Effects of Feeding *Rhus verniciflua* Extract on Egg Quality and Performance of Laying Hens

Hwan Ku Kang, Geun Ho Kang, Jae Cheon Na, Dong Jo Yu, Dong Wook Kim, Sang Jin Lee, and Sang Ho Kim*

*Poultry Science Division, Livestock Resource Development, National Institute of Animal Science, RDA, Seonghwan 330-801, Korea*

**Abstract**

This experiment was conducted to investigate the effects of drinking of *Rhus* tree-extract on laying performance and egg quality in hens. Four hundred eighty, 55-wk-old ISA brown, laying hens were divided into six groups, control, *Rhus* tree-extract 500 ppm, 1,000 ppm, 2,000 ppm, 3,000 ppm and 5,000 ppm. The hens were fed a supplemented drink containing *Rhus* tree-extract for 12 weeks. Egg production and egg mass increased by drinking *Rhus* tree-extract (p<0.05) and the feed conversion ratio also improved in *Rhus* tree-extract groups. Cecal numbers of *Lactobacillus* spp., *E. coli* and *Salmonella* were not different in treatments. Availability of protein and ash improved in the *Rhus* extract groups. The eggshell breaking strength and egg shell thickness were significantly increased in *Rhus* tree-extract 3,000 ppm and *Rhus* tree-extract 2,000 ppm groups compared to the other groups. Also, egg yolk color and Haugh unit were significantly improved by the dietary *Rhus* tree-extract (p<0.05).

**Key words**: *Rhus* tree-extract, hens, egg quality, Haugh unit

서 론

계란은 비타민 A, E 및 B₂ 등의 비타민과 단백질, 지방, 미네랄 등을 다양 함유하고 있어 자연계에 존재하는 완전 에 가까운 식품으로 잘 알려져 있다(Surai and Sparks, 2001; Weggemans et al., 2001). 하지만, 완전식품임에도 불구하고 수분 함량이 높아 저장과 유통과정에서 계란의 훼손 및 수분 증발 등으로 내부 품질 저하가 발생할 수 있다는 단 점을 가지고 있어 안정성에 많은 논란의 여지가 남기고 있다(Silverside and Villeneuve, 1994).

웃나무(*Rhus verniciflua*)는 아시아 지역을 비롯하여 많은 나라에서 600여종이 자라고 있으며, 옷나무에서 나오는 액을 생물 또는 수액이라고 한다(Kim, 2005).

웃나무의 주요 성분으로는 urushiol 55-70%, 고무질 4-8%, 철소화합물 2.3%, 효소 및 수분이 10-40% 그리고 flavonoid 계 1-2%를 함유하는 것으로 알려져 있다(Jung, 1998). 또한 옷나무는 성질이 따뜻하고, 맑은 매우 식 용하였을 때는 장내 구충효과가 탁월하여 3시종과 전시 채울을 죽이는 구충효과가 보고되어있다(Shin, 1986; Ji and Lee, 1989; Lim and Shim, 1997). 하지만, 옷나무의 수액이 피부와 접촉하면 경우에 따라서는 피부염을 일으켜 출혈, 가려움증, 물집 등의 알리지 반응 도 일어나는 독성이 있다(Kook and Woo, 1971; Kim et al., 2002).

현재까지 옷 추출액은 한방에서 주독, 해열, 학절, 구종, 복통, 통경, 반비 등에 약재로 쓰이며 민간에서는 옷 추출 액에 답을 삼아 옷을 식탁으로 사용하고 있다(Choi et al., 2002).

옷나무 추출물의 생리활성 연구 보고는 옷나무에서 분 리된 물질들에 대한 항균작용, 항산화작용, 항암작용 등이 있으며(Na et al., 1998; Kim, 1999; Lee et al., 2005), Liang(2004)은 옷 추출액이 리포좀에서 항산화효과를 나
타네요고 보고하였다. 또한 Lee 등(2004)은 옥나무를 소
사료에 적절 첨가 급여하였을 때 저장기간 중 저장산화가
억제되었다고 보고하여 축산물 생산에 있어 옥의 이용가
능성을 시사하였다.
이와 같이, 옥나무 및 옥 추출액이 다양한 효과를 가짐
에도 불구하고 간단히 계산에 있어 옥을 이용한 연구는
전반한 설정이 다만, in vitro 실험에서 저장산의 산화 역
제, 저장기간 중 독목 및 소고기에서 지질산화를 생성
억제한다고 보고되어 있다(Lim et al., 1997; Shim and Lim,
1997; Lee et al., 1998; Kim et al., 1999).
따라서, 본 연구에서는 생리활성 효과를 갖는 옥나무 추
출액을 산란계 사료 내 첨가·급여 시 계란의 신선도, 난
황색 및 난각질 개선 등의 계란 품질 전반에 미치는 영향
을 구명하고자 실험을 실시하였다.

재료 및 방법

시험동물 및 시험설계
본 시험은 55주령 ISA Brown 혼 480마를 6차례 4반목, 반복당 20마씩 완전임계 실시한 총 12조간 실시하였다.
우 추출액은 경조음 참은 우 1,000 ml를 20 L의 80°C
증류수에 넣은 후 6시간동안 가열하여 추출한 후 음수로
급여하였으며, 처리구 배치는 우 추출액 무처리구(C), 500
ppm(T1), 1,000 ppm(T2), 2,000 ppm(T3), 3,000 ppm(T4),
5,000 ppm(T5)으로 각각의 처리구를 배치하였다.

시험사료 및 사료관리
기초사료는 옥수수·대두백 사이의 가무사료 형태로
NRC(1994) 요구량을 충족하도록 대사에너지 2,800 kcal/
kg, 조건백질은 16% 수준으로 하였다(Table 1). 공급사는
전 시험기간 동안 나무가 설치된 3단 키방에서 사육하
였으며 환경변경을 최소화하고자 처리반복간의 배치를 조
정하였다. 사료는 전 기간 자유로 채식토록 하였으며 점
등은 17시간으로 고정하였다.

생산성 조사
산란수와 단종은 매일 15:00시에 측정하였으며, 사료실
취량은 2, 4, 6주 그리고 시험 종료 시 조사하였다. 산란
율은 hen day로 표시하였으며, 평균난중은 기형란을 제외
한 정상란에 대하여 첫량하였다. 1일 산란량은 총산란량
과 평균난중을 곱하여 계산하였다. 사료실취량은 수당 섭
취량으로 표시하였으며, 사료요구율은 수당 1일 사료섭취
량으로 1일 산란량을 나누어 계산하였다.

계란품질 조사
시험 개시 시, 6주 그리고 12주간 반복별 임의로 5개씩
90개를 수집하여 계란품질 조사를 실시하였다. 계란품질
분석기(QCM+, Technical Services and Supplies, Co., Ltd.,
England)를 이용하여 haugh unit 및 난황색도를 조사하였
고, 난가질은 난가질도계와 난각두께측정기(FHK, Co. Ltd.,
Japan)로 측정하여 나타내었다.

영양소 이용성
영양소 이용성을 조사하기 위하여 사항시험 종료 후 처
리당 4주씩 전분처취법으로 대사시험을 실시하였다. 평균
체중을 유지하고 정상적인 분비를 배설하는 개체를 선발하
여 1주수 대사치에서 수용하였는데, 저지 중을 고
려하여 3일간 사료를 자유체식 시켰고 이후 3일 동안
매일 사료섭취량과 배설량을 수집하여 체량하였다. 체취
된 분은 청량 후 homogenizer(SMT, Co. Ltd, Japan)로 균
질화하였으며, 60°C로 조정된 습도공기(Kejoong, Co. Ltd.,
Korea)에서 건조하였다. 건조된 계란은 청량 후 분쇄하여
일반성분을 분석하였다. 일반성분은 AOAC(1995) 방법에
준하여 분석을 실시하였다.

장내미생물 조사
장내미생물은 매장 내용물에 대하여 종료 시에 처리별
4수간 회생하여 조사하였다. 조사한 계체는 평균체중과 비
슷하고 건강한 제방의 방아리를 선발하였으며, 저장 내용
물은 Meckel's diverticulum 부위에서 아래쪽으로 5 cm 정
도 절단하여 체취하였고 저장 내용물은 두 개의 저장 내용
물 전체를 체취하였으며, 체취된 매장 내용물은 생리시험
수로 10^7까지 계단회식 하였다. 단계적으로 회식된 내용
물을 Salmonella Shigella agar(Oxoid, UK), MacConkey
agar(Difco, USA) 및 Rogosa SL agar(Difco, USA)를 평
판배지에 각각 접종하였다. 유기질 조건에서 Rogosa SL
agar(Difco, USA)는 37°C에서 48시간 배양하였으며, 흑
기질 조건에서 Salmonella Shigella agar(Oxoid, UK),
MacConkey agar(Difco, USA)는 37°C에서 24시간 배양 후
균수를 측정하였다. 균수의 세주는 매장 내용물 1 g당 CFU
(colony forming unit)로 계산한 후 Log_{10}으로 환산 표기하
였다.

통계분석
본 시험에서 수집된 자료의 분석은 GLM(SAS Institute,
1996)을 이용하여 분산분석을 실시하였으며, 처리별 유의
성 분석은 Duncan's new multiple range test을 이용하여
95% 수준에서 유의성을 검정하였다.

결과 및 고찰
생산성
시험 기간동안 옥과 우 추출액 수준별 균여에 따른 생산
Table 1. Formular and chemical composition of basal diet

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Ratio, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>64.00</td>
</tr>
<tr>
<td>Soybean meal (CP 44%)</td>
<td>16.30</td>
</tr>
<tr>
<td>Corn gluten meal (CP 60%)</td>
<td>4.94</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>0.37</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>3.60</td>
</tr>
<tr>
<td>DL-methionine (50%)</td>
<td>0.07</td>
</tr>
<tr>
<td>L-lysine (80%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Tricalciumphosphate</td>
<td>0.95</td>
</tr>
<tr>
<td>Limestone</td>
<td>8.94</td>
</tr>
<tr>
<td>Salts</td>
<td>0.25</td>
</tr>
<tr>
<td>Vitamin premix</td>
<td>0.50</td>
</tr>
<tr>
<td>SUM</td>
<td>100</td>
</tr>
</tbody>
</table>

Chemical composition:

<table>
<thead>
<tr>
<th></th>
<th>ME, kcal/kg</th>
<th>CP, %</th>
<th>Lysine, %</th>
<th>Methionine, %</th>
<th>Ca, %</th>
<th>Non phytate P, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,800</td>
<td>16.00</td>
<td>0.766</td>
<td>0.325</td>
<td>3.702</td>
<td>0.279</td>
</tr>
<tr>
<td>Contained per kg diet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Contained per kg diet : Vit. A 1,600,000 IU, Vit. D3 300,000 IU, Vit. E 800 IU, Vit. K3 132 mg, Vit. B2 1,000 mg, Vit. B12 1,200 mcg, niacin 2,000 mg, pantothenate 800 mg, folic acid 60 mg, choline chloride 35,000 mg, dl-methionine 6,000 mg, iron 4,000 mg, copper 500 mg, manganese 12,000 mg, zinc 9,000 mg, cobalt 100 mg, BHT 6,000 mg, iodide 250 mg.  

2 Calculated values.

은 Table 2에 나타내었다. 종 산란율은 T5 처리구에서 C 처리구 대비 7.4% 증가하여 전체 처리구간 비교 시 가장 높았으며(p<0.05), T3 처리구에서 가장 낮았다.

정상란율은 대조구와 비교 시 T5 처리구에서 최대 2.7%까지 증가하는 것으로 나타났으며(p<0.05). 평균 난중은 대조구와 비교 시 T2 처리구에서 1.2% 증가함으로써 유의적으로 높게 나타났다(p<0.05). 1일 산란량은 T5 처리구에서 약 7.9% 높게 나타났다(p<0.05). 실험 기간 동안 사료섭취량은 대조구와 비교하였을 때 옷 않았음 체가구에서 유의적으로 감소하는 경향을 나타내었으며, 전체 처리구에서 옷았음을 추측 1,000 ppm 체가구의 T2 처리구에서 수당 5 g 정도 섭취하는 것으로 가장 높게 나타났다(p<0.05).

사료요구율에 있어서는 전체 처리구간 비교 시 T3 처리구를 제외한 처리구에서 개선되는 경향을 나타내었다(p<0.05).


계판물질

옷았음을 추측의 급여가 달걀강도 및 달걀두께에 미치는 영향은 Table 3에서 나타내었다. 달걀강도는 시험 종료 시 T4 처리구인 옷았음을 추측 3,000 ppm 체가구에서 가장 우수하였으며(p<0.05), 대조구와 비교 시 T5 처리구를 제외한 옷 않았음을 체가구에서 전체에서 달걀강도에 대한 개선효과가 나타났다(p<0.05).

달걀두께는 6주차를 제외한 시험 기간 전체에서 옷았음을 추측 체가구가 대조구 대비 향상되는 것으로 나타났으며 T3 처리구인 옷았음을 추측 2,000 ppm 체가구에서 가장 개선효과가 높아졌으나 차이를 보이지 않았다(p<0.05).

항생제는 Fig. 1에 나타낸 바와 같이. 다른 처리구와 비교 시 T2 처리구에서 유의적으로 높게 나타난 반면, 대조구에서 실험 기간동안 가장 높게 나타났다(p<0.05). T5 처리구의 경우 6주차에 9.8로 가장 높게 나타났으며 이후 감소 경향을 나타내었으나. 대조구와 비교 시 옷았음을 추측 체가구에서 전 기간에 걸쳐 개선효과가 나타났다. 결과적으로 본 연구에서와 같이 옷았음을 추측 체가구에서 달걀색차를 높게 나타난 것은 추출물 중 flavonoid 계 색소 물질에 의해 개선되어진 결과로 판단하여 향후 이에 대한 좀 더 깊이 있는 연구가 필요할 것으로 사료된다.

Fig. 2와 3에서는 옷았음을 추측 급여에 의한 Haugh unit 을 처리별(Fig. 2)과 저장기간별(Fig. 3)로 비교하여 나타내

Table 2. Effects of drinking Rhus tree extract on laying performance, feed intake and feed conversion ratio of laying hens

<table>
<thead>
<tr>
<th>Item</th>
<th>C</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg production, %</td>
<td>83.5bc</td>
<td>86.9bc</td>
<td>87.7bc</td>
<td>80.5d</td>
<td>85.0bc</td>
<td>90.2a</td>
<td>0.76</td>
</tr>
<tr>
<td>Normal eggs, %</td>
<td>81.3ab</td>
<td>83.5a</td>
<td>83.5a</td>
<td>79.5b</td>
<td>81.8ab</td>
<td>84.0a</td>
<td>0.46</td>
</tr>
<tr>
<td>Brokken eggs, %</td>
<td>2.2c</td>
<td>3.3c</td>
<td>3.4ab</td>
<td>0.9c</td>
<td>3.2c</td>
<td>6.1a</td>
<td>0.44</td>
</tr>
<tr>
<td>Egg weight, g</td>
<td>65.9bc</td>
<td>65.0bc</td>
<td>66.7</td>
<td>64.1b</td>
<td>64.7ab</td>
<td>66.2ab</td>
<td>0.29</td>
</tr>
<tr>
<td>Egg mass, g/d</td>
<td>55.0bc</td>
<td>56.5ab</td>
<td>58.5ab</td>
<td>51.6c</td>
<td>55.1bc</td>
<td>59.7*</td>
<td>0.66</td>
</tr>
<tr>
<td>Feed intake, g/pen</td>
<td>123.5a</td>
<td>121.3bc</td>
<td>122.3ab</td>
<td>118.5b</td>
<td>120.5ab</td>
<td>120.5ab</td>
<td>0.57</td>
</tr>
<tr>
<td>Feed conversion</td>
<td>2.23ab</td>
<td>2.15bcd</td>
<td>2.10cd</td>
<td>2.30a</td>
<td>2.19bc</td>
<td>2.06d</td>
<td>0.02</td>
</tr>
</tbody>
</table>

a,b,c,d Means with the different superscripts with a row differ significantly (p<0.05).
C: control, T1: Rhus tree extract 500 ppm, T2: Rhus tree extract 1,000 ppm, T3: Rhus tree extract 2,000 ppm, T4: Rhus tree extract 3,000 ppm, T5: Rhus tree extract 5,000 ppm.
Table 3. Effects of drinking *Rhus* tree extract on eggshell breaking strength and eggshell thickness of laying hens

<table>
<thead>
<tr>
<th>Item</th>
<th>C</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggshell breaking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strength (kg/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 wk</td>
<td>3.55&lt;sup&gt;a&lt;/sup&gt;</td>
<td>3.36&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.34&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.26&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3.56&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.40&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.12</td>
</tr>
<tr>
<td>6 wk</td>
<td>3.12&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3.15&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3.17&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3.29&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>3.38&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.40&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.14</td>
</tr>
<tr>
<td>12 wk</td>
<td>2.92&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>3.08&lt;sup&gt;b&lt;/sup&gt;</td>
<td>2.97&lt;sup&gt;b&lt;/sup&gt;</td>
<td>2.95&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.27&lt;sup&gt;b&lt;/sup&gt;</td>
<td>2.88&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>0.12</td>
</tr>
<tr>
<td>Eggshell thickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(μm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 wk</td>
<td>403&lt;sup&gt;b&lt;/sup&gt;</td>
<td>419&lt;sup&gt;a&lt;/sup&gt;</td>
<td>397&lt;sup&gt;b&lt;/sup&gt;</td>
<td>412&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>416&lt;sup&gt;c&lt;/sup&gt;</td>
<td>416&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3.12</td>
</tr>
<tr>
<td>6 wk</td>
<td>388&lt;sup&gt;c&lt;/sup&gt;</td>
<td>404&lt;sup&gt;a&lt;/sup&gt;</td>
<td>390&lt;sup&gt;b&lt;/sup&gt;</td>
<td>385&lt;sup&gt;c&lt;/sup&gt;</td>
<td>398&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>387&lt;sup&gt;c&lt;/sup&gt;</td>
<td>2.31</td>
</tr>
<tr>
<td>12 wk</td>
<td>384&lt;sup&gt;c&lt;/sup&gt;</td>
<td>400&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>400&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>405&lt;sup&gt;c&lt;/sup&gt;</td>
<td>393&lt;sup&gt;b&lt;/sup&gt;</td>
<td>399&lt;sup&gt;b&lt;/sup&gt;</td>
<td>2.07</td>
</tr>
</tbody>
</table>

C: control, T1: *Rhus* tree extract 500 ppm, T2: *Rhus* tree extract 1,000 ppm, T3: *Rhus* tree extract 2,000 ppm, T4: *Rhus* tree extract 3,000 ppm, T5: *Rhus* tree extract 5,000 ppm.

Fig. 1. Effects of drinking *Rhus* tree extract on egg yolk color of laying hens. C: control, T1: *Rhus* tree extract 500 ppm, T2: *Rhus* tree extract 1,000 ppm, T4: *Rhus* tree extract 2,000 ppm, T4: *Rhus* tree extract 3,000 ppm, T5: *Rhus* tree extract 5,000 ppm.

Fig. 2. Effects of drinking *Rhus* tree extract on Haugh unit index of laying hens. C: control, T1: *Rhus* tree extract 500 ppm, T2: *Rhus* tree extract 1,000 ppm, T3: *Rhus* tree extract 2,000 ppm, T4: *Rhus* tree extract 3,000 ppm, T5: *Rhus* tree extract 5,000 ppm.

Fig. 3. Effects of drinking *Rhus* tree extract on change of Haugh unit by stored days of laying hens. C: control, T1: *Rhus* tree extract 500 ppm, T2: *Rhus* tree extract 1,000 ppm, T3: *Rhus* tree extract 2,000 ppm, T4: *Rhus* tree extract 3,000 ppm, T5: *Rhus* tree extract 5,000 ppm.


영양소 이용률 및 정내 미생물 변화

Table 4에서는 영양소 이용율을 나타내었다. 단백질 소화율은 T5 처리군에서 80.4%로 가장 높았으며, 대조군과 T1 처리군에서 67.3%, 68.7%를 각각 낮게 나타났다 (p<0.05).

지방 소화율에서는 T5 처리군에서 84.1%로 처리군간 비교 시 가장 높았으나 통계적 차이는 나타나지 않았으며, 확분 소화율에서는 T4 처리군에서 66.9%로 처리군간 비
교시 유의적으로 높게 나타났다(р<0.05).

도계 후 벌망 내 미생물을 변화는 Table 5에서 나타났다. 옷나무 추출물 척가구에 대한 수준별 균연에 따른 처리간 유의적 차이는 나타나지 않았으나, Salmonella의 경우 옷나무 추출액 척가구가 무척가구와 비교시 낮은 경향을 보였다.

요약

본 연구는 옷나무 추출액의 급여가 산란계 생산성, 계란품질 및 저장기간에 따른 계란 신선도에 미치는 영향을 구명하고자 시험을 실시하였다.

시험은 6처리 4반복 백업당 20수씩 공시하였으며, 옷 추출액 무척가구(C), 500 ppm(T1), 1,000 ppm(T2), 2,000 ppm(T3), 3,000 ppm(T4), 5,000 ppm(T5)으로 처리구를 배치하여 총 12주간 시험을 실시하였다.

종 산란율은 T5 처리구에서 90.2%로 전체 처리간 비교시 가장 높았으며, 산란율은 5,000 ppm 척가구에서 59.7로 높게 나타났다(р<0.05). 사료 섭취량에서는 대조구와 비교시 옷나무 추출액 척가구에서 유의적으로 감소하는 경향을 나타내었으며(р<0.05), 옷나무 추출액 1,000 ppm 척가구 T2 처리구에서 118.5 g/명으로 가장 낮았고(р<0.05), 사료 요구율에 있어서는 전체 처리간 비교시 T5 처리구에서 유의적으로 가장 낮게 나타났다(р<0.05). 시험기간 동안 납각강도는 T4 처리구와 T3 처리구에서 가장 우수하였으며, 납황색은 전체 처리구간 비교시 T2 처리구에서 유의적으로 높게 나타났다(р<0.05). Haugh unit은 대조구와 비교시 옷나무 추출액 5,000 ppm 척가구 T5 처리구에서 가장 높았고 저장기간에 따른 Haugh unit 변화 역시 옷나무 추출액 급여에 의하여 향상되는 결과를 보였다.

영양소 소화율에서는 전체 처리구간 비교시 옷나무 추출액 척가구에서 단백질과 탄수화물의 이용률이 향상되는 결과를 보였으며 특히 옷나무 추출액 3,000 ppm 및 5,000 ppm 급여구가 유의적으로 향상되었다(р<0.05).

결과적으로 산란계 사료 내 적정 수준의 옷나무 추출액을 척가 급여는 산란계의 생산성을 증가시키며, 계란 품질에 있어 납각질 및 납황색의 개선과 함께 저항 기간 중 신선도에 있어 안정성을 갖는 것으로 나타났다.

참고문헌

Food Sci. Technol. 31, 855-863.