RESEARCH ARTICLE

Genetic Polymorphisms of \textit{GSTM1} and \textit{GSTT1} Genes in Delhi and Comparison with other Indian and Global Populations

Anita Sharma1, Arvind Pandey2,4, Sarita Sardana3, Ashok Sehgal3, Joginder K Sharma1*

Abstract

The glutathione S-transferases (GSTs) are involved in the metabolism of many xenobiotics, including an array of environmental carcinogens, pollutants, and drugs. Genetic polymorphisms in these genes may lead to inter-individual variation in susceptibility to various diseases. In the present study, \textit{GSTM1} and \textit{GSTT1} polymorphisms were analysed using a multiplex polymerase chain reaction in 500 normal individuals from Delhi. The frequency of individuals with \textit{GSTM1} and \textit{GSTT1} null genotypes were 168 (33.6%) and 62 (12.4%) respectively, and 54 (10.8%) were having homozygous null genotype for both the genes \textit{GSTM1} and \textit{GSTT1} simultaneously. The studied population was compared with reported frequencies from other neighbouring state populations, as well as with those from other ethnic groups; Europeans, Blacks, and Asians. The prevalence of homozygous null \textit{GSTM1} genotype is significantly higher in Caucasians and Asians as compared to Indian population. The frequency of \textit{GSTT1} homozygous null genotypes is also significantly higher in blacks and Asians. We believe that due to large number of individuals in this study, our results are reliable estimates of the frequencies of the \textit{GSTM1}, \textit{GSTT1} in Delhi. It would provide a basic database for future clinical and genetic studies pertaining to susceptibility and inconsistency in the response and/or toxicity to drugs known to be the substrates for GSTs.

Keywords: \textit{GSTM1} - \textit{GSTT1} - \textit{GSTP1} - polymorphism - North Indians.

Asian Pacific J Cancer Prev, 13 (11), 5647-5652

Introduction

All organisms are constantly and unavoidably exposed to a large number of foreign chemicals or xenobiotics. Most of these chemical carcinogens are not capable of inducing genetic damage themselves but require metabolic activation to electrophilic proximate carcinogens. Whether a compound contributes to cancer or other disease depends not only on the extent of an individual’s exposure, but also on the effectiveness of the individual’s ability to remove toxins from the body, involving phase-I (cytochrome P450) and phase-II (glutathione S- transferase) enzymes (Mannervik et al., 1992).

Glutathione S-transferases (GSTs), a multigene family of phase-II metabolic enzymes, are active in the detoxification of a wide variety of potentially toxic and carcinogenic electrophiles by conjugating them to glutathione (Pemble et al. 1994). In mammals the eight classes of GSTs, i.e. alpha (GSTA), mu (GSTM), theta (GSTT), Pi (GSTP), zeta (GSTZ), sigma (GSTS), kappa (GSTK), and omega (GSTO) have been identified (Mannervik et al., 1992), based on sequence homology and substrate specificity. Among them \textit{GSTM1} and \textit{GSTT1} polymorphisms are extensively studied. \textit{GSTM1} is situated in the \textit{GST\textmu} cluster, which is localised to chromosome 1 in region 1p13.3 and is involved in the detoxification of polycyclic aromatic hydrocarbons and other mutagens. \textit{GSTT1} gene is located on chromosome 22q11.2 and is involved in the metabolism of small compounds found in tobacco smoke like mono halo methanes and ethylene oxide (Hayes and Pulford, 1995). The polymorphism in \textit{GSTM1} and \textit{GSTT1} gene loci is caused by a gene deletion which results in the absence of enzyme activity in individuals with the \textit{GSTT1} and \textit{GSTM1} null genotypes. These homozygous null polymorphisms of \textit{GSTM1} and \textit{GSTT1} may lead to wide inter-individual variations in the metabolic activation of chemical carcinogen (Board, 1981). The polymorphisms of \textit{GSTM1}, \textit{GSTT1} have been associated with cancers of the lung, bladder, breast and colon (Autrup, 2000). Therefore, we evaluated the distribution of \textit{GSTM1}, \textit{GSTT1} genotypes in Delhi population and compared it with GST polymorphism frequency in different states of India and with various populations worldwide.

Materials and Methods

Selection of controls

Peripheral blood from the controls was collected in vials containing ethlenediaminetetraacetic acid (EDTA) after receiving their informed consent. The controls selected for the study were either normal volunteers from...
Anita Sharma et al.

Gene Resolved on 3% Agarose Gel

Figure 1. Multiplex PCR Analysis of GSTM1, and GSTT1 Gene Resolved on 3% Agarose Gel Electrophoresis. M is a 100bp Ladder marker. A 350 bp fragment of GSTM1, or GSTT1 non-null allele. Absence of GSTM1 or GSTT1 product indicates homozygous null genotype of that gene.

Table 1. Demographic Data and Association of Various Variables with GST Polymorphism in Normal Population of Delhi

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (N=500)</th>
<th>GSTM1 (%)</th>
<th>P value</th>
<th>GSTT1 (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male (%)</td>
<td>Null (%)</td>
<td>Non-null (%)</td>
<td>OR (CI 95%)</td>
<td>P value</td>
</tr>
<tr>
<td>Gender</td>
<td>274(54.8)</td>
<td>136(31.3)</td>
<td>138(36.8)</td>
<td>0.96(0.69-1.42)</td>
<td>0.36(0.11-1.2)</td>
</tr>
<tr>
<td>Smoking status</td>
<td>97(19.4)</td>
<td>43(34.6)</td>
<td>54(42.6)</td>
<td>0.14(0.66-2.63)</td>
<td>0.05(0.02-0.8)</td>
</tr>
<tr>
<td>Alcohol status</td>
<td>210(42.0)</td>
<td>15(72.3)</td>
<td>35(49.2)</td>
<td>1.44(0.44-1.35)</td>
<td>0.53(0.01-1.3)</td>
</tr>
<tr>
<td>Tobacco chewing</td>
<td>140(28.0)</td>
<td>47(33.6)</td>
<td>93(66.4)</td>
<td>0.81(0.39-1.69)</td>
<td>0.17(0.07-0.47)</td>
</tr>
</tbody>
</table>

Statistical analysis

The data were tabulated and analysed. The mean±SD were estimated for quantitative data. T test was used for the comparison of age. The chi-square test was used to compare demographic data between various variables of the present study. The studied population was compared with reported frequencies from other neighbouring state populations of India and global populations; Europeans, Blacks and Asians.

Results

A total of 500 healthy individuals participated in the study. The mean age was 32.9 years±6.8. The median age was 32 years and the range from 18-57 years. Of the 500 individuals, 274 were males and 226 females. The mean age of males and females was 33.1±6.7 and 32.6±6.8 respectively and no significant differences in the mean age were observed between the two sexes. Number of individuals who were having homozygous null genotypes of GSTM1 and GSTT1 were 33.6% and 12.4% respectively and 10.8% individuals were homozygous null for both the genes simultaneously (Table 1). The frequency of GSTM1, GSTT1 homozygous null alleles did not differ significantly among both the sexes (p>0.05). Total ninety seven (85 males and 12 females) individual were smokers. Number of female smokers was very less, so it was not possible to compare the results between both the genders. No significant differences were observed between smokers and non-smokers, alcoholic and non-alcoholic individuals, tobacco chewers and non-chewers, carrying homozygous GSTM1/GSTT1/GSTM1T1 null genotype (p>0.05) (Table 1).
null genotype is significantly higher in Caucasians (range: 41.8-53.5) and Asians (range: 49.0-65.2) as compared to Indian (range: 15.0-59.9) populations. The frequency of GSTT1 homozygous null genotypes is also significantly higher in blacks (range: 14.0-57.0) and Asians (16.0-84.6) (Table 3). Very few results are available for the combined homozygous null genotypes of GSTM1 and GSTT1. In the present study complete deletion of both GSTM1 and GSTT1 genotypes is observed in 10.8% individuals and the range in Indian population was between 4.5%-10.8%, whereas Nair et al. (1999) did not find any subject with homozygous null genotype for both GSTM1 and GSTT1 from Trivandrum. In Brazilian population, the range of both GSTM1 and GSTT1 homozygous null genotypes is between 4.5-17.0% and the frequency is higher in Asian population (19.6-37.0%) except Pakistanis and Indians from Singapore, where the frequency was low (5.0%) (Rehan et al., 2010). The high frequencies of GSTM1 and GSTT1 homozygous null genotypes observed in Chinese population are associated with the high incidence of oesophageal cancer. There were no significant differences between males and females in the frequency of GSTM1 or GSTT1 null genotypes in the present study. Similar results were reported in white and non-white individuals (Rossini et al., 2002).

Further, we have compared the frequency of GSTM1 and GSTT1 homozygous null genotype in three main world populations namely Blacks, Caucasians, Asians and compared with Indians (Table 3). These results were
obtained by clubbing the individual data from the studies mentioned in Table 3 for all ethnic groups. GSTM1 and GSTT1 homozygous Null genotype was 31.9%; 24.9% in Blacks (N=3008), 32.4%; 16.2% in Indians (N=4509), 47.7%; 16.7% in Caucasians (N=2674) and 54.2%; 41.0% in Asians (N=4735) respectively. Considerable variations were observed in the frequencies of the homozygous null genotypes at the GSTM1 and GSTT1 loci among these four different ethnic groups. It shows that GSTM1 homozygous null genotype is lowest in Blacks, followed by Indians, Caucasians and Asians. At a glance these figures indicate that null alleles are higher in Caucasians and Asians (including Japanese, Chinese and Koreans). Cancer incidence is also higher in these populations specially the cancer of Lung, Colorectal, stomach, oesophagus and the Ovary (Parkin et al., 2005). Though not supported statistically here, it gives an indication that these two homologous null genotypes can account for racial differences in incidence of some important cancers in world populations. This may be in part due to their differing evolutionary histories and in part to differential selection arising from differing exposures to toxic substances, such as diet and tobacco and alcohol consumption.

This type of study would provide us the basic data for epidemiological studies. Therefore, GSTM1, GSTT1 polymorphism in combination with other detoxifying enzyme polymorphisms, could be used to identify high-risk individuals in clinical surveillance programmes. Individuals with different combinations of these alleles would also help in studying the effect of various carcinogens in different populations having various exposures. This data will be useful in designing various studies involving polymorphisms of GSTM1, GSTT1 genes and to compare results from various geographical regions of India.

References

