Rapid Detection of Ovarian Cancer from Immunized Serum Using a Quartz Crystal Microbalance Immunosensor

Yan Chen¹*, Xian-He Huang¹, Hua-Shan Shi², Bo Mu³, Qun Lv⁴

Abstract

Background: The objective of this study was to measure the antibody content of NuTu-19 ovarian cancer cells in serum samples using a quartz crystal microbalance (QCM) immunosensor. Materials and Methods: NuTu-19 cells were first cultured onto the electrode surfaces of crystals in Dulbecco’s modified Eagle medium, and then specified amounts of immunized serum samples of immunized rabbit were also added. The change in mass caused by specific adsorption of antibodies of NuTu-19 to the surfaces of the crystals was detected. Results: The change in resonance frequency of crystals caused by immobilization of NuTu-19 cells was from 83 to 429Hz. The antibody content of NuTu-19 detected was 341ng/ul. The frequency shifts were linearly dependent on the amount of antibody mass in the range of 69 to 340ng. The positive detection rate and the negative detection rate were 80% and 100%, respectively. Conclusion: This immunoassay provides a viable alternative to other early ovarian cancer detection methods and is particularly suited for health screening of the general population.

Keywords: Ovarian cancer - detection - quartz crystal microbalance - immunosensor - NuTu-19
Yan Chen et al

3424

(Gibco BRL, Grand Island, N.Y.) supplemented with 10% fetal bovine serum (Gibco BRL, Grand Island, N.Y.) and 100 μg/ml Amikacin. Cells were maintained in humidified chamber at 37 °C in 5% CO₂ atmosphere.

Animal inoculations and antibody preparation

New Zealand white rabbits were immunized with 1×10⁷ NuTu-19 cells in complete Freund’s adjuvant (CFA) (Sigma) at day 0 and followed by two boosts with 1×10⁷ NuTu-19 cells in incomplete Freund’s adjuvant (IFA) (Sigma) at day 14 and 28. To get the antibody of NuTu-19, rabbit heart blood were collected under light anesthesia a week after the last injection. Then serum IgG was separated using a protein separation column, and non-immune rabbit serum was used as a negative control.

Equipment and apparatus

The 3rd overtone AT-cut QCM quartz crystals (10MHz, optically polished surface, 5 mm gold electrodes on both sides) were obtained from Tangshan JingYuan YuFeng Electronics co., Ltd (Hebei, China). A high resolution frequency counter (Agilent 53131A) from Agilent Technologies (US) was employed to monitor the oscillation frequency. A self-made gate crystal oscillator with a 74HC04 integrated chip and 4.5 v dc power supply was used. A 0.1 ul-5 ul variable volume micropipette obtained from KeXiao co., Ltd (Hang Zhou, China) was used for better volume control of the liquids. The test diagram is shown in Figure 2.

The relationship between the change in mass on the crystal surface and the corresponding change in the oscillation frequency has been shown by the well-known Sauerbrey equation as follows (Sauerbrey, 1959; Hlavay et al., 1977; Granstaff et al., 1994):

\[\Delta F = -2.26 \times 10^4 \times nF_0^2 \Delta m/A \]

where \(\Delta m \) is the changed mass on the crystal surface, in g, \(\Delta F \) is the change in resonance frequency of the coated crystal, in Hz, \(F_0 \) is the fundamental resonance frequency of the crystal, in Hz, \(n \) is the overtone number; \(A \) is the area of electrode surface, in cm². The mass sensitivity of the quartz crystal used in this study is 0.376 Hz/ng.

Measurement procedure

The resonance frequency \(F_1 \) of all uncoated crystals were first measured by frequency counter at 25 °C. After culturing NuTu-19 cells on the crystal surface, the crystal was dipped in 2% paraformaldehyd-phosphate buffered solution for 10 min, then washed with phosphate buffer solution (PBS, PH 7.4) and deionized water (DW) twice to wash away all interfering substances and dried in air at 25 °C. Then the frequency \(F_2 \) of crystals with coated cells was subsequently counted. At last, the gold electrode surfaces of crystals were covered with NuTu-19–associated serum by micropipette and kept at 25 °C for 2 min, then washed with PBS and DW and air-dried, counting frequency \(F_3 \). The serum free anti-NuTu-19 IgG was measured under the same condition as reference.

Results

Cell immobilization efficiency

The immobilization of antigen on the surface of quartz crystal plays an important role not only in detecting accuracy and specificity but also in shortening the reaction time. In this study, the NuTu-19 ovarian cancer cells were separately cultured on twenty crystals so as to make NuTu-19 antigens firmly immobilize on the crystal surface. Figure 3 shows the effect of varying the mass of the NuTu-19 cells on the electrode surface of quartz crystal. Since the added mass of cells did not exceed the load limit of the crystal (0.0048 g), the added mass of NuTu-19 cells is linearly proportional to the frequency changes of the quartz crystal. Therefore, the immobilization range for NuTu-19 cell was 0.22-1.14 μg.

Stability of QCM

Figure 4 shows the frequency stability of the QCM during the test. Since the stability of QCM is a key factor to influence the detection accuracy, the QCM was placed in a thermostatic chamber at 25 °C to prevent the frequency stability from affecting by ambient temperature fluctuations and all the measurement equipments were started for 5 min in advance so as to make the equipments stable enough. The 3rd overtone AT-cut model of QCM is of excellent accuracy with ±1 Hz at 25 °C, and the results were highly reproducible.

Specificity and sensitivity of QCM

After culturing NuTu-19 cell on the surface of the
The experiment was 341 ng. This obtained mass calculated the increase in frequency shifts. The average mass change in there were eight out of ten crystals exhibited significant be approximately equal to 0 Hz in the experiment. So below 5 Hz measured in the negative control group can frequency shifts upon addition of crude serum containing the target antibody when compared with the negative control group. The frequency response to anti-NuTu-19 serum samples (ΔF1) and negative control group (ΔF2) were measured. The results were shown in Table 1. Since other interference factors may have a slight influence on frequency shifts, the frequency shifts which were below 5 Hz measured in the negative control group can be approximately equal to 0 Hz in the experiment. So there were eight out of ten crystals exhibited significant increase in frequency shifts. The average mass change in the experiment was 341 ng. This obtained mass calculated from Sauerbrey equation using ΔF2 was very close to the actual amount of mass (370 ng) added on the electrode of the crystal which was obtained using the protein quantification method.

In order to investigate the amount of frequency drop with respect to the added immunized serum droplet, the volume of serum added was from 0.2 μl to 1 μl, each time with a 0.2 μl serum droplet increase. The average of four measurements was shown in Table 2.

Discussion

In this paper, a novel method for indirect rapid detection of early ovarian cancer was proposed. From the meaningful results discussed above, it is clear that the difference between the serum samples with the antibody of NuTu-19 and without the antibody of NuTu-19 is so obvious that QCM immunosensor can be used to detect the antibody content of NuTu-19 from immunized serum. The novel antigen immobilization method not only eliminated non-specific adsorption but also shortened the response time since low sensitivity may be got when delayed the response time (König & Grätzel, 1993; Babacan et al., 2009). The 3rd overtone AT-cut model of QCM immunosensor used in this study increased the oscillation stability, ensuring the stability of whole test system. Furthermore, the sensitivity of this detection method was also ensured by this resonator. Although a difference between the obtained mass calculated from Sauerbrey equation and the actual amount of mass was existed, this work holds good for the quantitative detection of NuTu-19 in serum sample of ovarian cancer rabbits.

Besides high sensitivity and specificity, the proposed method in this study provides potential advantages, such as short analyzing time (less than 2 min), low cost (the heart of this detection system costs less than 1 dollar), and security (will not cause radiation damage for patients). Our study demonstrated that this novel detection method has no false-positive problem that it is particularly suited for health screening for the general population. This technique provides a viable alternative to early ovarian cancer detection methods. It also paves the way for its potential applicability in clinical practice. The only flaw that it can not identify the specific ovarian cancer-associated antibodies in serum samples makes our further investigation will focus on identifying the specific ovarian cancer-associated antibodies in serum.

Acknowledgements

This study was supported by State Key Laboratory of Biotherapy of Sichuan University. The author(s) declare that they have no competing interests.

References

Goff BA, Mandel L, Muntz HG, Melancon CH (2000). Ovarian
Yan Chen et al
carcinoma diagnosis. Cancer, 89, 2068-75.
Granstaff VE, Martin SJ (1994). Characterization of a thickness-
Shear mode quartz resonator with multiple nonpiezoelectric
Hlavay J, Gulbault GG (1977). Applications of the piezoelectric
crystal detector in analytical chemistry. Anal Chem, 49,
1890-8.
Jelovac D, Armstrong DK (2011). Recent progress in the
diagnosis and treatment of ovarian cancer. CA Cancer J
Clin, 6, 183-203.
Cancer J Clin, 59, 225-49.
Johannes L (2010). Test to help determine if ovarian masses are
with a piezoelectric immunosensor. Anal Chim Acta, 281,
13-8.
Sauerbrey G (1959). The use of quartz oscillators for weighing
layers and for micro-weighing. Zeitschrift for Physik A
Hadrons and Nuclei, 155, 206-22.