Determinants of the National Health Expenditures: Panel Study

Byongho Tchoe**, Sang-ho Nam**, Yoon-jung Shin*

Korea Institute for Health and Social Affairs, **National Assembly Budget Office**

This study estimates the determinants of national health expenditures of OECD countries using panel regression method. The data used are OECD Health Data(2003) covering 33 countries and from 1970 to 2001. This study shows several important different results compared to the previous studies. Further this study estimates the determinants of Korean case using data from 1977 to 2000, and compare with the results of OECD panel.

The main findings are as follows. The income elasticity of health expenditures is estimated below 1.0, but is shown above 1.0 when the different health systems of each country are controlled. The women’s labor participation influences strongly positive effect on the health expenditures. The diffussion of new technologies is positively related with the increasing expense. The increasing government expenditures have a tendency not to contain health expenses, but to increase expenses. The expansion of public health insurance holders is containing the expenses, and the increasing number of doctors is pushing expenditures. This implies the health expenditures are influenced more by the induced demand of providers rather than the moral hazard of patients. However, the

* 접수 : 2004년 5월 4일, 성사완료 : 2004년 6월 9일
** 교신저자 : 최병호, 한국보건사회연구원(02-389-0103, choice@kihasa.re.kr)
above result is opposite in Korean case. The existence of primary care doctors affects slightly up warding rather than containing expenditures. Finally the determinants are seriously depending upon which factors are included in the model and which statistical model is chosen. Therefore it must be cautious to interpret the results of statistical model.

Key Words : National health expenditures, Panel study, OECD health, Determinants of health expenditures

I. 서 론

국민의료비의 결정요인에 관한 연구는 1970년대 후반부터 1990년 초반까지 주로 횡단면자료를 이용한 단순 혹은 다변량 회귀분석 모형을 이용하였다. 1990년대 후반에 들어서는 패널 자료에 기초하여 다양한 계량모형을 이용한 연구들이 주류를 이루었다. 기존 연구 결과들은 대체적으로 1인당 GDP가 1인당 국민의료비 변동을 설명하는데 있어 가장 영향력 있는 변수로 나타나고 있음을 지적하고 있으며, 소득 이외에 다양한 사회경제적 변수들과 보건의료체계 변수들이 1인당 국민의료비에 미치는 영향을 고찰하기도 하였다. 사회경제적 요인들과 보건의료체계 요인들이 1인당 국민의료비에 미치는 영향은 각 연구가 이용한 자료와 연구방법에 따라 다양하게 추정되었다.

기존의 연구결과를 요약하면 <표 1>과 같으며, 의료비의 소득탄력성은 대부분 통계적으로 유의한 양(positive)의 영향력을 지니고 있으며 설명변수, 이용자료, 명목환율 혹은 구매력(PPP)평가를 통한 환율의 사용여부, 추정방식에 크게 영향을 받지 않는(robust) 결과를 나타내고 있다. 그러나 소득탄력성이 1보다 큰지 혹은 작은지에 대해서는 연구결과들이 다양하다. 고령화와 같은 인구구조는 대부분의 경우 국민의료비에 유의하지 않은 영향력을 갖고 있는 것으로 나타나고 있다. 소수의 연구에서도 실업률을 설명변수로 사용하였으나 역시 통계적으로 유의하지 않은 영향력을 갖고 있는 것으로 나타났고, 비공식적 간호 인력 규모가 국민 의료비에 미치는 영향력을 추정하고자 여성의 노동참여율을 설명변수로 사용하였으나 역시 통계적으로 유의하지 않은 결과가 나왔다.

이러한 양적 변수들 외에 보건의료 제도적 차이를 의료비 결정요인으로 분석한 대표적 연구는 Gerdtham 등(1998)이며, 1차 의료의 존재는 의료비를 감소시키는 것으로 추정하였고, 추정된 결과에 따라서 1차 의료가 존재하는 국가는 그렇지 않은 국가에 비해 국민의료비가 18% 정도 낮은 것으로 추정하였다. 그러나 Barros(1998)의 연구는 1차 의료의 존재가 국민
<표 1> 국민의료비 결정요인과 관련 외국의 주요연구결과

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>분석방법</td>
<td>13개국</td>
<td>19개국</td>
<td>19개국</td>
<td>22개국</td>
<td>20개국</td>
<td>22개국</td>
<td>24개국</td>
<td>20개국</td>
<td>20개국</td>
</tr>
<tr>
<td>1인당 GDP</td>
<td>1 이상</td>
<td>1.1~1.3</td>
<td>1.33</td>
<td>1.27</td>
<td>0.74</td>
<td>1.036 (환율)</td>
<td>0.74</td>
<td>1 이상</td>
<td>1 이상</td>
</tr>
<tr>
<td></td>
<td>1.16 (PPP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>공공재정비중</td>
<td>-</td>
<td>0.2~0.3</td>
<td>-0.48</td>
<td>-0.12</td>
<td>-0.12</td>
<td>유효하지 않음</td>
<td>유효하지 않음</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>65세이상 인구비중</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>유효하지 않음</td>
<td>유효하지 않음</td>
<td>유효하지 않음</td>
<td></td>
</tr>
<tr>
<td>물가상승률</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>연령비중</td>
<td>-</td>
<td>-0.22</td>
<td>0.31</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>의사수</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.14</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>공공교통비중</td>
<td>-0.08~0.09</td>
<td>-</td>
<td>-</td>
<td>-0.32</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NHIS</td>
<td>-0.21~0.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>유효하지 않음</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1차 진료</td>
<td>-</td>
<td>-0.12</td>
<td>1.12</td>
<td>1.13</td>
<td>-</td>
<td>유효하지 않음</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주: 1) 행위별수가계에서 유의미함

의료비 증가율에는 유의하지 않은 영향력을 가진 것으로 추정하였다. 그리고 환자가 먼저 의료비를 지불하고 나중에 보상받는 제도를 갖고 있는 나라는 다른 제도를 갖고 있는 나라보다 국민의료비가 9% 정도 낮은 것으로 나타났다. 인두체는 행위별 수가계에서 비해 17~21% 정도 낮은 국민의료비를 초래하는 것으로 나타났다. 그 외에도 Gerdtham 등 (1998)은 입원진료비가 차지하는 비중이 클수록 국민의료비가 증가하는 것으로 추정하였으며, 공공의료비중이 국민의료비에 미치는 영향력을 분석하고자 공공병상의 비중을 공공의료의 대리변수 (proxy)로 사용하여 공공의료 비중의 증가가 국민의료비를 점감하는 것으로 분석하였다. 그러나 Leu (1996)은 상반된 결과를 도출하였다.

국민의료비 결정요인 연구들에서는 설명변수들의 효과가 기대와 다르게 나타나는 경우가 있는데, 그 이유는 설명변수들이 내생변수이기 때문인 것으로 판단된다. 예를 들어, 입원에 대한 예산상한제가 오히려 국민의료비 인상을 초래하는 것으로 나타나는데, 이는 입원예산상한제가 내생변수이기 때문으로 보여진다. 즉 입원예산상한제가 국민의료비 감소를 가져오는 것
이 아니라 높은 국민의료비로 인해 입원예산상한제를 도입하는 것이다. Newhouse(1977)는 국가가 다양한 보건관련 제도를 낮은 소득수준 혹은 의료비를 절감하려는 목적으로 도입하기 때문에 대다수의 제도변수와 재정변수가 국민의료비에 독자적인 영향력을 미치지 못한다 는 지적은 여전히 유효할 가치가 있다.

본고는 기존의 국내외 연구들을 토대로 하여 패널분석이 여전히 의미 있는 분석을 하는 데에 적합한 방법으로 판단하였으며, 기존 연구와의 차별성은 다음과 같다. 먼저 분석대상기간이 1990년초까지에 한정된 것을 2001년까지 연장하여 그동안의 변화를 반영한 새로운 결과를 도출하려 하였다. OECD 국가들이 국민의료비의 증가에 대응하여 보건의료시스템의 개혁이 주로 1980~90년대에 이루어졌기 때문에 그 이후의 변화상황을 반영하여 다시 분석하는 것이 의미 있는 작업이라고 생각하였다. 다음으로 기존 모형들의 기본적인 틀은 유지하되 설명변수들을 재구성하거나 새로운 변수들을 넣어 기존 모형들을 수정하였다. 다음, 선행연구들에서 의료비에 미치는 영향으로 공공의료재정의 비중을 주로 사용하였으나 본 연구에서는 건강보험지출을 제외한 정부의 보건의료비 비중을 변수로 채택하여 보건의료의 공공성 강화가 의료비에 미치는 영향을 분석하고자 하였다. 둘째, 공격전강보험의 적용확대가 의료
접근성을 높여 국민의의료비에 영향을 미칠 것으로 보아 공정보험적용인구비중을 변수로 새로 이 넣어 분석하였다. 셋째, 신의료기술 변수를 명시적으로 모형속에 넣어 분석하는 시도를 하였다. 마지막으로 우리나라의 시계열자료를 이용한 회귀분석을 통하여 OECD 국가들 대상의 폐널분석 결과와 비교하여 시사점을 찾고자 하였다.

Ⅱ. 연구방법

분석에 이용한 기본모형(full-model)은 다음과 같다.

\[y_{it} = \alpha_1 + \alpha_2 \times \text{사회경제적 변수}_{it} + \alpha_3 \times \text{보건의료관련변수}_{it} + \alpha_4 \times \text{국가}_{i,t} + \alpha_5 \times \text{연도}_{j} + \epsilon_{it} \]

사회경제적 변수로서는 1인당 GDP, 65세이상 인구비중, 여성노동인구비중을 사용하였고, 보건의료 관련변수로서 양적인 변수는 1인당 정부보건의료비, 건강보험적용 인구비율, 인구 1000명당 의사수, 입원비 비중, 신의료기술을 채택하였고, 제도적 변수로서 의사에 대한 지불보상방식, 1차진료 여부를 채택하였다. 모형에서 \(j \) 는 국가, \(t \) 는 연도를 의미한다. 각 변수들의 영향력을 자연로그로 치환함으로써 계수들이 탄력성을 나타내도록 하였다.

이러한 모형을 설정하게 된 이유 및 분석상의 가설은 다음과 같다. 첫째, 소득 상승에 따라 의료비는 증가할 것이다. 이는 기존 연구의 연장선상에 있으며 다만 탄력성이 1 이상인지 1 이하인지에 관심이 모아진다. 둘째, 정부의 공공보건의료에 대한 투자의 증가는 전체의료 비를 역제하는 효과를 가질 것이다. 이는 루프의 우리나라에서 보건의료의 공공성을 강화하 기 위하여 공공지출을 늘리려는 움직임을 보이고 있는데, 공공의료재정 중 건강보험지출을 제외한 정부의 보건의료비를 변수로 선정하였다. 셋째, 공적건강보험 적용의 확대는 의료비용 접근성을 향상시킴으로써 의료비를 상승시킬 것으로 가정하였다. 기존 연구에서는 주로 공공 의료재정비중의 증대가 의료비 미치는 영향을 파악하고자 하였는데, 본 연구에서는 공적건

103

상기 기본모형을 토대로 본 분석에서는 다음과 같은 세가지 모형을 설정하였다.

모형 1은 게도변수를 제외하고 양적 변수들로만 구성한 모형이다. 다만, 의료기술 변수는 1984년부터 가용하기 때문에 분석기간을 1984-2001년으로 하였다.

모형 3은 게도변수를 포함한 모형으로써 대상기간은 1970-2001년으로 잡기 위해 신기술변수를 제외하였다.

이들 각 모형에 대하여 Fixed effect(FE)모형과 Random effect(RE)모형으로 나누어 분석하고, Hausman test를 통하여 적절한 모형을 선택하였다. 여기서 FE 모형은 국가별 혹은 연도별 특성이 고정되어 있다고 가정한 모형이며, RE 모형은 국가별 혹은 연도별 특성을 변수
<표 2> 국민의료비 결정요인분석에 사용한 변수들의 정의

<table>
<thead>
<tr>
<th>변수명</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE</td>
<td>1인당 실질 국민의료비 (PPP US $, 95년 기준가격)</td>
</tr>
<tr>
<td>GDP</td>
<td>1인당 실질 GDP (PPP US $, 95년 기준가격)</td>
</tr>
<tr>
<td>GOV</td>
<td>1인당 실질정부보건의료비 (PPP US $, 95 기준가격)</td>
</tr>
<tr>
<td>coverage</td>
<td>건강보험적용인구 비중(%)</td>
</tr>
<tr>
<td>양적 변수</td>
<td></td>
</tr>
<tr>
<td>doctor</td>
<td>인구 1,000명당 의사수</td>
</tr>
<tr>
<td>inpatient</td>
<td>국민의료비에서 입원진료비가 차지하는 비중(%)</td>
</tr>
<tr>
<td>65over</td>
<td>65세 이상인구 비중(%)</td>
</tr>
<tr>
<td>flabor</td>
<td>여성 노동인구 비중(%)</td>
</tr>
<tr>
<td>TEC</td>
<td>신의료기술(CT, MRI 보유대수)</td>
</tr>
<tr>
<td>의사에 대한</td>
<td></td>
</tr>
<tr>
<td>FFS</td>
<td>행위별수가제(fee-for-service)</td>
</tr>
<tr>
<td>CAP</td>
<td>인두당지불제(capitation)</td>
</tr>
<tr>
<td>WAS</td>
<td>봉급제(wage and salary)</td>
</tr>
<tr>
<td>1차진료 여부</td>
<td></td>
</tr>
<tr>
<td>GTK</td>
<td>1차진료의사의 존재여부(gatekeeper)</td>
</tr>
</tbody>
</table>

주 : 정부보건의료비에는 건강보험 등 사회보험에 의한 의료비를 포함하지 않음.

로 취급한 모형이다. 그리고 FE 모형과 RE 모형에서 개별국가별 특성이 존재한다고 가정하여 국가별 특성을 통제하고 추정한 one-way effect 모형과 개별국가별 그리고 연도별로 특성이 존재한다고 가정하고 국가별, 연도별 특성을 통제하고 추정한 two-way effect 모형으로 구분하여 분석하였다.

한편 우리나라의 시계열자료를 이용한 분석에서는 OECD Health Data에서 이용한 자료가 거의 없기 때문에 국내의 보건복지통계연보, 건강보험통계연보 및 한국은행의 데이터베이스 자료를 이용하였다. 자료의 제약성 신의료기술 변수를 제외하였으며, 또한 보건의료제도의 변화가 거의 없었기 때문에 본론에서 제외하였다. 이러한 제약하에서 다음 세가지 모형에 대해 분석하였다.

모형 1은 활용한 모든 변수들을 포함하여, 정부보건의료비와 임원비 비중이 1985년부터 가용하기 때문에 1985~2000년을 대상기간으로 한 모형이다.

모형 2는 정부보건의료비와 임원비 비중을 제외하고 1977년(의료보험 도입시기)~2000년을 대상기간으로 분석한 모형이다.

모형 3은 모형 2를 토대로 하되 1985~2000년간을 대상기간으로 분석한 모형이다.

Ⅲ. 연구결과

1. OECD 국가의 국민의료비 결정요인 분석

분석 결과는 <표 3>과 같으며, 앞서 세 가지 모형에 대하여 Fixed effect 모형과 Random effect 모형, one-way 와 two-way 모형으로 나누어 추정하였고, 각각에 대해 Hausman test를 통하여 적절한 모형을 선택하였다. 판단이 어려울 경우 one-way 보다는 two-way 모형을 선택하였다.

모형 1은 제도변수를 제외한 모형이며, 신의료기술 변수가 1984년부터 가용하기 때문에 분석대상기간이 1984~2001년이 되었다. 소득, 정부보건의료비, 연임비중, 여성노동참여, 신기술 의료비를 상승시키는 방향으로 유의한 영향을 미치고 있다. 소득탄력성이 0.59로 나타나 1.0 이하로써 보건의료는 1980년대 이후부터 최근까지의 자료에 의하면 사차제의 속성에서 탈피하였다고 볼 수 있다. 이는 단순한 Pooled 회귀모형에서 소득탄력성이 1.15 로 나타나는 것과 대비된다. 즉 보건의료수요의 소득탄력성의 측정은 개별국가와 시간호흡의 특성을 통제한 후에 측정하여야 왜곡되지 않음을 의미한다. 여성의 노동참여가 가장 강한 의료비 증가요인(탄력성이 1.3 정도)으로 나타났는데, 이는 의료비의 소득탄력성 보다 키 소득이 가장 강한 영향력을 미친 기존의 연구와는 다른 결과를 보이고 있다. 그러고 정부보건의료비 투입 증가가 국민의료비를 억제하려는 가설을 기각시킴으로써 공공보건의료예산 투입이 그다지 효과적이지 않을 수 있음을 시사한다. 연임비중의 증가는 의료비 상승에 미약하나마 양(+)의 효과를 보임으로써 1980년대 이후 현재까지 여전히 의료비 증가요인으로 기여하고 있다. 이는 기존의 연구결과들을 미약하나마 지속적으로 반영하고 있다.

본 연구의 특징은 하나인 신기술의 의료비 상승효과에 대한 분석에서 탄력성은 0.075 로써 그다지 높지는 않지만 의료비상승에 유의미한 양(+)의 영향을 미치는 것으로 나타나 일반적인 통념을 개량적으로 지지하고 있다. 한편 보험적용인구의 확대가 유의미한 영향을 미치지 못하고 있는데, 이는 OECD 국가들 중 상당수가 이미 보험적용대가 거의 이루어졌고 더 이상의 적용확대가 이루어지지 않은 것 때문으로 해석된다.
<표 3> OECD 국가의 국민의료비 결정요인 분석결과

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(GDP)</td>
<td>0.588**</td>
<td>0.814**</td>
<td>1.043**</td>
<td>1.147**</td>
</tr>
<tr>
<td>ln(GOV)</td>
<td>0.261**</td>
<td>0.203**</td>
<td>-0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td>ln(coverage)</td>
<td>0.043</td>
<td>-0.002</td>
<td>-0.275**</td>
<td>-0.320**</td>
</tr>
<tr>
<td>ln(doctror)</td>
<td>-0.104</td>
<td>-0.303**</td>
<td>0.534**</td>
<td>0.224**</td>
</tr>
<tr>
<td>ln(inpatient)</td>
<td>0.082**</td>
<td>0.144**</td>
<td>-0.094*</td>
<td>0.153*</td>
</tr>
<tr>
<td>ln(65over)</td>
<td>0.140</td>
<td>0.160*</td>
<td>-0.020</td>
<td>0.089</td>
</tr>
<tr>
<td>ln(flabor)</td>
<td>1.261**</td>
<td>0.274**</td>
<td>0.566**</td>
<td>0.612**</td>
</tr>
<tr>
<td>ln(TEC)</td>
<td>0.075**</td>
<td>-</td>
<td>-</td>
<td>-0.027</td>
</tr>
<tr>
<td>FFS</td>
<td>-</td>
<td>-</td>
<td>0.185**</td>
<td>-</td>
</tr>
<tr>
<td>CAP</td>
<td>-</td>
<td>-</td>
<td>0.106**</td>
<td>-</td>
</tr>
<tr>
<td>WAS</td>
<td>-</td>
<td>-</td>
<td>0.086**</td>
<td>-</td>
</tr>
<tr>
<td>GTK</td>
<td>-</td>
<td>-</td>
<td>0.049**</td>
<td>-</td>
</tr>
<tr>
<td>관측수(각국수)</td>
<td>120(33)</td>
<td>283(33)</td>
<td>283(33)</td>
<td>120(33)</td>
</tr>
<tr>
<td>R²</td>
<td>0.995</td>
<td>0.992</td>
<td>0.956</td>
<td>0.939</td>
</tr>
<tr>
<td>자유도</td>
<td>111</td>
<td>225</td>
<td>240</td>
<td>111</td>
</tr>
<tr>
<td>모형의 특성</td>
<td>Two-way RE 모형</td>
<td>Two-way FE 모형</td>
<td>Two-way FE 모형</td>
<td>-</td>
</tr>
</tbody>
</table>

주: 1) 세가지 모형내에서 Fixed effect 모형과 Random effect 모형, one-way 와 two-way 모형으로 나누어 추정하였고, 각각에 대해 Hausman test를 통하여 적절한 모형을 선택하였으며 one-way 보다는 two-way를 선택하였음.
2) ** p<0.05, * p<0.1

모형 2는 제도변수와 신기술변수를 제외한 모형으로써 1970~2001년간 분석이 가능하므로 모형 1에 비하여 보다 장기적을 대상으로 분석이 가능하다. 보험적용인구율을 제외하고는 모든 변수들이 유의미하게 나타나며, 모형 1과의 차이점은 소득 탄력성이 0.814 로써 모형 1보다는 높게 나타났다. 이는 1970년까지 분석대상기간을 소급 연장한 영향 때문으로 판단된다. 따라서 분석모형의 대상기간이 결과에 상당한 영향을 미칠 수 있음을 암시한다. 여성 노동참여의 탄력성은 0.274로써 약하게 나타나 모형 1과는 다른 결과를 보인다. 특히 의사수의 증가가 의료비 상승에 부정적인 영향을 미침으로써 유인수요가결을 저지하지 않으며
경쟁가설을 지지하는 경향이 있다. 이는 Gerdtham 등(1998)의 결과와 유사하다. 특이한 점은 노인비중 증가와 유의수준 10% 범위내에서 의료비를 상승시키는 방향으로 작용하고 있어, 기존의 연구들에서 통상 고령화가 의료비에 빌 영향을 미치지 못한 것에서 다소 벗어나는 모습을 보여주고 있다. 정부보건의료투자 증가가 의료비를 상승시키는 방향으로 작용하는 결과는 모형 1과 비교하여 일관성을 유지하고 있다.

결과적으로 분석대상기간의 연장과 신기술 변수의 제외는 소득탄력성과 여성노동참여의 데 의료비용탄력성에 큰 영향을 미쳤고, 고령화와 의사공급 증가가 의료비에 미치는 영향을 유의미하게 만들었다.

모형 3 은 제도변수를 포함하고, 신기술을 제외한 1970-2001년을 분석대상기간으로 하였 다. 국가별 보건의료제도의 차이를 고려함으로써 보건의료정책의 변화가 국민의료비에 어떻게 영향을 미치는지를 볼 수 있고, 특히 보건의료제도적 차이를 통제한 후에 다른 양적인 변동요인이 국민의료비에 미치는 영향을 세로계 해석할 수 있다. 기대가설과 같이 봉급제에 비하여 인두계, 인두계에 비하여 행위별보상방식이 의료비를 증가시키는 결과를 보여주고 있다. 그러나 일부진료의존의 존재는 기대와 달리 미약하지만 의료비를 증가시키는 요인으로 작용하고 있는데, 이는 일부진료의사의 문지기(gate-keeper) 역할이 반드시 의료비를 억제하는 데에 기여하지는 않는다는 시사점을 엿볼 수 있다.

그러나 제도변수로 통제한 후에 국민의료비에 미치는 다른 양적 변수들의 영향은 모형 1 및 모형 2와는 다른 결과를 보여준다. 가장 특기할 사항은 소득탄력성이 1.0을 상회함으로써 소득요인이 의료비 상승의 주된 요인임을 다시 한번 확인시켜 주고 있다. 그리고 여성의 노 동참여비중의 대 의료비 탄력성도 0.56으로써 상당히 유의미한 요인임을 상기시켜 주고 있다. 그러나 의사수의 증가가 의료비의 상승요인으로 작용하고 보험적용인구비중 확대가 의료비를 억제하는 요인으로 작용하여 모형 1 및 모형 2의 결과와는 다르다. 이는 각국의 보건의료 제도의 차이를 고려할 때에 의사공급의 증가가 유인수요를 창출한다는 가설을 지지하고, 보험적용인구의 증가는 소비자의 도덕적 제어를 야기하여 의료비를 증가시킬 것이라는 가설을 기각한다. 이는 곧 의료비의 증가는 소비자측 보다는 공급자측 요인에 의한다는 입장을 지지한다고 볼 수 있다. 그리고 입원비중의 증가는 의료비를 억제하는 요인으로 작용하여 앞서의 분석결과와 다르게 나타났다. 이는 기존의 Gerdtham 등(1992a, 1992b, 1998)의 연구결과들과도 배치되는데, 분석기간이 2001년까지 연장되면서 OECD 국가들의 보건시스템의 변화가 반영된 결과로 해석할 수 있다. 고령화로 인하여 급성입원에서 만성질환 및 기능장애상태에 빠 진 환자의의 요양형 입원이 증가하면서 입원비중이 커지고 있지만 요양형 입원의 단가는 늘기 때문에 오히려 의료비를 억제하는 요인으로 작용하였을 가능성이 있다.
2. 우리나라의 국민의료비 결정요인과 사례점

우리나라의 시계열자료를 이용한 국민의료비의 결정요인 분석결과는 <표 4>에 제시되어 있다. 그리고 분석에 이용된 변수들의 실제 데이터를 <표 5>에 소개함으로써 전반적인 추세를 이해하는 데 도움이 되도록 하였다. 우리나라의 모형 1에서 정부보건의료비와 인원비중을 제외한 1977~2000년간을 대상으로 분석하였으며, 연도를 설명변수로 넣음으로써 단조증가하는 추세를 제거하였다. 1인당 소득, 건강보험적용율, 의사수가 유의수준 5%내에서 유의미하게 나타났다. 의료비의 소득탄력성이 1에 가까워 나타났다. 건강보험의 적용인구 확대가 의료비 증가에 기여하며, 적용인구 확대에 따른 의료비 증가의 탄력성은 +0.228로 추정된다. 이는 OECD 국가를 대상으로 한 분석결과와 상반되며, 우리나라의 경우 짧은 기간내에 보험적용인구 확대함으로써 의료비의 급격한 상승에 기여하고 있다고 볼 수 있다. 의사수의 증가는 의료비를 역제하는 효과를 가져오는 것으로 나타났는데, 이는 OECD 국가의 분석결과와 유사하다. 이는 통상적으로 우리나라의 의사수 증가가 의료비증가의 주요요인으로 주장하는 유도수요가설을 기각하고 있다. 특히 탄력성이 1에 가깝게 나타내 의료비 역제에 강력한 영향을 미치고 있다. 다만, OECD 국가들의 보건의료제도의 차이를 보정하였을 때에도 의사수 증가가 의료비를 증대시키는 요인으로 작용한 결과와는 상반된다. 우리나라의 경우 보험적용인구 확대에 따른 소비자측의 의료비 증대요인이 공급자측의 의료수요유도 보다 더 강하다는 잠재적인 경론을 도출할 수 있을 것 같다. 한편 노인인구, 여성의 노동참여 증가가 의료비에 미치는 영향은 유의하지 않는 것으로 나타났다.

<표 4> 우리나라의 국민의료비 결정요인 분석 결과

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(GDP)</td>
<td>0.962**</td>
<td>1.041**</td>
<td>0.958**</td>
</tr>
<tr>
<td>ln(GOV)</td>
<td>-</td>
<td>-</td>
<td>0.287*</td>
</tr>
<tr>
<td>ln(coverage)</td>
<td>0.228**</td>
<td>0.300**</td>
<td>0.148</td>
</tr>
<tr>
<td>ln(doctor)</td>
<td>-0.996**</td>
<td>-0.886</td>
<td>-1.117**</td>
</tr>
<tr>
<td>ln(inpatient)</td>
<td>-</td>
<td>-</td>
<td>-0.288</td>
</tr>
<tr>
<td>ln(hospital)</td>
<td>0.304</td>
<td>1.691</td>
<td>0.799</td>
</tr>
<tr>
<td>ln(flator)</td>
<td>-0.321</td>
<td>-1.169</td>
<td>-1.621</td>
</tr>
<tr>
<td>year</td>
<td>0.056*</td>
<td>0.001</td>
<td>0.036</td>
</tr>
<tr>
<td>R²</td>
<td>0.988</td>
<td>0.983</td>
<td>0.990</td>
</tr>
<tr>
<td>F값</td>
<td>229.769</td>
<td>84.732</td>
<td>85.198</td>
</tr>
<tr>
<td>관측수(자유도)</td>
<td>24(17)</td>
<td>16(9)</td>
<td>16(7)</td>
</tr>
</tbody>
</table>

주) ** p<0.05, * p<0.1
<표 5> 우리나라의 국민의료비 결정요인 분석에 이용된 데이터

<table>
<thead>
<tr>
<th>year</th>
<th>THE</th>
<th>GDP</th>
<th>GOV</th>
<th>coverage</th>
<th>doctor</th>
<th>inpatient</th>
<th>65over</th>
<th>flabor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>45</td>
<td>1733</td>
<td>-</td>
<td>14.5</td>
<td>0.428096</td>
<td>-</td>
<td>3.6</td>
<td>36</td>
</tr>
<tr>
<td>1978</td>
<td>58</td>
<td>1994</td>
<td>-</td>
<td>16.2</td>
<td>0.444868</td>
<td>-</td>
<td>3.7</td>
<td>38</td>
</tr>
<tr>
<td>1979</td>
<td>68</td>
<td>2278</td>
<td>-</td>
<td>26.9</td>
<td>0.462267</td>
<td>-</td>
<td>3.7</td>
<td>38</td>
</tr>
<tr>
<td>1980</td>
<td>78</td>
<td>2398</td>
<td>-</td>
<td>29.8</td>
<td>0.481206</td>
<td>-</td>
<td>3.8</td>
<td>38</td>
</tr>
<tr>
<td>1981</td>
<td>94</td>
<td>2748</td>
<td>-</td>
<td>39.3</td>
<td>0.497766</td>
<td>-</td>
<td>3.9</td>
<td>37</td>
</tr>
<tr>
<td>1982</td>
<td>119</td>
<td>3082</td>
<td>-</td>
<td>44.6</td>
<td>0.548009</td>
<td>-</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>1983</td>
<td>144</td>
<td>3495</td>
<td>-</td>
<td>48.6</td>
<td>0.544951</td>
<td>-</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>1984</td>
<td>162</td>
<td>3875</td>
<td>-</td>
<td>50.2</td>
<td>0.570287</td>
<td>-</td>
<td>4.1</td>
<td>38</td>
</tr>
<tr>
<td>1985</td>
<td>180</td>
<td>4217</td>
<td>10</td>
<td>52.1</td>
<td>0.608489</td>
<td>17.8</td>
<td>4.3</td>
<td>38</td>
</tr>
<tr>
<td>1986</td>
<td>193</td>
<td>4736</td>
<td>13</td>
<td>57.6</td>
<td>0.645096</td>
<td>19.2</td>
<td>4.4</td>
<td>39</td>
</tr>
<tr>
<td>1987</td>
<td>215</td>
<td>5363</td>
<td>13</td>
<td>61.6</td>
<td>0.677622</td>
<td>19.1</td>
<td>4.5</td>
<td>40</td>
</tr>
<tr>
<td>1988</td>
<td>253</td>
<td>6067</td>
<td>20</td>
<td>79.0</td>
<td>0.742238</td>
<td>21.1</td>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>1989</td>
<td>316</td>
<td>6617</td>
<td>27</td>
<td>100</td>
<td>0.796038</td>
<td>20.7</td>
<td>4.8</td>
<td>40</td>
</tr>
<tr>
<td>1990</td>
<td>354</td>
<td>7419</td>
<td>35</td>
<td>100</td>
<td>0.834659</td>
<td>21.7</td>
<td>5.1</td>
<td>41</td>
</tr>
<tr>
<td>1991</td>
<td>373</td>
<td>8316</td>
<td>31</td>
<td>100</td>
<td>0.898628</td>
<td>22</td>
<td>5.2</td>
<td>40</td>
</tr>
<tr>
<td>1992</td>
<td>421</td>
<td>8890</td>
<td>45</td>
<td>100</td>
<td>0.96905</td>
<td>23.1</td>
<td>5.4</td>
<td>40</td>
</tr>
<tr>
<td>1993</td>
<td>451</td>
<td>9505</td>
<td>45</td>
<td>100</td>
<td>1.029008</td>
<td>22.7</td>
<td>5.5</td>
<td>40</td>
</tr>
<tr>
<td>1994</td>
<td>486</td>
<td>10397</td>
<td>49</td>
<td>100</td>
<td>1.069397</td>
<td>22.5</td>
<td>5.7</td>
<td>40</td>
</tr>
<tr>
<td>1995</td>
<td>535</td>
<td>11456</td>
<td>59</td>
<td>100</td>
<td>1.122902</td>
<td>23.1</td>
<td>5.9</td>
<td>40</td>
</tr>
<tr>
<td>1996</td>
<td>611</td>
<td>12349</td>
<td>69</td>
<td>100</td>
<td>1.172367</td>
<td>24.3</td>
<td>6.1</td>
<td>41</td>
</tr>
<tr>
<td>1997</td>
<td>657</td>
<td>13098</td>
<td>76</td>
<td>100</td>
<td>1.233016</td>
<td>25.7</td>
<td>6.4</td>
<td>41</td>
</tr>
<tr>
<td>1998</td>
<td>628</td>
<td>12216</td>
<td>74</td>
<td>100</td>
<td>1.267829</td>
<td>26.4</td>
<td>6.6</td>
<td>40</td>
</tr>
<tr>
<td>1999</td>
<td>762</td>
<td>13718</td>
<td>82</td>
<td>100</td>
<td>1.31244</td>
<td>27.6</td>
<td>6.9</td>
<td>40</td>
</tr>
<tr>
<td>2000</td>
<td>833</td>
<td>15186</td>
<td>90</td>
<td>100</td>
<td>1.295418</td>
<td>26.5</td>
<td>7.2</td>
<td>41</td>
</tr>
</tbody>
</table>

주: 변수들의 값들은 OECD 분석에서와 동일한 기준을 사용하였음. 다만, doctor는 인구 밀도당 의사수임.

모형 2는 모형 1을 1985~2000년간으로 기간을 달리하여 분석하였다. 소득과 건강보험적용율은 여전히 유의미하게 나타났으나, 의사수는 유의미하지 않았다. 의료비의 소득탄력성은 1에 가깝지만 1을 다소 초과하였다. 이는 1980년대 이후의 소득수준이 급격히 향상됨에 따라 의료에 대한 수요가 더욱 늘어나고 있음을 의미한다. 즉 소득이 상승되면서 의료서비스에 대한 수요가 다른 제외의 수요에 비해 더 많은 신호를 가짐을 의미한다. 건강보험 적용확대
의 의료비 증가 탄력성은 더욱 증가하는 것으로 나타났다. 두가지 모형에서 결국 국민의료비의 증가는 소득수준 상승과 건강보험제도의 도입과 확대에 의해 주도되고 있는 것으로 해석할 수 있다.

모형 3은 1985-2000년간을 대상으로 하되 정부보건의료비와 임원비증을 포함하여 분석하였다. 소득은 여전히 유의미한 변수로 작용하고, 의사수가 유의미한 변수로 나타났다. 그리고 유의수준 10% 이내에서 정부보건의료비가 유의미하게 나타났다. 의료비의 소득탄력성은 1.0에 가까이 나타나고, 의료비의 대 의사수 탄력성은 0.6을 초과함으로써 모형 1과 같이 의사수 증가가 의료비 역제에 강력하게 기여하는 경향이 있음을 나타내고 있다. 이는 의사공급의 증가가 의료비 증가를 악지하고 있다는 반증이기도 하다. 특히 정부의 보건의료비 증가는 의료비 증가에 양(+)의 영향을 미치는 것으로 나타났으며, 원래의 가설과는 다르게 나타났다. 이는 OECD 국가들 대상으로 한 분석결과와 일치한다. 정부의 보건의료비 증가가 들어감으로써 모형 1과 모형 2에서 유의미하였던 건강보험적용을 변수가 유의미하지 않게 나타남으로써 모형내에서 양 변수간 총돌이 일어나는 것으로 추측된다. 임원비증은 유의미하지 않게 나타나 OECD 국가들의 분석결과와는 다른 양상을 보여주고 있는데, 이는 우리나라의 의료비용이 의료비증가에 상당한 영향을 담당하여 왔다는 해석이 가능하다.

결론적으로 상기 세가지 모형에 대한 분석 결과, 의료비증가의 주도적인 역할은 국민소득의 상승에 있으며, 의료비의 소득탄력성은 1.0에 근접함으로써 의료서비스가 타 재화에 비해 사치제라고 단정할 수는 없다. 건강보험 적용인구의 확대가 의료비 증가에 기여하는 효과를 가지고 있었으며, 의사수 증가는 의료비용증가를 역제하는 방향으로 작용하였다. 그리고 고령화는 OECD 국가와 유사하게 유의미하지 않게 나타났으며, 여성의 경제활동참여는 OECD 국가와는 달리 의료비에 아직 별다른 영향을 미치지 못함을 보여주고 있다.

IV. 고찰 및 결론

국민의료비의 결정요인에 대한 분석결과는 어떠한 설명변수들로써 모형을 구성하고 분석대상기간을 어떻게 잡느냐에 따라 결과에 상당한 영향을 미치고 있음을 보였다. 어떤 의미에서는 회귀분석을 통한 결과 해석이 학자들의 논쟁거리에 불과할 뿐이며, 현실에 대한 정확한 인식을 위한 방법론으로서는 그다지 의미가 없다는 비판에 처할 수도 있다. 그럼에도 불구하고 통계적인 기법이 계속되는 이유는 이 방법을 대체하거나 더 신뢰할만한 방법이 개발되지 않은 탓에 있을 것이다.

본 장에서는 분석모형의 구성에 따라 결과에 어떤 차이를 가져오는지를 고찰함으로써 통계적 방법에 의한 결론의 해석에 상당한 주의가 필요함을 인지시키고, 이러한 해석상의 어려
음에도 불구하고 국민의료비를 결정하는 요인들에 대한 잠재적인 결론을 내리고자 한다.

먼저 페널분석과 Pooled regression 분석의 결과를 비교 고찰하여 본다. 개별국가와 시간의 특성을 통제하지 않고 단순하게 Pooled 회귀분석을 한 결과는 페널분석과 비교하여 상당한 오류를 안고 있을 가능성이 있다. <표 3>에서의 모형 1에 의하여 Pooled regression 한 결과와 비교함으로써 재료분석모형의 임밀성에 따라 결과에 대한 해석이 크게 차이가 나타날 보여주려 한다. Pooled 회귀분석에 의하면 소득탄력성은 1.147로써 페널분석에서의 0.568과 현격한 차이가 나타나고 있다. 보험적용인구 확대가 페널분석에서는 유의미하지 않았으나 단순회귀분석에서는 의료비를 억제하는 방향으로 작용하였다. 의차공급의 증가가 의료비를 상승시키는 방향으로 작용함으로써 유인수요가설을 산입했는데 이는 페널모형의 반대되는 결과를 보였다. 그리고 신기술의 의료비에 미치는 영향이 Pooled분석에서는 유의미하지 않았으나 Pooled 회귀분석에서는 유의미한 영향을 미치지 못하는 결과를 보였다. 그런데 홍미로운 것은 Pooled regression의 결과가 보건의료제도 변수를 포함한 모형(표 3에서의 모형 3)과 유사한 결과를 보여주고 있다. 그럼에도 불구하고 Pooled regression이 페널분석에 비해 통계적으로 보다 우수한 분석임에도 모른다는 의혹에 빠져서는 안된다.

다음으로 <표 3>에서 모형 1과 모형 2를 대상으로 하여 각 모형내에서 여러 가지 통계적 분석방법들이 있는데 그 중에서 적절한 결과를 선택하는 과정에서 잘못 선택되었을 때에 발생할 오류에 대해서 살펴본다. <표 6>에 통계적 추론방법의 차이에 따른 결과들이 제시되어 있다. 모형 1의 경우 two-way RE 모형을 선택하였는데, 다른 분석결과와 비교하여 별 차이가 없다. 그런데 모형 2의 경우 분석결과의 선택에 따라 해석이 달라지는 결과를 초래할 수 있다. one-way 분석결과를 선택하게 되면 보험적용인구의 확대가 의료비를 억제하는 기전으로 작용하는 결과를 내리게 된다. 이는 보험적용의 확대가 의료접근성을 향상시킴으로써 의료비용을 증대시키고 의료비용자의 낮은 본인부담가격이 수요를 유지할 것이란 일반적인 가설을 뒷받침하는 결과를 초래하게 된다. 그리고 의료공급의 증가가 의료비상승을 지원하는 결과를 보임으로써 유인수요가설을 지지하고, 이는 two-way 모형과 상반되는 결과를 보이게 된다. 그러나 two-way RE 분석결과는 two-way FE 분석결과와 유사하게 나타난다. 즉 one-way effect 모형과 two-way effect 모형의 차이에 따라 결과에 상당한 영향을 미치고 있다.

이상 다양한 분석결과로부터 본 연구에서는 다음과 같은 잠재적인 결론을 내리고자 한다. 특히 본 연구는 1990년대 이후의 변화를 반영하고 설명변수들을 새로이 구성함으로써 기존의 연구결과들과 다른 차별성을 보이고 있다.

첫째, 의료비의 소득탄력성은 1.0 이하로 나타남으로써 보건의료는 필수제임을 보여주지만, 국가별 의료제도의 차이를 보정하면 소득탄력성은 1.0 이상으로 나타났다. 이는 Gerdtham(1998)이 보건의료제도의 차이를 보정하였을 때에 1.0 이하로 추정한 것과 다른 결과를 보이고 있다.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>one-way</td>
</tr>
<tr>
<td>ln(GDP)</td>
<td>0.547**</td>
</tr>
<tr>
<td>ln(GOV)</td>
<td>0.282**</td>
</tr>
<tr>
<td>ln(coverage)</td>
<td>0.156</td>
</tr>
<tr>
<td>ln(doctor)</td>
<td>-0.088</td>
</tr>
<tr>
<td>ln(inpatient)</td>
<td>0.095**</td>
</tr>
<tr>
<td>ln(65cover)</td>
<td>0.056</td>
</tr>
<tr>
<td>ln(flabor)</td>
<td>1.240**</td>
</tr>
<tr>
<td>ln(TEC)</td>
<td>0.083**</td>
</tr>
<tr>
<td>관측수(국가수)</td>
<td>120(33)</td>
</tr>
<tr>
<td>R²</td>
<td>0.995</td>
</tr>
<tr>
<td>자유도</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RE 채택</th>
<th>RE 채택</th>
<th>FE 채택</th>
<th>FE 채택</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hausman test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

둘째, 신기술의 확산이 의료비를 상승시키는 기전으로 작용한다는 결과를 도출하였는데, 이는 기존의 폐널연구들이 명시적으로 분석하지 못한 본 연구의 기여로 평가된다.

셋째, 정부보건의료지출이 의료비를 억제하는 기전으로 작용하기보다는 의료비를 증가시키는 방향으로 작용하고 있음을 보건의료시장에 대한 정부의 직접 개입이 반드시 기대한 대로 움직이지 않을 수 있음을 보여준다. 기존의 연구들에서는 정부보건의료비 보다는 공공재정의 비중을 변수로 사용하였고, 공공재정비중과 의료비에 미치는 영향은 상환된 결과들을 내리고 있었다. 이에 따라 본 연구에서는 공공재정비중 보다는 사회보험재정을 제외한 공공보건비를 변수로 채택하여 분석을 시도하였다. 우리나라의 시계열자료로 분석한 결과도 정부보건의료비가 의료비를 억제하는 기전으로 작용하는 것으로 나타났으나, 우리나라의 정부보건의료비는 그 규모가 매우 작고 국민의료비에 영향을 미치는 정책적인 변수로 간주하기에는 한계가 있음을 주의해야 할 것이다.

넷째, 건강보험공용인구의 확대가 의료비에 유의미한 영향을 미치지 못하고, 의사공급의 증가는 의료비를 억제시키는 기전으로 작용하여 공급 확대를 통한 경쟁이 의료비를 낮출 수 있다는 경쟁이론을 맞받침한다. 그러나 국가별 의료제도의 차이를 보정하면 건강보험공용인구의 확대가 의료비를 억제하고 의사공급의 증가는 의료비를 증가시키는 요인으로 작용함으로

여섯째, 고령화는 의료비를 상승시키는 요인에 가깝게 작용하나 통계적으로 그다지 유의미하지 않은 경향이 있다. 이는 기존의 연구결과들과 유사하다. 우리나라도 동일한 결과를 보였다. 고령화가 의료비증가의 중요한 요인임에도 유의미하지 않게 나타나는 이유는 모형내에서 소득이 보다 강한 영향력을 벗어하기 때문으로 판단된다. 그러나 우리나라는 빠른 고령화 속도에 비추어보면 분석기간이 앞으로 더 연장될 경우에는 고령화 변수가 유의미하게 나타날 가능성을 배제할 수 없을 것이다. 또한 고령화가 의료비상승에 얼마나 배타적으로 영향을 미치는지에 대한 심층분석은 향후의 연구과정이 될 것이다.

일곱째, 입원비중의 증가는 의료비를 상승시키는 방향으로 작용하는 경향이 있어 기존 연구들과 유사하다. 의료제도적 요인들을 보정하면 오히려 의료비를 억제하는 방향으로 작용하고 있음은 기존 연구들과 차별화된 결과를 보여주고 있다.

여덟째, 국가별 의사자살방식의 차이는 의료비에 영향을 미치는 것으로 해석된다. 즉 행위별지불방식이 인두에 비해, 그리고 인두가 본질적에 비해 의료비를 증가시키는 경향이 있다. 이는 기존의 연구결과들로 여전히 지지하고 있다. 그러나 일차진료의사의 존재는 기대와는 달리 의료비를 억제하기보다는 증가시키는 요인으로 작용하고 있어 Gerdtham 등(1998)과 상반되는 결과를 얻었다.

마지막으로 국가별 의료제도의 차이를 보정하여 분석하는 것이 통계적으로 보다 유의미한 결론을 얻을 수 있다는 측면에서 볼 때에 본 연구의 결과들은 의료제도 자체가 의료비에 미치는 직접적인 영향보다는 의료제도의 차이로 인해 모형각에서 양적인 설명변수들이 국민의료비에 미치는 영향에 중점을 줬으므로써 결과에 상당한 영향을 미치고 있었다. 특히 국민의료비의 결정요인을 설명하는 데 있어서 분석모형을 어떻게 구성하느냐에 따라 그리고 모형
내에서 다양한 통계적 접근 방법 중 어떤 것을 선택하느라에 따라 결과에 상당한 영향을 미치고 있어 해석상의 주의가 요구된다.

참고 문헌

홍정기. 국민의료비의 시계열 및 간접의료비용 추계. 서울: 한국보건사회연구원;1996.
Newhouse JP. Medical care costs: How much welfare loss?. Journal of Economic