INTRODUCTION

The ban against using antibiotics as feed additives in poultry diets of many countries has led to an increase in research regarding alternative feed additives, including prebiotics such as mannan oligosaccharide (MOS) and probiotics like *Saccharomyces cerevisiae* (SC). MOS is derived from mannans on yeast cell surfaces. The benefits of MOS are based on specific properties, including modification of the intestinal micro-flora, reduction in turnover rate of the intestinal mucosa, and modulation of the immune system in the intestinal lumen. These properties have the potential to enhance growth rate, feed efficiency, and livability in poultry species (Parks et al., 2001). Probiotics, such as *Saccharomyces cerevisiae*, are defined as non-digestible ingredients, and they have several modes of action: beneficial changes in gut flora with reductions in the population of pathogenic bacteria, lactate production with subsequent changes in intestinal pH, production of antibiotic-type substances, production of enzymes, competition for adhesion receptors in the intestine, competition for nutrients, reduction of toxin release, and immuno-stimulation (Montes and Pugh, 1993; Leeson and Summers, 1997; Sohn et al., 2000; Han et al., 2007; Yin et al., 2008).

There are many reports concerning the effects of using prebiotics (Fairchild et al., 2001; Parks et al., 2001; Sims et al., 2004; Deng et al., 2008) and probiotics (Midilli and Tuncer, 2001; Zhang et al., 2005) on the performance of poultry. However, there are many questions and inconsistencies about the use of such additives in relation to meat quality. Some authors have determined that feeding poultry both prebiotics and probiotics has been advantageous in the improvement of carcass and meat quality in bronze turkeys from 49 to 147 d of age (Cömert, 2004), as well as in broilers during the overall period (Zhang et al., 2005; Brzóska et al., 2007). However, others have not obtained any positive results regarding carcass traits in turkeys from 0 to 126 d of age (Blair et al., 2004) or broilers from 0 to 42 d of age (Ceylan et al., 2003; Waldroup et al., 2003; Pelicano et al., 2005). Carcass colour
is an important component of quality, which affects consumer selection and acceptability of foods (Karaoğlu and Durdağ, 2005); likewise, meat composition is considered for the processing of different products (Aksu et al., 2005). Breast muscle contains the greatest portion of edible meat in turkeys, depending upon market conditions, and is generally the most valuable part of the carcass. However, abdominal and visceral fat are waste products to the poultry processor. The yield of cut-parts changes as a bird grows and is of considerable importance in deciding the optimal weight for slaughter, estimating accurate nutrient requirements, and evaluating nutritional effects (Gous et al., 1999). On the other hand, we are unaware of any literature that concerns the effects of dietary MOS and SC supplementations influence carcass and meat quality characteristics should be clarified. The aim of this study was to determine the effects of dietary MOS and SC supplementation on the carcass, cut yields, meat colour, and composition in finishing turkey toms.

MATERIALS AND METHODS

Animals and diets

A total of 72 ten-weeks-old Big6 male turkey poult’s were used in the trial. The turkey chicks were obtained from a local hatchery and they had been reared to 10 wks of age without any treatment. The birds were fed diets with a nutrient composition based on recommendations from NRC (1994) relevant to poultry aged from 0 to 10 wks. The birds were weighed individually, ranked for minimal differences, and allocated into three groups in week 10. There were three treatment groups, including 8 replicates per treatment with 3 birds in each. The treatments were: i) basal diet (negative control = C, no additive); ii) basal diet supplemented with mannan oligosaccharide (Bio-Mos: Alltech Inc., Finland) at 1 g per kg of diet; iii) basal diet supplemented with *Saccharomyces cerevisiae* (Kavimix Biosaf®, each kg of premix contained 300×10^10 CFU strain SC47, Kartal Kimya, Istanbul-Turkey) at 1 g per kg of diet. Basal feed nutrient contents were formulated according to age intervals (10 to 12; 12 to 16; 16 to 20 wks) (NRC, 1994). Feed and water were provided ad libitum. The ingredients and composition of the diets are shown in Table 1.

The birds were housed in wire-separated pens (2 birds/m²) with floors which were covered with dry wood shavings. The lighting schedule was 16 L:8 D (darkness from 10:30 pm to 06:30 am). The tests lasted from 10 wks to 20 wks, from July to September. The room temperature (°C) averages were recorded as 28.1±0.6, 31.2±0.3 and 31.6±0.3, with humidity levels of 50.8±1.22, 38.2±0.9 and 36.59±0.7 at 08:00, 14:30, and 19:00 h, respectively.

Measurements

Individual body weight (BW) was measured at wks 10, 12, 14, 16, 18 and 20. Feed intake was measured in each pen on the same days and corrected for mortality. Average daily weight gain (ADG) and average daily feed intake (DFI) from 10 to 20 wks was calculated for each chick. The feed conversion ratio (FCR) was calculated as the ratio between DFI to ADG of all birds in each pen.

At the end of the experiment, two birds from each pen were humanely slaughtered by cervical dislocation. Their feathers were plucked mechanically, and they were eviscerated by hand. The weights of the whole carcass,
Table 2. Effect of mannan oligosaccharide and *Saccharomyces cerevisiae* on body weight (BW), average daily weight gain (ADG), daily feed intake (DFI) and feed conversion ratio (FCR)

<table>
<thead>
<tr>
<th>Item</th>
<th>Age (week)</th>
<th>Dietary treatment</th>
<th>SEM</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td>MOS</td>
<td>SC</td>
</tr>
<tr>
<td>BW (kg)</td>
<td>10</td>
<td>7.00</td>
<td>7.12</td>
<td>7.04</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>15.67</td>
<td>16.02</td>
<td>15.77</td>
</tr>
<tr>
<td>ADG (g/day/bird)</td>
<td>10 to 20</td>
<td>155.0</td>
<td>159.7</td>
<td>156.7</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>15.67</td>
<td>16.02</td>
<td>15.77</td>
</tr>
<tr>
<td>DFI (g/day/bird)</td>
<td>10 to 20</td>
<td>427.2b</td>
<td>471.8a</td>
<td>435.4b</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.03b</td>
<td>3.21a</td>
<td>2.96b</td>
</tr>
<tr>
<td>FCR (feed/gain)</td>
<td>10 to 20</td>
<td>3.03b</td>
<td>3.21a</td>
<td>2.96b</td>
</tr>
</tbody>
</table>

MOS = Mannan oligosaccharide; SC = *Saccharomyces cerevisiae*; SEM = Standard error of means.

a, b Means in row with no common superscript differ significantly (* p<0.05; ** p<0.01); NS = Non significant (p>0.05).

RESULTS AND DISCUSSION

Performance traits

The results presented in Table 2 show the effects of dietary treatments on BW, average ADG, DFI, and FCR of turkey toms. The dietary MOS and SC supplementation did not affect BW and ADG during the trial (p>0.05). From similar research, Cömert (2004) reported that BW and ADG were not significantly affected by the addition of dietary MOS and probiotic (*Enterococcus faecium*) in bronze turkeys from 7 to 21 wks of age. Also, it was reported that dietary MOS and probiotic (*Enterococcus faecium*; *E. coli*; *S. typhimurium*) supplementation did not affect BW in broilers or turkeys (Bradley and Savage, 1995). Contrary to other findings on BW and BWG, some studies have shown that dietary MOS supplementation in turkeys actually caused an improvement (Fairchild et al., 2001; Parks et al., 2001; Sims et al., 2004).

DFI and FCR in the MOS group were higher than those of the control and SC groups (p<0.05), but DFI and FCR in the SC groups were similar to the control group. Significantly higher DFI in the MOS group may be a result of the changing status of the digestive system. For example, the intestinal bacterial flora of domestic animals has an important role in the digestion and absorption of feed. There is substantial evidence that dietary MOS modifies the morphology and structure of the intestinal mucosa and may change digestive enzyme activities and amino acid transport in the digestive system (Iji et al., 2001). Juśkiewicz et al. (2006) reported that dietary MOS changed caecal metabolism more markedly at early ages. These researchers also reported some positive effects of adding MOS to the diet, such as lowering ammonia concentration and decreasing β-glucuronidase activity in the caeca, as well as some negative effects, including decreased bacterial glycolytic activity and raised pH of digesta. However, lower pH of digesta is probably responsible for the proliferation of beneficial species of bacteria and the depression of pathogenic species in the lower gut of animals (Zentek et al., 2002). Hence dietary MOS supplementation might be harmful in part to disjoin of gastrointestinal system. On the

Statistical analysis

The current data were analyzed using the General Linear Models (GLM) procedure of the Statistical Analysis System (SAS, 1996). The models included control, MOS and SC. Means were separated using Duncan’s multiple range tests. The results of statistical analyses were expressed as mean values and standard error of the means (SEM).
other hand, Iji et al. (2001) found that dietary MOS supplementation (1 g/kg) led to increased cumulative feed intake and FCR compared to the control group, but differences were not significant in broilers at 7 to 28 days of age. Contrary to our results, it was reported that feed intake was not significantly affected by dietary MOS and probiotic addition in bronze turkeys from 7 to 21 wks of age (Cömert, 2004), and young turkeys from 0 to 8 wks of age (Zduńczyk et al., 2004; Stanczuk et al., 2005), or broilers (Shafey et al., 2001; Sarica et al., 2005; Yağcınkaya et al., 2008).

Carcass and cut yields

Turkey carcasses have been marketed as cut-up carcass products such as breast, drumstick, and wing, instead of as a whole carcass. The effects of dietary treatments on carcass traits are presented in Table 3. Neither MOS nor SC had any significant effect on carcass and cut-part yields (breast, thigh, wing), liver, heart, gizzard, intestinal system or abdominal fat (p>0.05). In this experiment, turkeys were fed a diet supplemented with MOS and SC at the level (1 g per kg of diet) recommended by the companies. Also, the recommended level of MOS in a diet for turkeys was estimated at 0.5-1.0 g/kg to 6 wks then 0.5 g/kg, according to Alltech Inc., Finland). On the other hand, Juśkiewicz et al. (2006) found that the addition of mannano-oligosaccharide to a diet was the most effective when MOS was applied for a long-term feeding period (16 weeks of feeding) and at a higher dose than 0.1%. Therefore, the level of MOS and SC generally recommended by the companies could be too low to be efficient in finishing turkey diets.

Our results concerning MOS are in agreement with Waldroup et al. (2003) and Blair et al. (2004), who reported that MOS and probiotic supplementation did not affect carcass and part yields, as well as abdominal fat in turkeys and broilers (Pelicanò et al., 2005). Similarly, probiotic supplementation to broiler diets had no significant effect on carcass traits in broilers (Loddi et al., 2000; Pelicanò et al., 2003; Alçıçek et al., 2004; Karaoğlu and Durdağ, 2005; An et al., 2008). Similar results indicated that MOS and probiotics may be effective in providing lean meat by decreasing abdominal fat (Santoso et al., 1995; Kalavathy et al., 2003; Samarasinghe et al., 2003; Pelica et al., 2004; Kannan et al., 2005). In this study, however, dietary MOS and SC supplementation had no significant effect on the abdominal fat pad (p>0.05). Similarly, previous studies have reported that the abdominal fat pad was not significantly influenced by dietary supplemental prebiotics and probiotics in turkeys (Waldroup et al., 2003; Blair et al., 2004; Cömert et al., 2004) and broilers (Denli et al., 2003; Pelicanò et al., 2003; Karaoğlu and Durdağ 2005; Pelicanò et al., 2005). In contrast to others, Shafey et al. (2001) and Brzóska et al. (2007) reported that MOS and probiotic supplementation increased the abdominal fat pad in broilers.

Internal organ traits

The results of this study showed that MOS and SC supplementation did not affect empty gizzard and intestinal weights of birds (Table 3, p>0.05). Our results concerning intestinal weight are consistent with Denli et al. (2003), who reported that mixed probiotic supplementation did not affect intestinal traits. Also, it was previously reported that dietary MOS and probiotic (lactobacillus) had no effect on gizzard weights of broilers (Karaoğlu and Durdağ, 2005; Brzóska et al., 2007; Owens and McCracken, 2007). In the current study, internal organ weights and proportions, as percentages of carcass weight, were not influenced by dietary MOS and SC. These results confirmed those of Karaoğlu and Durdağ (2005), Denli et al. (2003), Pelicanò et al. (2004) and Loddi et al. (2000). In contrast, Yang et al. (2007) reported that dietary MOS supplementation decreased intestine and liver weight in broilers.

Meat pigmentation

Color variation is an important component of quality which affects consumer selection and acceptability of foods. In the current study, average breast and thigh colour were not influenced by dietary MOS and SC supplementation (Table 4, p>0.05). These results are in agreement with some

Table 3. Effects of mannan oligosaccharide and Saccharomyces cerevisiae on carcass parts and gastrointestinal tracts

<table>
<thead>
<tr>
<th>Item</th>
<th>Control</th>
<th>MOS</th>
<th>SC</th>
<th>SEM</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slaughter weight (kg)</td>
<td>15.80</td>
<td>15.48</td>
<td>15.42</td>
<td>0.36</td>
<td>NS</td>
</tr>
<tr>
<td>Carcass yield (%)</td>
<td>82.72</td>
<td>81.40</td>
<td>80.93</td>
<td>7.72</td>
<td>NS</td>
</tr>
<tr>
<td>Breast meat (%)</td>
<td>11.71</td>
<td>11.27</td>
<td>11.35</td>
<td>0.33</td>
<td>NS</td>
</tr>
<tr>
<td>Thigh (%)</td>
<td>11.60</td>
<td>11.64</td>
<td>11.75</td>
<td>0.19</td>
<td>NS</td>
</tr>
<tr>
<td>Wing (%)</td>
<td>4.68</td>
<td>4.79</td>
<td>4.86</td>
<td>0.12</td>
<td>NS</td>
</tr>
<tr>
<td>Liver (%)</td>
<td>1.04</td>
<td>1.13</td>
<td>1.04</td>
<td>0.06</td>
<td>NS</td>
</tr>
<tr>
<td>Heart (%)</td>
<td>1.13</td>
<td>1.04</td>
<td>1.04</td>
<td>0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Empty gizzard (%)</td>
<td>1.02</td>
<td>1.05</td>
<td>1.05</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Empty intestine (%)</td>
<td>1.84</td>
<td>1.96</td>
<td>1.95</td>
<td>0.09</td>
<td>NS</td>
</tr>
<tr>
<td>Abdominal fat pad (%)</td>
<td>0.53</td>
<td>0.47</td>
<td>0.55</td>
<td>0.09</td>
<td>NS</td>
</tr>
</tbody>
</table>

MOS = Mannan oligosaccharide; SC = Saccharomyces cerevisiae; SEM = Standard error of means; NS = Non significant (p>0.05).
previous studies which investigated the same effect in broilers (Loddi et al., 2000; Pelicano et al., 2003; Karaoğlu et al., 2004; Pelicano et al., 2005). However, Karaoğlu et al. (2004) revealed that dietary SC supplementation decreased L* and a* values but increased b* values in broilers. Similarly Pelicano et al. (2003), in the latter of two experiments, showed that dietary probiotic addition increased L* value but did not influence a* and b* values.

Meat composition

In the present study, the dietary treatments did not affect dry matter, crude protein, ether extract, crude ash, or pH of breast and thigh meats of turkey toms (Table 5, p>0.05). We could not locate any literature concerning the effects of dietary MOS and probiotics supplementation on meat composition in turkeys and broilers; therefore, this subject should be considered in new investigations. These results are in agreement with Brzóska et al. (2007), who reported that MOS and probiotic supplementation did not affect dry matter, crude protein, or ether extract in chickens. Also, previous studies have shown that MOS and probiotic supplementation did not affect pH of meat in broilers (Loddi et al., 2000; Pelicano et al., 2003; Pelicanao et al., 2005) and turkeys (Cömert, 2004). Contrary to these findings, there are inconsistencies among the published results. It is reported that dietary probiotic supplementation can cause an increase in pH levels of breast and drumstick meat (Karaoğlu et al., 2004; Aksu et al., 2005), but also Brzóska et al. (2007) reported that dietary MOS and probiotic supplementation decreased pH levels of breast meat at 24 h in broilers.

In conclusion, dietary MOS and SC supplementation did not affect BW and BWG, but MOS supplementation increased DFI and FCR of turkey toms. Carcass and part weights and yields, meat colour and composition were not influenced by the dietary MOS and SC supplementation. There is a possibility that the level of MOS and SC generally recommended in finishing turkey diets by the companies could be too low to be effective on carcases, cut yields and meat composition of turkeys. However, there is a lack of data concerning dietary MOS and SC in turkeys and their effect on carcass traits and composition. Therefore, further experiments need to be conducted in order to determine whether MOS and SC supplementation affects turkeys according to different circumstances.

REFERENCES

