Further Evidence of Linkage at the tva and tvc Loci in the Layer Lines and a Possibility of Polyallelism at the tvc Locus

A. K. Ghosh* and P. K. Pani1
Indian Veterinary Research Institute, Izatnagar-243122 (Uttar Pradesh) India

ABSTRACT: Three lines of White Leghorn (WL) chickens (IWJ, IWG and IWC) maintained at Central Avian Research Institute, Izatnagar (UP), were used for chorioallantoic membrane (CAM) and liver tumor (LT) assay. Eleven-day-old embryos of each line were partitioned into three groups and inoculated with 0.2 ml of subgroup A, subgroup C and an equal mixture of subgroup A and C Rous sarcoma virus (RSV). Subgroup virus receptor on the cell surface membrane for subgroup A is coded for by tumor virus a (tva) locus and for subgroup C by tumor virus c (tvc) locus. The random association of the genes at the tva and tvc loci in IWJ and IWC line was assessed and the χ2-values for all classes of observations were not significant (p>0.05), indicating a good fit to the 4-allele model for occurrence of 4-subclass tumor phenotypes for tva and tvc loci. On the basis of the 2-allele model both tva and tvc locus carries three genotypes each. But, on the basis of the 4-allele model tva and tvc loci carries 10 genotypes each. The interaction between A-resistance and C-resistance (both CAM and LT death) was ascertained by taking the 10 genotypes of the 2-allele model both tva and tvc locus by pooling the lines and partitioning the observations into 3 classes. The χ2-values for the genotypic classes of CAM (-) LT (+) and CAM (-) LT (-) phenotypes to mixed virus (A+C) infection were found to be highly significant (p<0.01), indicating increased resistance, which indicates the joint segregation of a and c genes, suggesting the existence of close linkage between the tva and tvc loci. Therefore, an indirect selection approach using subgroup C viruses can be employed to generate stocks resistant to subgroup A LLV, obviating contamination with the most common agent causing LL in field condition.

Key Words: Chorioallantoic Membrane, Liver Tumour, Linkage, Polyallelism, Tumour Virus

INTRODUCTION

Lymphoid Leukosis (LL) in chickens is caused by avian leukosis virus (ALV). The prevalence of the disease is world wide and still a challenging problem to modern poultry enterprises due to the lack of usual disease control measures such as vaccination and therapeutics. LL diseases that occur in field condition is mostly caused by lymphoid leukemia virus subgroup A (LLV-A). One possible approach to eradicate LLV-A from chicken flocks is to develop resistant stock of the a′a′ genotype that does not permit virus infection (Payne, 1985). Under laboratory condition the study of genetic control mechanism of LL disease caused by LLV-A is very complex because of difficulties in controlling environmental variations due to a longer incubation period. On the other hand, Rous sarcoma virus of subgroup A (RVS-A) that is related to LLV-A antigenically, for host range and interference pattern (Pani, 1976) induces liver tumor resulting in early death in chicks that are infected via the chorioallantoic membrane (CAM) on the 11th day of incubation (Pani et al., 1988; Pani and Naithani, 1990). Hence, the studies of genetic control mechanism for leukosis disease in chickens, RSV-A as a model virus is usually being used for the above reasons. Pani and Naithani (1990) reported that pocks on CAMs is not an efficient index of resistance to infection by leukosarcoma viruses of subgroup A because a good proportion of chicks that developed from eggs without pocks on CAMs also died of liver tumour (LT) and also chicks developed from eggs with pocks in CAMs did not die of LT. Hence, a 4-allele model has been suggested by Pani and Naithani (1990 and 1991) to control LT phenotype in some heavy and light exotic breeds. Incidence of subgroup C viruses in field as per reports available is very rare. Therefore, subgroup C viruses can be regarded as laboratory variants.

Subgroup virus receptor on the cell surface membrane for subgroup A is coded for by tumor virus a (tva) locus and for C, by tumor virus c (tvc) locus. Host cell genes of tva locus have been shown to be linked with that of tvc

* Corresponding Author: A. K. Ghosh. Department of Genetics and Animal Breeding, College of Veterinary and Animal Sciences, G.B.P.U.T., Pantnagar-263145, Dist.-U.S.Nagar (Uttaranchal), India. Tel: +91-05944-233614, E-mail: ghosh_ashiskr@rediffmail.com
1Central Avian Research Institute, Izatnagar-234122 (U.P.) India. Received July 17, 2004; Accepted December 18, 2004
locus (Payne and Pani, 1971; Pani, 1974; Dren and Pani, 1977). This study has, therefore, been conducted to
investigate interrelationship between host cell genes of \textit{tva} and \textit{tvc} loci in layers selected for high egg production for
over ten generations. This may enable selection for C-
resistance for developing an A-resistant stock, thus
obviating the contamination with a field virus (subgroup-A). This study also provides a hypothesis that the
\textit{tvc} locus could be polyallelic similar to the
\textit{tva} locus, as reported by Pani and Naithani (1991) and suggests a possible interaction between A-resistance and C-resistance in terms of polyallellism.

\section*{MATERIALS AND METHODS}

\subsection*{Chicken embryos and virus strains}
Embryos were collected from three lines of White Leghorn chicken (IWJ, IWG and IWC) maintained by
artificial insemination with 1 male to 4-7 females in
conventional cage houses at Central Avian Research
Institute (CARI), Izatnagar (Ghosh and Pani, 2002). The
IWJ and IWG lines procured in the year 1972 from Israel
and USA and selected for high egg production for about ten
generation using Osborne’s index selection and the IWC
line was developed at CARI by random breeding (Johari et

Bryan standard strain of Rous sarcoma virus (BS-RSV) (titre 10^6 pfu/ml) of subgroup A and pseudotype of Brayan high titre [RSV(RAV-49)] of subgroup C (titre 10^6 pfu/ml) obtained from Dr. L. N. Payne, Houghton Poultry Research Station, (UK) were used. Stock solutions were diluted to contain 10^3 pfu/ml in both the virus subgroups with primary cell culture media.

\subsection*{Experimental design}
An approach has been made to ascertain linkage
between subgroup A and C viruses by using CAM-assay.
The 11-day-old embryos were divided into three groups
(line wise). Subgroup A virus, subgroup C virus and an
equal mixture of subgroup A and subgroup C virus had been
inoculated to the three groups.

\subsection*{CAM- and LT-assay}
Conventional CAM- and LT-assay were conducted as
per the published procedure (Dougherty et al., 1960; Pani et
al., 1988; Ghosh and Pani, 2002). The dead chicks that had
nodules in the liver were considered as liver tumour
positive [LT (+)] and those that had clean liver without
visible gross tumour as liver tumour negative [LT (-)]
phenotype. The chicks survived after 8 weeks were
assumed as liver tumour negative [LT (-)]. Line wise record
of LT (+) LT (-) and CAM (+) CAM (-) of dead chicks were
maintained for analysis.

\section*{Statistical analysis}
Gene frequency at the \textit{tva} and \textit{tvc} loci were calculated using the formula:

\begin{align*}
\text{f}(a') &= \frac{n (C/A)}{N}^{1/2} \\
\text{f}(c') &= \frac{n (C/C)}{N}^{1/2}
\end{align*}

\text{f}(a') = 1-\text{f}(a')

\text{f}(c') = 1-\text{f}(c')

\text{(Falconer and Mackay, 1989)}

Where, \(n (C/A)\) and \(n (C/C)\) represents number of
embryos resistant to subgroup A and subgroup C viruses,
respectively.

\(n\)-stands for number of observations in the phenotypic
class, \(N\)- the total number of observations.

Genotypes and phenotypic frequencies are represented
as follows-

\begin{align*}
\text{Genotypes} & \quad \text{Phenotypic frequencies} \\
(i) & \quad \text{ar} \quad \text{ar} \quad \text{cr} \quad \text{cr} \quad f(C/AC) \\
(ii) & \quad \text{ar} \quad \text{ar} \quad \text{cs} \quad - \quad f([C/A]+(C/AC)) \\
(iii) & \quad \text{as} \quad \text{cr} \quad \text{cr} \quad f(C/C)+(C/AC) \\
(iv) & \quad \text{as} \quad \text{cs} \quad - \quad 1-[f(C/AC)+f([C/A]+(C/AC))+f(C/C)+(C/AC)]
\end{align*}

Where, \(f\)-stands for number of embryos of subclass C/A,
C/C and C/AC, observed to be resistant to single infection
by subgroup A, C and mixed virus infection, respectively.

Chi-square \((\chi^2)\) test (Snedecor and Cochran, 1967) was
used to test the random association of genes at \textit{tva} and \textit{tvc}
loci, fitting of 4-allele model for the occurrence of four
subclass tumour phenotypes and to ascertain interaction
between C-resistance and A-resistance in terms of
polyallellism.

\section*{RESULTS AND DISCUSSION}
The proportions of four possible phenotypes (C/O, C/A,
C/C and C/AC) with genotypes \((a'd'e' , a'd'e' , a'd'e' -
\text{and} a'd'e' c')\) in respect of \textit{tva} and \textit{tvc} loci are presented in
Table1 for IWJ and IWC lines. The \(\chi^2\)-values for
phenotypic classes were found to be either significant \((p<
0.05)\) or highly significant \((p<0.01)\), indicating a linkage
between \textit{tva} and \textit{tvc} loci.

Payne (1972) suggested that the \(a'\) gene may be
beneficial to the organism and is possibly favoured by
natural selection. In that case the simultaneous increase in
the frequencies of \(a'\) and \(c'\) genes could have been expected
which indeed has occurred in this study, supporting thereby
the linkage hypothesis between \textit{tva} and \textit{tvc} loci (Payne and
cultures infected with BS-RSV and RSV (RAV-49), either
alone or mixed, found that the segregation of a' and d' genes and that of c' and c'' genes, did not differ significantly ($p>0.05$) from the expected 3:1 ratio in χ^2-test of heterogeneity. But when the allelic pair of a', d', c' and c'' genes, respectively for IWJ line and 0.56, 0.44, 0.47 and 0.53 for a', d', c' and c'' genes, respectively for IWJ line of WL-chicken.

In our present study, the observed and expected proportions were found to be significantly different ($p<0.01$) for the four possible phenotypes i.e. C/O, C/A, C/C and C/AC, in IWJ and IWC lines of WL chicken, indicating the absence of random association between the genes at the two loci. This can be taken as an evidence for close association between the two tumour virus loci, tva and tvc loci. The observed proportions of C/AC phenotypes of the three lines were very near to the products of the frequency of a' gene i.e. $[f(a')]^2$ or c' gene i.e. $[f(c')]^2$, instead of $[f(a')^2-f(c')]^2$, suggesting strongly either the pleiotropic control of the phenotype by a single locus or a very close linkage between the two loci. The pleiotropic control of the C/AC phenotype has been ruled out by previous workers (Pani, 1974; Dren and Pani, 1977) and hence, it can be taken as an evidence for the close linkage between two loci. The linkage value was estimated to be 0.09 on pooled sex and pooled line basis (Table 1), which agreed well with the linkage value of 0.08±0.03, on a pooled sex basis, as reported by Pani (1974) in light breed of chicken.

Subgroup A virus infection resulted in four possible subclasses of tumour phenotypes as reported by Pani et al. (1988). On the basis of four subclass tumour phenotypes, a 4-allele model according to Pani and Naithani (1990), for tva locus was fitted in this present study. According to the 4-allele model, tva locus carries four alleles, two susceptibility allele (a'^1 and a'^2) and two resistance alleles (d'^1 and d'^2). The frequencies of a'^1, d'^1, a'^2 and d'^2 alleles were calculated as 0.47, 0.13, 0.13 and 0.27 for IWJ line, 0.31, 0.33, 0.14 and 0.22 for IWJ line and 0.44, 0.11, 0.21 and 0.24 for IWC lines, respectively (Table 2). The χ^2-
showing the fitness of 4-allele model to the NS: not significant; CAM: Chorioallantoic membrane; LT: Liver tumour.

<table>
<thead>
<tr>
<th></th>
<th>IWJ</th>
<th>IWG</th>
<th>IWC</th>
<th>Total</th>
<th>Lines</th>
<th>Allelic frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM (+) LT (+)</td>
<td>64</td>
<td>47</td>
<td>52</td>
<td>163</td>
<td>IWJ</td>
<td>0.42</td>
</tr>
<tr>
<td>CAM (+) LT (-)</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>18</td>
<td>IJW</td>
<td>0.42</td>
</tr>
<tr>
<td>CAM (-) LT (+)</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>11</td>
<td>IWC</td>
<td>0.30</td>
</tr>
<tr>
<td>CAM (-) LT (-)</td>
<td>8</td>
<td>6</td>
<td>16</td>
<td>30</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>64</td>
<td>75</td>
<td>222</td>
<td></td>
<td>0.38</td>
</tr>
</tbody>
</table>

Tumour phenotypes

<table>
<thead>
<tr>
<th></th>
<th>Observed number</th>
<th>Expected number</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM (+) LT (+)</td>
<td>64</td>
<td>60.94</td>
<td>0.15NS</td>
</tr>
<tr>
<td>CAM (+) LT (-)</td>
<td>7</td>
<td>6.73</td>
<td>0.01NS</td>
</tr>
<tr>
<td>CAM (-) LT (+)</td>
<td>4</td>
<td>4.11</td>
<td>0.00NS</td>
</tr>
<tr>
<td>CAM (-) LT (-)</td>
<td>8</td>
<td>11.22</td>
<td>0.92NS</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>64</td>
<td>75</td>
</tr>
</tbody>
</table>

\(f'(c')\) = 0.38, 0.41, 0.49

Table 4. Interaction between C-resistance and A-resistance in terms of polyallelism in White Leghorn chicken (Pooled line basis)

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Phenotypes</th>
<th>Observed number</th>
<th>Expected number</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2 - c-</td>
<td>C/O</td>
<td>45</td>
<td>54.68</td>
<td>1.71NS</td>
</tr>
<tr>
<td>a2 d- c-</td>
<td>C/A</td>
<td>6</td>
<td>5.19</td>
<td>0.13NS</td>
</tr>
<tr>
<td>a2 d- c-</td>
<td>C/A</td>
<td>5</td>
<td>3.17</td>
<td>1.06NS</td>
</tr>
<tr>
<td>a2 - c-</td>
<td>C/C</td>
<td>8</td>
<td>1.04</td>
<td>46.58**</td>
</tr>
<tr>
<td>a2 d- c-</td>
<td>C/A</td>
<td>3</td>
<td>0.28</td>
<td>26.42**</td>
</tr>
<tr>
<td>a2 d- c-</td>
<td>C/A</td>
<td>3</td>
<td>0.28</td>
<td>26.42**</td>
</tr>
<tr>
<td>Total</td>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS: Not significant; **p<0.01.

Values in all classes of observations were not significant (p>0.05), indicating a good fit to the 4-allele model of the tvc locus. Similarly, the occurrence of 4 subclass tumour phenotypes i.e. CAM (+) LT (+), CAM (+) LT (-), CAM (-) LT (+) and CAM (-) LT (-) infected with subgroup C virus was also observed and a 4-allele model was proposed for the tvc locus. On the assumption of a 4-allele model similar to the tva locus, the frequencies of \(c'^4\), \(c'^2\), \(c'^1\) and \(c'^0\) alleles of the tvc locus were calculated as 0.42, 0.20, 0.21 and 0.17 for IWJ line, 0.42, 0.17, 0.27 and 0.14 for IJW line and 0.30, 0.21, 0.16 and 0.33 for IWC line, respectively (Table 3). In this case the \(\chi^2\)-values in all classes of observations were also not significant (p>0.05), indicating a good fit to the 4-allele model of the tvc locus. The occurrence of 4 subclass tumour phenotypes of subgroup C in the three lines (IWJ, IJW and IWC) with non-significant (p<0.05) \(\chi^2\)-value indicated the role of 4-allele model to the tvc locus also similar to the proposed 4-allele model (Pani and Naithani, 1990) for genetic control of CAM infection in embryos and LT death in chicks to subgroup A virus. Furthermore, the 4-allele model of the tva locus in the present study also provided support to the earlier report of Pani and Naithani (1990).

On the basis of 2-allele model, the tva locus carries \(a'\) and \(a''\) alleles and 3 genotypes (\(a'a', a'a''\) and \(a'a''\)) and similarly, the tvc locus also carries \(c'\) and \(c''\) alleles and 3 genotypes (\(c'c', c'c''\) and \(c'c''\)). Based on proposed 4-allele model, the tva locus carries at least 4 alleles (\(a'a', a'a'', a'a''\) and \(a'a''\)) and 10 genotypes (\(a'a'a', a'a'a'', a'a'a'', a'a'a''\) and \(a'a'a''\), \(a'a'a', a'a'a'', a'a'a''\) and \(a'a'a''\)) and similarly, the tvc locus also carries at least 4 alleles (\(c'c', c'c'', c'c''\) and \(c'c''\)) and 10 genotypes (\(c'c', c'c'', c'c''\) and \(c'c''\), \(c'c', c'c'', c'c''\) and \(c'c''\)). To study the linkage between tva and tvc loci, the interaction between C-resistance and A-resistance (both CAM and LT death) was ascertained by taking the 10 genotypes of tva locus and 3 genotypes of tvc locus by pooling the lines and by partitioning the observations in to three classes (Table 4). As the occurrence of phenotypic observations was of uniform frequency in each class of the three lines, the data of the three lines were pooled. The \(\chi^2\)-value for the genotypic classes of CAM (-) LT (+) phenotypes and CAM (-) LT (-) phenotypes to mixed virus (A+C) infection was found to be highly significant (p<0.01) (Table 4). This indicates the unexpected occurrence of phenotypes with lack of Mendelian pattern of segregation. The addition of subgroup A to subgroup C virus increased the resistance than infection by subgroup A virus alone. The increased resistance in mixed virus...
infection indicated the joint segregation of \(a' \) and \(c' \) genes. This type of phenomenon suggested that there might exist close linkage between \(tva \) and \(tvc \) loci. This gives an additional support of linkage between \(tva \) and \(tvc \) loci which was reported earlier on the basis of CAM phenotypes (R and S) in 2-allele model of \(tva \) and \(tvc \) loci (Pani, 1974). Therefore, an indirect selection approach using subgroup C viruses can be employed to generate stocks resistant to subgroup A LLV, obviating contamination with the most common agent causing LL in field condition.

REFERENCES

