RESEARCH ARTICLE

Determination of the Breast Cancer Risk Levels and Health Beliefs of Women With and Without Previous Mammography in the Eastern Part of Turkey

Hasret Yalcinoz Baysal1, Hatice Polat2*

Abstract

Objective: This research was conducted to determine the breast cancer risk levels of women with and without previous mammography and their beliefs on breast cancer and mammography. Methods: The sample for this descriptive research consisted of women aged 50 years or older who were registered at the Family Health Center in the city center of Erzurum. The research was conducted with a total of 420 women with at least one mammography (210) and without mammography (210) who presented to the center on Wednesdays and Thursdays for any reason between 1 January 2010 and 1 January 2011. Research data were collected using the personal information “Breast Cancer Risk Assessment Form” accepted and recommended by the Turkish Ministry of Health, and the Champion’s Health Belief Model Scale for Breast Cancer and Screening (CHBMS). Data were evaluated using percentages and means with the t-test. Results: According to the research data, 89.8% of the women were found to be in the low risk group, 87.6% with and 91.9% without mammography. When the health beliefs of women with and without mammography were compared, it was found that susceptibility, seriousness, motivation, mammography benefit scores were higher among those with mammography (p<0.01). The mammography barrier score average was higher in the group without mammography (p<0.01). Conclusion: Knowing women’s health beliefs, which have positive and negative effects on participating in mammography screening, may increase the rate of mammography uptake among women. Moreover, women with high breast cancer risk may be determined by increasing society’s level of knowledge on breast cancer and risk factors.

Keywords: Breast cancer - mammography - health beliefs model - risk - Turkey

Introduction

Breast cancer is the most common cancer type leading to death (Ministry of Health, 2005). Breast cancer is a curable disease provided that it is diagnosed early. Mammography is the most important diagnosis method in reducing breast cancer mortality (Tuncer, 2007). It is reported that mammography screenings performed at regular intervals reduce breast cancer-related deaths by 30-40% (Lerman et al., 1990; White et al., 1993).

Having mammography at regular intervals affects women’s health beliefs and attitudes (Taylor et al., 1995). The health belief model is used by many researchers to understand health beliefs and to apply screening programs (Lee and Vogel, 1995; Mikhail and Petro, 2001; Karayurt and Dramali, 2003; Wu and Yu, 2003; Gozum and Aydin, 2004; Seckinli and Nahcivan, 2004). The Health Belief Model explains the relationship between an individual’s belief and behavior. The model defines the factors that motivate or demotivate an individual to do certain health-related actions, and the conditions that are effective in displaying health behaviors in particular (Ay, 2007). The concepts related to belief and behaviors in the model include susceptibility, seriousness, motivation, perceived benefit and barrier. In the studies conducted abroad; seriousness, susceptibility and beliefs about the benefit of mammography were found to be important factors effective on having or not having mammography (Champion, 1994; Rutten and Iannotti, 2003; Russel et al., 2006). In the study carried out by Rutten and Iannotti (2006), perceived benefit, susceptibility and barrier were found to be important factors in having mammography on regular basis. In the study by Lee et al. (2009), perceived susceptibility and benefit of women with mammography were found to be higher than those without mammography. In our country, Baysal and Gozum (2011) reported that health beliefs about susceptibility, seriousness and benefits of mammography increased women’s desire to participate in mammography screenings and reduced their perception of barrier.

Determining breast cancer risk groups in a society, monitoring these risk groups and making screening programs widespread is important for early diagnosis and treatment. Reported risk factors in breast cancer include advanced age, being a woman, presence of breast cancer in family history, early menarche and menopause, nulliparity,
Materials and Methods

Design and Sample

The sample of this descriptive research consisted of women aged 50 years or older who were registered at Sukrupasa Family Health Center in the province of Erzurum, Turkey, who had at least one mammography and who never had mammography. In the groups with a known population (1396), the formula used in determining sample size was applied. The sample size was calculated as 209. The research was conducted with a total of 420 women with at least one mammography (210) and without mammography (210).

The sample of the research consisted of women aged 50 years or older who applied to Sukrupasa Family Health Center, who had no communication problems, who accepted to participate in the research, and who were included in the sample by randomization method.

Data collection tools

Research data were collected by using the descriptive form, the breast cancer risk assessment form, and the Health Belief Model Scale for Breast Cancer and Screening.

The descriptive form included 8 questions. The first 5 questions were about the socio-demographic characteristics of women (age, marital status, education status, occupation, income), and the other questions were about the presence of cancer in family history, the presence of a cancer patient in one’s environment, and the status of having mammography.

Breast Cancer Risk Assessment Form

The “Breast Cancer Risk Assessment Form”, which was developed by the American Cancer Society and accepted and recommended by the Turkish Ministry of Health, was used (National Family Planning, 2000; Spence, 2000; Aslan and Gurkan, 2007). The Breast Cancer Risk Assessment Form consisted of six parts and 20 items. The parts were divided as age, breast cancer history in the family, individual breast cancer history, child bearing age, menstrual history, and body structure. The scores below 200 indicated “low risk”, the scores between 201-300 indicated “moderate risk”, the scores between 301-400 indicated “high risk”, and scores of 400 and above indicated “the highest risk”.

Champion’s Health Belief Model for Breast Cancer and Screening (CHBMS)

The Health Belief Model for Breast Cancer and Screening was developed by Champion (1984), based on the health belief model for beliefs about the early diagnosis of breast cancer. In this study, the validity and reliability of the scale was established by Gozum and Aydin (2004). The Cronbach’s Alpha value of the scale was found to be between 69 and 83. A total of 5 sub-domains (30 items) were used in the scale, including “susceptibility”, “seriousness” “health motivation” regarding breast cancer, and “benefits” and “barriers” about mammography. It was a likert-type scale with scores ranging from 1 to 5. The answers were evaluated as follows: totally disagree: 1, disagree: 2, undecided: 3, agree: 4, and totally agree: 5. The maximum values to be obtained from the scale were 3-15 for susceptibility, 6-30 for seriousness, 5-25 for health motivation, 2-25 for benefits of mammography, and 1-25 for barriers of mammography.

Figure 1. The effect of Woman’s Health Beliefs of Breast Cancer and Mammography on Their Participation in Mammography Screening
Although the breast cancer risk level was found to be low in these studies, breast cancer remains to be at the top of the list of cancer types among women (Ministry of Health, 2005). Determining the individuals with high risk of breast cancer is important for early diagnosis and treatment. As the high level of awareness of individuals has a positive effect on participation in screening programs, healthcare professions should determine women’s risk levels in individual education sessions and share these results with them.

When the groups with and without mammography were compared in terms of breast cancer risk level (Table 1), it was found that all women with mammography were at high and highest risk for breast cancer (p<0.05). In the study conducted by Baysal and Gozum (2011), it was determined that women with high risk of breast cancer had 11 times more mammography compared to women with low and moderate risk. Our literature review did not reveal any studies on the comparison of the risk levels of women with and without mammography.

When the groups with and without mammography were compared in terms of their belief about breast cancer and mammography, it was found that perceived health for susceptibility, seriousness, motivation and mammography was higher and perceived barrier was lower in the group with mammography compared to that without mammography (t=-8.621, P<0.000; t=-3.707, P<0.000; t=-5.113, P<0.000; t=-3.368, P<0.001; t=9.585, P<0.000). In the study of Yilmaz et al. (2010) which compared the health beliefs of academics and housewives regarding breast cancer, it was observed that health beliefs of susceptibility, seriousness and perceived benefit of mammography were higher among women with mammography than those without mammography; yet the difference was not statistically significant. In the study conducted by Lee et al. (2009) with Korean-American women, health beliefs of susceptibility and perceived benefit were found to be higher among women with mammography. Similar results were reported in the studies conducted abroad, showing the rate of women who accepted that breast cancer was a serious problem (perceived seriousness) and they had the risk of having breast cancer (perceived susceptibility) and who considered mammography an effective factor in determining breast cancer in early stage (perceived benefit of mammography) was an important factor affecting women’s desire of having mammography at regular intervals (Rutten and Iannotti, 2003; Russell et al, 2006). Rutten and Iannotti (2003) also reported the perceived benefit of mammography (OR=1.51), susceptibility (OR=1.41) and barrier (OR=0.79) as important factors in commitment to having mammography. In Champion’s study (1994), perceived seriousness increased the rate of having mammography by 1-fold.

In this study 89.9% of the women were found to be in the low risk group for breast cancer. In our country there are only a few studies conducted to determine the risk level of breast cancer (Aslan and Gurkan, 2007; Tumer and Baybek, 2010). The rate of women in the low risk group for breast cancer was found to be 91.8% in the study by Kocadağ et al. (2009), 94.4% in the study by Ergölu et al. (2009), and 98.5% in the study by Aslan et al. (2007). Our research data show similarities with the data in literature.

<table>
<thead>
<tr>
<th>Risk Levels</th>
<th>Having Mammography</th>
<th>Not Having Mammography</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>184 87.6</td>
<td>193 91.9</td>
<td>X²=0.003</td>
</tr>
<tr>
<td>Moderate</td>
<td>15 7.1</td>
<td>17 8.1</td>
<td>SD=2.00</td>
</tr>
<tr>
<td>High-the highest</td>
<td>11 5.2</td>
<td>0 0</td>
<td>P<0.05</td>
</tr>
</tbody>
</table>

Table 1. Comparison of the Risk Levels of Woman with and Without Mammography

Descriptive characteristics of the women determined that 83.3% of the women were in the age group of 50-64 years, 81.2% were married, 49% were literate, 83.6% did not work, 58.6% had income equal to their expense, 46.9% had breast cancer history in the family, 36% had breast cancer history in their environment, and 89.9% were in the low risk group.

Table 1 presents the data for the comparison of the women’s status of having mammography according to their breast cancer risk levels. It was observed that all the women who were at the high and highest risk for breast cancer were those with previous mammography, and the difference between the groups was statistically significant (p<0.05).

The comparison of women with and without mammography regarding their beliefs about breast cancer and mammography is also presented (Graphic 1). It was found that women with mammography had higher levels of health belief compared to women without mammography as measured in the sub-domains of susceptibility, seriousness, health motivation and benefit of mammography in the CHBMS scale, and that the perceived barrier for having mammography was lower in women with mammography; and the difference between the groups was statistically significant (p<0.001).

Discussion

In this study 89.9% of the women were found to be in the low risk group for breast cancer. In our country there are only a few studies conducted to determine the risk level of breast cancer (Aslan and Gurkan, 2007; Tumer and Baybek, 2010). The rate of women in the low risk group for breast cancer was found to be 91.8% in the study by Kocadağ et al. (2009), 94.4% in the study by Ergölu et al. (2009), and 98.5% in the study by Aslan et al. (2007). Our research data show similarities with the data in literature.
important factors in routine mammography screenings and that only the high level of perceived barrier reduced the rate of mammography screenings. According to the Health Belief Model, high level of perceived barrier has a negative effect on individuals’ behaviors (Health Belief Model, 2011). A few studies conducted in Turkey demonstrated that certain interventions reduced women’s perceived barrier regarding mammography (Akcay et al., 2005; Aydin and Gozum, 2009; Gozum et al., 2010). Gozum et al. (2010) observed that peer education reduced women’s perceived barrier for mammography. Aydin and Gozum (2009) and Akcay et al. (2005) also reported the effect of education on reducing perceived barrier for mammography.

Knowing women’s health beliefs that are effective in their participation in mammography screenings may help nurses improve the education programs on screening methods, as well as their behaviors towards women. Participation in mammography screenings may be increased by determining women’s perceived barriers for having mammography and by reducing these barriers via education and guidance. Perceived susceptibility, seriousness, health motivation and benefit of mammography, which have a positive effect on women’s participation in mammography screenings, should be supported and increased by healthcare professionals. Furthermore, performing breast cancer screenings, and educating and monitoring women are important for protection from cancer, early diagnosis and treatment.

Acknowledgements

This study was presented one national congress, “1th Congress of Innovation on Nursing 11-13 October 2012, Ankara”(presented orally).

References

Karayurt Ö, Dramalti A (2003). Adaptation of champion’s health belief model scale to Turkish women and examination of the factors influencing the frequency of breast self examination. The first regional meeting. Asian Pac Organization for Cancer Pre Congress (APOPCP), 154-55.

Zincir H (1999). Knowledge, attitudes and behaviors of women aged over 40 years in the city of Malataya regarding breast cancer and protection. Inonu University, Graduate School of Health Sciences, Master’s Thesis, Malataya.