view of feeding and pick up device.](image3)
2) 식부정치

식부정치는 취출장치로부터 묶어서 묶어 놓고 정착하는 장치이다. 식부정치는 배추정식기와 주경하여 묶으면서 묶을 때 묶어야 하는 위치(백석호 등, 2004). 식부정치는 길이 4cm, 치료와 조합한 복합 4cm 긴으로 설계하였다. 식부정치는 서로 같은 길이가 다른 링크 A, B를 서로 반대방향으로 회전시켜 타원형이 되도록 설계하였으며, 타원형의 높이가 두 링크 길이차의 2배가 된다. 각각의 링크는 A를 링크경로 방향으로 회전시키면 링크 B가 반대방향으로 회전하여 타원형의 폭이 형성되어, 링크 C와 D는 각각의 링크와 평행하도록 링크를 조합시켜 식부정치가 정상 지면과 수평을 유지하게 된다. 식부정치는 원주대방식으로 설계하여 비닐포도에서도 정식이 가능하도록 하였다. 각각의 링크는 A를 메인경로 방향으로 회전시키면 링식부정치는 캐주이에 의해 개폐되도록 설계하였다. 식부정치의 표면은 세로방향이 336 mm, 가로방향이 154 mm를 형성하도록 되어있다.

라. 시작기 성능시험
시작기의 성능시험은 표 3과 같이 농업공학연구소 입목장시험장에서 실시하였다. 시험장의 토양은 석양토였으며, 20 mm 미만의 흙들의 무게를 기준으로 측정한 쌍토율은 61.2%로 쌍토율이 좋지 않았으며, 흙수율은 23.2%로 조건한 상태였다. 트랙터부착형 두목정치기로 두목을 조난 600 mm, 두목높이를 150 mm이하로 만들고 절망을 피해한 상태와 두목상태를 비교하여 성능시험을 실시하였다. 시작기 성능시험에 사용한 묶는 표 1과 같이 노란색 배추로 묶은 이가 23일, 초가 50~80cm, 주당 엽수가 5~6개인 묶을 사용하였다.

<table>
<thead>
<tr>
<th>Table 3 Condition of experimental field.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
</tr>
<tr>
<td>NIAE experimental field</td>
</tr>
</tbody>
</table>

3. 결과 및 고찰

가. 묶 취출장치 성능시험
1) 묶 취출장치 운동분석

그림 6과 7은 동적학적 프로그램을 이용하여 분석된 묶 취출장치의 측정치와 실제성과의 속도를 나타낸 것이다. 취출장치는 육면트레이에서 묶을 뿌리내는 구간에서는 적절한 위치에 대하여 55 mm 직선운동을 한 다음 곡선을 따라 유도되어 취출장치가 아랫방향으로 자세를 회전하면서 구선 제작을 형성하였다. 캐의 형상은 시험장에 통하여 묶 취출기에 적절을 오래되고 묶 공급시 밀리는 작동과 프리토드를 전후로 작동시킬 수 있도록 설계하였다. 그림 7은 취출장치가 1회전할 때의 임계선된 X, Y, Z(축방향) 및 X+Y+Z방향의 속도를 나타낸 것이다. 상호로 상호작용하는 축의 임계속도는 0.4 m/s에서 적절히 감소하였으며, 묶지 않은 속도는 0.3 m/sec에서 서서히 감소하였다. 0.3초 이후에는 임계가 아랫방향으로 바뀌어 최대 1.7 m/sec까지 증가했다가 다시 감소하는 것으로 나타났다.

2) 묶 취출장치 성능시험

표 4는 묶 공급장치별 묶 취출장치의 모취출 실패율 및 취출 성공률을 나타낸 것이다. 묶 취출장치는 취출시 삼업위치에 따라 성능에 크게 좌우되는 것으로 나타났다(최원철 등, 2001). 환경적인 속도방향은 육면트레이 밑에 끼입하여 이동시켜서 육면트레이를 펼쳐야 하며 뒷쪽으로 베치하는
방식이다. 이 방식의 이송장치는 육모트레이의 척과 마지막까지의 이송오차가 5 mm가 발생되어 모 취출장치의 삽입원치가 육모트레이의 척돌에서는 삽입중량에 있다가 마지막까지는 삽입의 상부를 잡아 모를 취출하기 때문에 모 취출률이 96.0%로 다소 낮게 나타났다. 반면에 레치이송방식은 육모트레이의 양쪽단위로 있는 홈을 레치로 당겨 이송하기 때문에 이송오차가 발생되지 않았기 때문에 모취출률이 99.2%로 높게 나타났고 삽입오차가 파손되는 경우도 없는 것으로 나타났다. 모 취출시 침대와 안하여 있어 구멍이 생기는 일 손상은 배추용육에 영향을 미치지 않는 것으로 보고된다(NAMRI, 2001).

Table 4 Seedling pick-up performance of Chinese cabbage.

<table>
<thead>
<tr>
<th>Feeding type</th>
<th>No. of picking up (hill)</th>
<th>Number of failure (No.)</th>
<th>Sucess ratio of picking up (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>soil branchage</td>
<td>leaf damage</td>
</tr>
<tr>
<td>Hole pin chain</td>
<td>128</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Latch</td>
<td>128</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 6 Loci of pick up device.

Fig. 7 Velocity of pick up device.

Fig. 8 Loci of transplanting device.

Fig. 6 Loci of pick up device.

Fig. 7 Velocity of pick up device.

Fig. 8 Loci of transplanting device.
적으로 회전하는 구간을 나타낸 것이다. 식부호파가 토양속 으로 살입된 상태인 캐의 하단부에서는 식부호파가 증점되 어 나타났기 때문에 식부호파가 토양속에서 물리거나 밀리지 않음을 것으로 판단한다.

2) 식부장치 성능검증

그림 9는 원형 회전도조에 식부장치를 부착하고 고속카메 라로 측정한 식부속도와 동역학적 프로그램으로 운동분석 한 식부속도를 비교한 그림이다. 식부장치의 속도는 모를 취 출장치로부터 공급받는 동안인 0.5초까지는 식부장치가 정지 하고 있다가 나머지 0.5초 동안 1회전하여 최대 2.1 m/sec의 속도로 회전하는 것으로 나타났다. 식부호파가 토양속으로 삼입되는 순간이 1.0 m/sec의 속도로 나타났다. 원형회전도조 에서 측정한 식부속도와 동역학적 프로그램으로 분석한 식 부속도는 거의 차이가 없는 것으로 나타났다. 식부호파가 토 양속에서 모를 놓는 순간에서는 식부속도가 0.4 m/sec로 작 야져 모를 안정적으로 심을 수 있을 것으로 생각된다. 모의 식부상태는 식부호파가 토양속으로 밀리거나 물리지 않았기 때문에 그림 10과 같이 식부호파의 전분이 넓어지는 현상은 발생하지 않았으며, 구멍안에 모가 정확하게 심겨지는 것으 로 나타났다. 다만 식부호파의 부피만큼 토양에 전분이 생겼 으나 이 전분은 배추성실기의 복통장치에 의해 구멍이 오므 라지면서 모가 들키므로 수확을 할 것으로 생각된다.

다. 포장시험

시작기의 작업성능은 표 5의 값과 같이 2.2시간/10a로 나타났 다. 시각기는 보행이양기의 작업속도인 0.25 m/sec에서 작업 하였으며, 작업소요시간은 정식시간 1.2시간/10a, 선수시간은 0.4시간/10a, 모 공급시간은 0.6시간/10a가 소요되는 것으로 나타났다. 시각기는 보행이양기의 변속기가 식부 1단으로 설계되어 있기 때문에 주행속도의 변화에 따른 성능시험은 실 시하지 않았다.

시작기의 작업상태는 바닐을 파복하지 않은 경우와 바닐을 파복한 경우에 대하여 조사하였다. 모의 식부상태는 무피복 과 바닐피복의 경우 85~95로 거의 주험으로 심겨진 것으로 나타났다. 바니모의 결주율의 기준은 상도가 토양속으로 삽 입되지 않고 두터워 옮겨온 것을 결주로 간주했다. 시작기 의 결주율은 무피복인 경우 3.0%, 바닐피복인 경우 2.2%로 나타났으나 이 차이는 바닐피복과 무피복의 차이로 발생한 것이 아니라 육묘트레이에서 모의 뿌리발육상태가 좋지 않은

![Fig. 9 Velocity of transplanting device.](image)

![Fig. 10 Transplanting status of seedling.](image)

<table>
<thead>
<tr>
<th>Table 5 Working performance of prototype.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working speed (m/sec)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 6 Working status of prototype.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>No mulching</td>
</tr>
<tr>
<td>Vinyl mulching</td>
</tr>
</tbody>
</table>
경우에 발생된 것으로 나타났다. 모의 뿌리발육이 좋지 않은 경우는 취득장치로 모를 뿌리를 쌍지 않거나 모가 가벼워 식부호과에 투입되었을 때 식부호과 속으로 깔게 들어가지 못하기 때문에 모가 두둑위로 다시 올라오는 경우가 발생하였다. 결주율을 줄이기 위해서는 기계장비용 육묘기술 개발에 관한 연구가 필요할 것으로 생각된다.

라. 경제성분석

시작기의 소요비용은 962천원/ha으로 관행의 1,310천원/ha에 비하여 29% 절감할 수 있는 것으로 분석되었다. 작업성능은 22시간/ha으로 관행 인적의 184시간/ha에 비하여 88% 절감이 가능한 것으로 분석되었다. 표 7에 나타낸 자료를 기준으로 손익분기규모는 4.4 ha로 나타났지만 채소정식이 300 대 이상 대량생산될 경우 기계가격이 4,500천원으로 낮아지기 때문에 손익분기규모는 2.8 ha로 낮아질 것으로 예상된다.

<table>
<thead>
<tr>
<th>Table 7 Economical analysis of the prototype.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Purchasing price (won)</td>
</tr>
<tr>
<td>Durable time/year</td>
</tr>
<tr>
<td>Annual using time (hr/year)</td>
</tr>
<tr>
<td>Fixed cost (won/year)</td>
</tr>
<tr>
<td>Depreciation cost</td>
</tr>
<tr>
<td>Repair cost</td>
</tr>
<tr>
<td>Interest</td>
</tr>
<tr>
<td>sum</td>
</tr>
<tr>
<td>Fixed cost per hour (won/hr)</td>
</tr>
<tr>
<td>Variable cost (won/hr)</td>
</tr>
<tr>
<td>labor cost</td>
</tr>
<tr>
<td>Fuel cost</td>
</tr>
<tr>
<td>sum</td>
</tr>
<tr>
<td>Cost per hour (won/hr)</td>
</tr>
<tr>
<td>Working performance (hr/ha)</td>
</tr>
<tr>
<td>Total cost (won/ha)</td>
</tr>
</tbody>
</table>

4. 요약 및 결론

본 연구에서는 인력에 의존하고 있는 배추정식작업의 생태 기계화를 촉진하기 위하여 보행형 배추정식기를 개발하고자 수행하였다. 3차원 동역학해석프로그램을 이용하여 각부작용의 작동상태와 운동을 분석하고, 백심장치의 성능을 검증한 후 시각기를 설계 제작하여 포장시험을 실시하였다. 연구결과를 요약하면 다음과 같다.

(1) 2.4마력의 보행이행기의 기계구조를 이용하여 보행 1조 식 배추정식기를 개발하였다.
(2) 요 취득장치의 성능은 표준장치의 오차에 따라 좌우되는데 것으로 나타났으며, 취득성공률은 풀원체인이송방식을 이용한 경우 96.0%, 빠치이송방식을 채용한 경우 99.2%로 나타나 빠치이송방식으로 시각기를 제작하였다.
(3) 식부호장치는 복합 4절 링크방식으로 타원형의 식부작용을 형상하였으며, 토양속에서 식부호가 끝나거나 밀려는 현상이 없고 모의 식부상태도 좋게 나타났다.
(4) 시작기의 작업상태는 비납과목 및 무목목 상태에서 작업이 가능한 것으로 나타났으며, 결주율은 2.2~3.0%로 나타났으며, 작업성능은 2.2시간/10이 있으며, 비용은 961,757원/ha로 관행에 비하여 노력은 88%, 비용은 29% 절감할 수 있는 것으로 나타났다.

참 르 르