Role of heme oxygenase-1 expression by dietary phytoconstituents: A nutritional cytoprotective strategy for human diseases

Seung Eun Lee, Yong Seek Park

Department of Microbiology, School of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701 Republic of Korea

ABSTRACT

The present review investigates the role of the cytoprotective enzyme heme oxygenase-1 (HO-1) in human diseases and explores strategies for its clinical use. In recent years, there has been a growing evidence, for the beneficial effects of some phytoconstituents via induction of HO-1 expression, contained in commonly used spices, fruits, and herbs, in preventing various pathologic conditions, including cancer, diabetes, and cardiovascular diseases. HO-1 catalyzes the rate-limiting step in heme catabolism to generate ferrous iron, carbon monoxide, and biliverdin. HO-1 is reported to play crucial roles in cellular protection, such as anti-inflammatory, anti-proliferative and anti-apoptotic effects. These evidences indicate that HO-1 may functions as a potential therapeutic target in various human diseases. The article highlights the current status of the development of the HO-1 modulation pathway using dietary phytoconstituents.

Keywords HO-1, phytoconstituents, human diseases, pharmacological properties, molecular mechanism

INTRODUCTION

Heme oxygenase-1 (HO-1) provides an inducible defense mechanism that confers cytoprotection in response to a variety of stimuli (Ghattas et al., 2002). Induction of HO-1 expression plays an important role in the maintenance of homeostasis and stress adaptation, whereas HO-1 deficiency exhibited anemia, endothelial cell damage, tissue iron deposition, and increased inflammatory indices (Ryter and Choi, 2009; Yachie et al., 1999). Furthermore, HO-1 has been therapeutically implicated in various diseases including vascular injury, acute renal injury, hypertension and others (Morse and Choi, 2002).

In recent years, several studies have suggested that induction of HO-1 expression by dietary phytoconstituents function as a potential therapeutic target in the treatment of human disease (Chen et al., 2012b; Nakamura et al., 2011). Phytoconstituents are widely distributed in plants, and are regularly consumed in the human diet. Recent studies suggest that phytoconstituents will be useful in the prevention of various diseases, because of their antioxidant and anti-inflammatory properties (Onozuka et al., 2008; Shukla et al., 2006). In addition, various phytoconstituents induce HO-1 expression in a variety of cell types and animals; in particular, dietary phytoconstituents that have a beneficial effect in human disease may also augment HO-1 expression (Jun et al., 2012; Meng et al., 2009; Woo et al., 2012). The objective of this review is to discuss the role of HO-1 expression by dietary phytoconstituents in treatment of human diseases.

HO

HO catalyzes the first and rate-limiting step in the degradation of heme and generation of biliverdin, free iron, and carbon monoxide (Ghattas et al., 2002). Biliverdin is subsequently converted to bilirubin by a biliverdin reductase, and iron is recycled for heme synthesis (Fig. 1). Three mammalian HO isoforms have been identified to date: HO-1, HO-2, and HO-3 (McCoubrey et al., 1997). HO-1, a member of the stress-response protein superfamily, has a broad spectrum of inducers, including metals, cytokines, endotoxin, oxidants, and phytoconstituents (Elbirt et al., 1998; Pae et al., 2008; Sahin et al., 2010). In contrast, HO-2 is constitutively expressed and present in high levels in the brain and testes (Zabalgoitia et al., 2008) and HO-3 is not expressed in humans.

Among the various cytoprotective enzymes, HO-1 has recently received attention as a novel enzyme with anti-inflammatory (Lee and Chau, 2002), anti-proliferative (Choi et al., 2004), and anti-apoptotic effects (Liu et al., 2003). Several studies revealed that the antioxidant and anti-inflammatory effects of HO-1 result in cytoprotective actions in the tissues, including various pathological models (Choi and Alam, 1996; Nath et al., 1992; Ohnishi et al., 2010) and induction of HO-1 has therapeutically beneficial effects in human diseases. In addition, it has been reported that deficiency of HO-1 in mice results in severe vascular damage, which is presumably mediated by a transcriptional response to injury, with specific effects on redox homeostasis, thrombosis, coagulation, and cell cycle regulation (True et al., 2007).

Modulation of HO-1 expression

Several signaling molecules and transcription factors have been found to be involved in HO-1 expression. These molecules include protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), ER-localized pancreatic endoplasmic reticulum kinase (PERK), mitogen-activated protein kinases (MAPKs), nuclear factor E2-related factor 2 (Nrf2), activator protein-1 (AP-1), nuclear factor-kB (NF-kB), and cyclic adenosine monophosphate-response element-binding (CREB) protein (Bloom and Jaiswal, 2003; Cullinan and Diehl, 2004; Otterbein and Choi, 2000; Paine et al., 2010) (Fig. 2). The transcription factor Nrf2 plays an important role in the induction of phase II
detoxifying enzyme, including HO-1. Previous study investigated that Nrf2 can bind to the antioxidant responsive element (ARE) in the promoter regions of many antioxidant and phase II detoxifying genes, such as NAD(P)H: quinone oxidoreductase 1 (NQO1), glutamate cysteine ligase catalytic subunit (GCLC), and HO-1 (Randle et al., 2008). Furthermore, the activation of p38 MAPK and Nrf2 play a key role in induction of HO-1 expression in aortic endothelial cells (Chen et al., 2011) and PKC-δ and p38 MAPK play a crucial role in the activation of ARE-Nrf2 in association with HO-1 expression by curcumin in human monocytes (Rushworth et al., 2006), whereas 15-deoxy-D12, 14-prostaglandin J2 induces HO-1 expression via the ERK and Akt/PI3K pathway (Kim et al., 2008). Our previous studies have also elucidated that fisetin, which is a flavonoid in many fruits and vegetables, has a cytoprotective effect by regulating HO-1 expression in endothelial cells through activation of the PKC-δ, p38, and Nrf2-ARE signaling pathways, whereas Danshen (Salvia miltiorrhiza) induces HO-1 expression via the PI3K/Akt, MEK1, and Nrf2 signaling pathways (Lee et al., 2012; Lee et al., 2011). There have been several excellent reviews, in effective detail, the molecular events involved in the HO-1 signaling pathway (Li et al., 2007; Paine et al., 2010; Soares et al., 2009).

Fig. 1. Heme degradation products and their effects. HO-1 catalyze the degradation of heme to BV, with the concurrent release of Fe2+ and CO. BV is converted to BR by BVR. CO confers cytoprotection through restraining apoptosis, proliferation, and inflammation. BR, bilirubin; BV, biliverdin; CO, carbon monoxide; NO, nitric oxide; NOS, nitric oxide synthase.

Fig. 2. Modulation of HO-1 induction by transcription factors and kinases. HO-1 inducer may activate at least one or more of kinases (e.g., MAPKs, PKC, PKA, and PI3K) and/or one of transcription factors (e.g., NF-kB, AP-1, Nrf2, CREB). Under normal conditions, the transcription factors are located in cytosol or nucleus, whereas, upon activation by stimuli, the transcription factors may translocate to the nucleus where they bind to the specific DNA sequence leading to the transcription of HO-1 gene. MAPK, mitogen-activated protein kinase; AP-1, activator protein-1; CREB, cyclic adenosine monophosphate-response element-binding protein; NF-kB, nuclear factor-kB; Nrf2, nuclear factor E2-related factor 2; PI3K, phosphatidylinositol 3-kinase; PKA, protein kinase A; PKC, protein kinase C.
HO-1 and dietary phytoconstituents in human disease

Table 1. Representative phytochemical inducers of HO-1

<table>
<thead>
<tr>
<th>Phytoconstituent</th>
<th>HO-1-dependent physiological effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCG</td>
<td>Neuroprotection (Romero et al., 2009; Zheng et al., 2012). Kidney protection (Kakuta et al., 2011). Endothelial cell cytoprotection (Zheng et al., 2012). Cardioprotection (Dreger et al., 2008).</td>
</tr>
<tr>
<td>Curcumin</td>
<td>Neuroprotection (Scapagnini et al., 2011). Liver protection (Bao et al., 2010; Farombi et al., 2008). Protection of sepsis-induced lung injury (Olszanecki et al., 2007).</td>
</tr>
<tr>
<td>Garlic organosulfur compounds</td>
<td>Cancer chemoprevention (Nian et al., 2009).</td>
</tr>
<tr>
<td>Baicalin</td>
<td>Neuroprotection (Choi et al., 2010).</td>
</tr>
<tr>
<td>Quercetin</td>
<td>Lung protection (Hayashi et al., 2012). Liver protection (Liu et al., 2012).</td>
</tr>
<tr>
<td>Ampelopsin (a flavonoid abundant in Rattan tea)</td>
<td>Neuroprotection (Kou et al., 2012).</td>
</tr>
<tr>
<td>Ginkgo biloba extract</td>
<td>Liver protection (Yao et al., 2007).</td>
</tr>
<tr>
<td>Butein</td>
<td>Liver protection (Yang et al., 2011).</td>
</tr>
<tr>
<td>Anthocyanin</td>
<td>Neuroprotection (Kim et al., 2012). Liver protection (Hwang et al., 2011).</td>
</tr>
<tr>
<td>Luteolin</td>
<td>Kidney protection (Wang et al., 2011). Neuroprotection (Lin et al., 2010).</td>
</tr>
<tr>
<td>Berberine (the major constituents of chinese herb Rhizoma coptidis)</td>
<td>Neuroprotection (Chen et al., 2012a).</td>
</tr>
<tr>
<td>Sulforaphane</td>
<td>Neuroprotection (Hong et al., 2010).</td>
</tr>
<tr>
<td>Salvianolic acid B</td>
<td>Vasoprotective action (Joe et al., 2012).</td>
</tr>
<tr>
<td>Rosmarinic acid</td>
<td>Neuroprotection (Lee et al., 2008).</td>
</tr>
</tbody>
</table>

Effect of HO-1 expression by dietary phytoconstituents

HO-1 exerts multifunctional roles in the development of various diseases. The HO system could attenuate/block the progression of diseases via their antioxidant, anti-inflammatory, and anti-proliferative effects. Also, HO-1 cooperates with its downstream products, CO and bilirubin to exert diverse cellular protective effects and serve as potential therapeutic targets.

Dietary phytoconstituents in a multitude of dietary sources have been reported to possess potent antioxidant and anti-inflammatory activities as well as the ability to modulate a variety of signaling mechanisms. Various phytoconstituents have been identified and studied using modern scientific approaches and the results exhibited the potential of phytoconstituents in the field of pharmacology (Tapsell et al., 2006; Triggiani et al., 2006). Current study into approaches to use of HO-1 in clinical apply has become progressively focused on the use of phytochemical inducers (phytoconstituents) of the enzyme. Several phytoconstituents are known inducers of HO-1 and therefore represent attractive candidates for use in healthcare.

A possible general mechanism of cytoprotective activity of phytoconstituents, correlated with their ability to regulates protective inducible genes, is their involvement in the cellular stress response (Mattson et al., 2007). Consumption of phytoconstituents from varied sources has been shown to possess the ability to cause activation of the HO-1 signaling mechanisms. Dietary phytoconstituents, such as epigallocatechin-3-gallate (EGCG) obtained from tea leaves, fisetin from strawberries, resveratrol from grapes, carnosic acid (CA) from the herb rosemary as well as tetramethylpyrazine (TMP) from Chinese medicinal herb Ligusticum wallichii Franch have been identified to possess HO-1 modulatory properties (Chen et al., 2006; Kakuta et al., 2011; Lee et al., 2011; Mimura et al., 2011; Ren et al., 2011). In Table 1, we have presented numerous studies which have investigated the cytoprotective effect of a number of phytoconstituents, regarding their effects on the HO-1 regulatory systems.

HO-1 and cardiovascular health

It was recently revealed that HO-1 is a potential therapeutic target in the treatment of vascular disease (Durante, 2010). HO-1, which is highly expressed in tissues such as the heart and blood vessels, protects against vascular diseases, and has a cytoprotective effect in the circulation. Induction of HO-1 expression in the endothelial cells reduces platelet aggregation and smooth muscle cell proliferation (Zhang et al., 2002; Sato et al., 2001), whereas HO-1 deficiency in humans shows evidence of oxidative injury and severe endothelial damage (Yachie et al., 1999). These results indicate that HO-1 plays an important role in the vascular system as a potent protector against cardiovascular disease. Our previous studies have suggested that HO-1 expression induced by flavonoids such as fisetin protects against oxidative stress-induced cell death in endothelial cells and Danshen may also have cytoprotective activity through the induction of HO-1 expression (Lee et al., 2012; Lee et al., 2011). These data supports the potential therapeutic mechanism of Danshen and fisetin in protecting against oxidative stress-related diseases such as vascular disease. In other studies, Meng et al. (2009) showed that HO-1 activity was proposed as a mechanism to account for the protection of vascular responses by puerarin and 2-methoxycinnamaldehyde (2-MCA), one of active ingredients of Cinnamomum cassia, has been reported to protect against myocardial IR-injury due to antioxidant and anti-inflammatory action possibly by HO-1 induction (Hwa et al., 2012). These findings strongly suggest that induction of HO-1 expression by dietary phytoconstituents serve as key modulators for vascular inflammation, endothelial cells (EC) function, and vascular smooth muscle cells (VSMC) proliferation, which are pathogenic factors for human cardiovascular diseases.

HO-1 and hepatic health

Increasing evidence supports that HO-1 induction represents an adaptive response or enhanced resistance against various oxidative stresses. It has been reported that pharmacological induction of HO-1 may have strong therapeutic potential in hypoxia or inflammation that induces severe liver damage (Tuzuner et al., 2004). In recent, several studies also provides biological evidence that supports the use of phytoconstituents in the treatment of liver disorders via induction of HO-1, including Ginkgo biloba extract (Yao et al., 2007), anthocyanin from purple sweet potato (Hwang et al., 2011) and curcumin from the curry spice turmeric (Bao et al., 2010; Farombi et al., 2008).

HO-1 and pulmonary disease

The identification of HO-1 as a vital negative modulator in inflammation has provoked intense interest in exploring the role played by HO-1 in acute lung injury (Morse and Choi, 2002). The outcome of recent studies to identify the mechanisms of oxidative damage in lung disease have shown HO-1 to be a critical signaling molecule leading to protection...
of lung tissue, the disruption of which may result in disease. A recent study suggested that quercetin may lead to new therapeutic strategies for antifibrotic therapy in the treatment of respiratory diseases through induction of HO-1 (Nakamura et al., 2011). In other studies, dietary phytoconstituents (such as curcumin) also confers protection against oxidative stress-related pulmonary disease and its therapeutic effects depend on transcriptional upregulation of HO-1 (olszanecki et al., 2007; Lee et al., 2010).

HO-1 and neuroprotection
Oxidative stress plays a role in the onset and progression of a wide range of neuronal diseases that affect the tissue of the central nervous system, which consists of the brain and spinal cord plus the peripheral nervous system (Brown and Beal, 1994). Ongoing studies by several investigators have revealed potential for the use of HO-1 as an anti-ischemic agent. Furthermore, induction of HO-1 expression using dietary phytoconstituents has also shown promise as a strategy for management of neurological disease. Romeo et al. (2009) demonstrated that pharmacological activation of HO-1 by EGCG efficiently protects neurons from oxidative stress and should be evaluated as a new therapeutic approach for treatment and prevention of diseases that correlate with oxidative damage, such as diabetic neuropathy. The neuroprotective effect of ampelopsin, a phytoconstituent abundant in Rattan tea (Ampelopsis grossedentata), was also showed to be related to attenuation of reactive oxygen species formation, inhibition of poly (ADP-ribose) polymerase and caspase-3 and inhibition of p38 MAPK phosphorylation, as well as up-regulation of HO-1 expression, suggesting that ampelopsin is a promising candidate for the treatment of neurodegenerative diseases (Kou et al., 2012).

HO-1 and renoprotective effect
In kidneys, the protective properties of HO-1 have been revealed in a variety of renal injury models including ischemia-reperfusion and cisplatin nephrotoxicity (Salom et al., 2007; Shiraishi et al., 2000; Tracz et al., 2007). Induction of HO-1 protects against oxidative stress, endothelial cell loss, and vascular dysfunction that occur in streptozotocin-induced diabetes, indicating that, in the diabetic milieu, upregulation of HO-1 can confer beneficial effects in the kidney (Abraham et al., 2004; Quan et al., 2004; Turkseven et al., 2005). Ongoing investigations into strategies for use of induction of HO-1 by dietary phytoconstituents in inhibiting oxidative damage to renal tissue have yielded some very interesting results. Recent report suggested that augmentation of HO-1 may exert protective effect of EGCG in rat kidneys from I/R injury, which was attributed to reduced macrophage infiltration via monocyte chemoattractant protein-1 down-regulation, and decreased renal fibrosis via transforming growth factor-β1 down-regulation (Kakuta et al., 2011). In the meantime, other groups have reported renoprotective effect of luteolin may be related to increasing HO-1 expression and elevating antioxidant in diabetic nephropathy (Wang et al., 2011).

CONCLUSION
The last decade has seen an increase in the interest of phytoconstituents. This review has shown that dietary phytoconstituents can modulate HO-1 signaling pathway and thus has potential therapeutic value against various chronic diseases including cardiovascular diseases, pulmonary diseases, renal diseases and neurodegenerative diseases. Thus, we hypothesise that HO-1 expression by dietary phytoconstituents may provide new insights for treatment of various human disease.

ACKNOWLEDGEMENTS
This study was supported by a grant of the Korean Health Technology R&D Project, ministry of Health & Welfare, Republic of Korea (A111834).

CONFLICT OF INTEREST
The authors have no conflicting financial interests.

REFERENCES


Bloom DA, Jaisswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from IκBα, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem. 2003;278:44675-44682.


HO-1 and dietary phytoconstituents in human disease


Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 2004;279:20108-20117.


Lin CW, Wu MJ, Liu, J YC, Su JD, Yen JH. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J

TANG / www.e-tang.org


Pae HO, Lee YC, Chung HT. Heme oxygenase-1 and carbon monoxide: emerging therapeutic targets in inflammation and allergy. Recent Pat Inflamm Allergy Drug Discov. 2008;2:159-165.


Randle LE, Goldring CE, Benson CA, Metcalfe PN, Kitteringham NR, Park BK, Williams DP. Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology. 2008;243:249-260.


True AL, Olive M, Boehm M, San H, Westrick RJ, Raghavachari N, Xu X, Lynn EG, Sack MN, Munson PJ, Gladwin MT, Nabel EG. Heme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide. Circ Res. 2007;101:893-901.


Yang YC, Li CK, Lin AH, Yeh YW, Yao HT, Li CC, Liu KL, Chen HW. Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic Biol Med. 2011;51:2073-2081.


