Pharmacoeconomics Evaluation of Morphine, MS Contin and Oxycodone in the Treatment of Cancer Pain

Wen-Zhou Zhang, Wei-Jiang Yu, Xiu-Li Zhao, Bao-Xia He*

Abstract

Objective: To analyze cost-effectiveness of morphine, MS contin and oxycodone in the treatment of cancer pain, providing guidance for rational drug use in the clinic. Methods: Confirmed by histology, a total of 171 patients with various cancers who required analgesic treatment were selected and divided into 3 groups, 57 cases for each group, given morphine, MS contin and oxycodone, respectively. If there appeared a poor short-term effect or aggravated sudden pain during the treatment, a short-acting morphine injection was given and adverse reactions were processed by symptomatic treatment. The pain relief rate and adverse reactions of groups were observed and pharmacoeconomics evaluation was undertaken. Results: The pain relief rates with morphine, MS contin and oxycodone were 89.5% (51/57), 91.2% (52/57) and 93.0% (53/57), respectively, with no difference among groups (χ²=4.4489, P=0.6162). The occurrence rates of adverse reactions were 59.7% (34/57), 54.4% (31/57) and 43.9% (25/57), again with no significant variation (P>0.05). The ratios of cost-effectiveness (C/E) for the 3 groups were 12.2±6.53, 13.4±6.08 and 14.5±6.74 but there was no differences when compared with before the price adjustment (t=1.86, P=0.0651; t=1.30, P=0.1948; t=1.17, P=0.2453). Conclusion: Morphine, MS contin and oxycodone give similar pain relief and adverse reaction rates but of all, morphine is the preferred drug for the treatment of cancer pain from the perspective of pharmacoeconomics.

Keywords: Cancer pain - morphine - MS contin - oxycodone - pharmacoeconomics - cost-effectiveness analysis
were randomly divided into morphine group, MS contin group and oxycodone group, 57 cases for each group. The 3 groups were comparable for there was no difference in mean age, gender, disease categories, KPS score, pain types and degrees among 3 groups (P>0.05).

Methods

Treatment protocol: Morphine group was given oral morphine, 30 mg/12 h as initial dose, provided by Taiji Group· Southwest Pharmaceutical Co. Ltd.. MS contin group was given oral MS contin, 30 mg/12 h as initial dose and xycodone group was given oral oxycodone, 10 mg/12 h as initial dose, and both are provided by Mundipharma (China) Pharmaceutical Co., Ltd.. The above-mentioned drugs must be swallowed wholly, not partially or triturated. If the patients cannot take the drugs, the same dose of rectal administration was considered. The dose was evaluated once every 48 h and regulated according to the degrees of pain relief. The dose was added and each dose was increased by 50%~100% due to poor control of disease but the administration frequency was not changed until the cancer pain was relived satisfactorily. During the treatment, if the unsound short-term effect or sudden aggravated pain, a short-acting morphine injection was given.

Pharmacoeconomics evaluation: ① The cost: Besides drug price, pharmacoeconomics cost includes experimental examination and delivery cost. ②The ratio of cost-effectiveness (C/E) analysis: C/E was calculated and the incremental ratio of cost-effectiveness (ΔC/ΔE) was calculated with reference to the minimum-effect group. ΔC/ΔE=(the cost of the other group-the cost of minimum-effect group)/(the pain relief rate of the other group-the pain relief rate of the minimum group). ③Sensitivity analysis: Supposed that the drug price of 3 groups was reduced by 10% for calculating the indexes of pharmacoeconomics evaluation, the stability of evaluated results was verified.

Observational indexes

Drug analgesic effect of 3 groups was observed for calculating the relief rate. The adverse reactions such as nausea, vomiting, dizziness and somnolence were observed. Medical fee, drug expense, examination fee were recorded for calculating the cost and analyzing the cost-effectiveness.

Evaluation criterion

Pain classification standard according to WHO: Level 0 refers to painless. Level 1 refers to mild pain and patients are with tolerance to pain and no need to use drugs. Level 2 refers to moderate pain which influences sleep due to the occasional acute pain and the analgesics are needed.

Level 3 refers to severe pain which has a strong impact on sleep and the analgesics are needed.

Pain relief standard: 0 refers to non-remission pain. The I degree refers to mild pain relief, pain which is reduced by 1/4. The II degree refers to the moderate pain relief, reduced by 1/2. The III degree refers to the obvious pain relief, reduced by 3/4. The IV degree refers to complete pain relief and pain disappears. The pain relief rate refers to the rate of moderate or above pain, that is, The pain relief rate =patients of The II degree and the above/the total selected patients.

Statistical data analysis

SAS 9.3 statistical package was employed for all data analysis. Measurement data was expressed by χ±s and pairwise comparison of measurement data of normal distribution was analyzed by t test while pairwise comparison of measurement data of non-normal distribution was analyzed by rank sum test. Enumeration data was expressed by percentage and the ratios of groups were analyzed by χ² test. P<0.05 was considered to be statistical difference.

Results

Comparison of dose and analgesic effect of 3 groups

The average dose in morphine group was 44.7 mg/12 h and pain relief rate was 89.47% (51/57). The average dose in MS contin group was 42.8 mg/12 h and the pain relief rate was 91.23% (52/57). And the average dose in oxycodone group was 16.2 mg/12 h and the pain relief rate was 92.98% (53/57). However, there was no statistical difference in pain relief rate among 3 groups (P>0.05) as shown in Table 1.

Evaluation of adverse reactions

There was no patients with severe adverse reactions in 3 groups who withdrawn from the treatment during the observational period. The adverse reactions of 3 groups, mainly manifested with nausea, vomiting, dizziness and constipation, were relieved after given symptomatic treatment which didn’t affect the whole treatment protocol. Addiction had not been found. The total incidences of adverse reactions were 59.65% (34/57), 54.39% (31/57) and 43.86% (25/57), respectively and there was no statistical difference between the incidence rate of each adverse reaction and the total incidence rate of adverse reactions (P>0.05), as shown in Table 2.

Cost-effectiveness analysis

Three groups received oral administration and there was no statistical difference in registration fee, diagnosis
Table 2. Comparison of the Incidence of Adverse Reactions of 3 groups

<table>
<thead>
<tr>
<th></th>
<th>Morphine group</th>
<th>MS contin group</th>
<th>Oxycodone group</th>
<th>(\chi^2)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea [n (%)]</td>
<td>15 (26.32)</td>
<td>14 (24.56)</td>
<td>11 (19.30)</td>
<td>0.8485</td>
<td>0.6543</td>
</tr>
<tr>
<td>Vomiting [n (%)]</td>
<td>10 (17.54)</td>
<td>6 (10.53)</td>
<td>5 (8.77)</td>
<td>2.2800</td>
<td>0.3198</td>
</tr>
<tr>
<td>Constipation [n (%)]</td>
<td>3 (5.26)</td>
<td>5 (8.77)</td>
<td>6 (10.53)</td>
<td>1.0892</td>
<td>0.5801</td>
</tr>
<tr>
<td>Dizziness [n (%)]</td>
<td>3 (5.26)</td>
<td>4 (7.02)</td>
<td>2 (3.51)</td>
<td>0.7037</td>
<td>0.7034</td>
</tr>
<tr>
<td>Insolence [n (%)]</td>
<td>1 (1.75)</td>
<td>1 (1.75)</td>
<td>1 (1.75)</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Total incidence</td>
<td>34 (59.65)</td>
<td>31 (54.39)</td>
<td>25 (43.86)</td>
<td>2.9556</td>
<td>0.2281</td>
</tr>
<tr>
<td>C/E</td>
<td>91.23</td>
<td>15.03±7.44</td>
<td>48.01±5.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Cost-Effectiveness Analysis of 3 Kinds of Opioid Analgesics for Cancer Pain

<table>
<thead>
<tr>
<th></th>
<th>Cost (RMB)</th>
<th>Effectiveness</th>
<th>C/E</th>
<th>(\Delta C/\Delta E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine group</td>
<td>1276.35±547.19</td>
<td>89.47</td>
<td>14.59±7.21</td>
<td>—</td>
</tr>
<tr>
<td>MS contin group</td>
<td>1359.21±526.33</td>
<td>91.23</td>
<td>15.03±7.44</td>
<td>48.01±5.22</td>
</tr>
<tr>
<td>Oxycodone group</td>
<td>1503.46±574.68</td>
<td>92.98</td>
<td>16.09±8.10</td>
<td>63.97±6.05</td>
</tr>
</tbody>
</table>

Table 4. Sensitivity Analysis of 3 Kinds of Opioid Analgesics for Cancer Pain

<table>
<thead>
<tr>
<th></th>
<th>Cost (RMB)</th>
<th>Effectiveness</th>
<th>C/E</th>
<th>(\Delta C/\Delta E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphine group</td>
<td>1148.72±550.21</td>
<td>89.47</td>
<td>12.19±6.53</td>
<td>—</td>
</tr>
<tr>
<td>MS contin group</td>
<td>1223.29±499.86</td>
<td>91.23</td>
<td>13.37±5.49</td>
<td>43.37±5.49</td>
</tr>
<tr>
<td>Oxycodone group</td>
<td>1353.11±513.14</td>
<td>92.98</td>
<td>14.66±7.47</td>
<td>58.92±5.84</td>
</tr>
</tbody>
</table>

and treatment fee and examination fee, so cost only referred to the total fee of analgesics in each group. C/E of 3 groups were (14.59±7.21), (15.03±7.44) and (16.09±8.10) and C/E in morphine group was minimum, that is, the unit net cost of the effect of morphine was minimum. Compared with oxycodone, the cost of MS contin group was lower than morphine group when increased effect of 1 unit. As shown in Table 3.

Sensitivity analysis

When the price of 3 kinds of analgesics was reduced by 10%, the ratios of cost-effectiveness were (12.19±6.53), (13.37±6.08) and (14.66±7.47) but there was no differences when compared with before the price adjustment (t=1.86, \(P=0.0651 \); t=1.30, \(P=0.1948 \); t=1.17, \(P=0.2453 \)), as shown in Table 4.

Discussion

International Association for the Study of Pain (IASP) defines pain as a kind of the unpleasant feeling and emotional feelings, accompanied by the actual or potential tissue damage. Severe pain can influence the recovery of diseases and damage. Chronic pain can affect sleep, appetite and normal life, lead to irritability, depression and resentment, even erosion of sense of survival. Cancer pain is the important factor of influencing life quality of cancer patients (Gong et al., 2013; Liang et al., 2013; Mahirig et al., 2013; Budkaw et al., 2013; Lee et al., 2014). If acute pain doesn’t get relieved, it will develop chronic pain and finally becoming a disease.

Opioid analgesics is at present the strongest analgesic drugs, without ceiling effect and liver and kidney function damage when large dose is used, so it is ideal drug for the treatment of cancer pain (Mercadante et al., 2014; Simon et al., 2014). Opioids have pharmacological action on the opioid receptor of multiple central nervous systems because it inhibit the release of substance \(P \) through binding with opioid receptor on shallow sensory neurons of spinal dorsal horn, thus achieving the effect of pain relief. Currently there are 3 kinds of opioid receptors, including \(\mu \) receptor, \(\lambda \) receptor and \(\kappa \) receptor. The transmembrane structure and intracellular loop structure of those receptors, which are highly conserved, can be activated by not only endogenous opioid peptide but also by exogenous opioid agonist. Besides, opioids has descending inhibition effect on cerebral center of the pain to stop the pain transmitting into the brain (Mika et al., 2014). Morphine, the most representative drug for the treatment of cancer pain, makes voltage-gated potassium channels of caudate nucleus neurons excited mainly through acting on \(\mu \) receptor, which can inhibit voltage-gated calcium channel, make cytomembrane hyperpolarization and reduce the excitability of neurons which then cuts down the release of neurotransmitter of neuron axon endings, consequently blocking the transmission of nerve impulses and playing the role of analgesic effect (Yang et al., 2014). The first pass effect of oral morphine is obvious, with low bioavailability (Shen et al., 2014). At present, there were 3 kinds of commonly-used opioids, belonging to long-acting formulations, such as morphine hydrochloride sustained-release tablets (morphine), sustained-release morphine (MS contin) and oxycodone hydrochloride controlled-release tablets (oxycodone). Riley et al (King et al., 2011; Riley et al., 2014) employed oxycodone and morphine to treat cancer pain, both the effects are obvious, so there was no significant difference in pain relief rate between oxycodone and morphine.

Pharmacoeconomics, is an edge discipline on the basis of health and economy integrating economics and pharmacology, with intention to make comprehensive judgment of the cost of drug efficacy based on drug effectiveness and safety evaluation and further provide reference and objective basis for the selection of therapeutic regimen. It mainly includes 4 kinds of methods, namely cost minimization analysis (CMA), cost-effect analysis (CEA), cost-utility analysis (CUA) and cost-benefit analysis (CBA). CEA is a commonly-used method applicable to the comparison of same clinical regimens and drugs, simple and intuitive, easy to be accepted. In this study, pharmacoeconomics was used for economic evaluation of morphine, MS contin and oxycodone, and the result showed that they all had good analgesic effect, so there was no significant difference in pain relief rate and adverse reactions and drug economics analysis revealed that morphine was minimum in C/E and didn’t affect the treatment regimen when its cost was reduced by 10%. This was consistent with the part result of Ise et al’ study (Ise et al., 2009; Wiffen et al., 2014). And other studies showed that there was no abundant evidence to prove which is better (Fredheim et al., 2010; Zhou et al., 2012).

In conclusion, from the perspective of economics, morphine is the preferred choice for the treatment of...
cancer pain, but the selection of treatment protocol is
determined depending on the adverse reactions of drugs
and patient compliance. The study preliminarily analyzed
the economic evaluation of 3 kinds of analgesics and
rescheduling cost of the patients was not included, thus
the measurement of the cost was rough. Therefore, the
further evaluation should be done from the perspectives
of therapeutic evaluation, the overall economic costs and
adverse reactions.

References

Budkaew J, Chumworathayi B (2013). Knowledge and
attitudes toward palliative terminal cancer care among Thai

oxycodone tablets for pain? *Tidsskr Nor Laegeforen*, 130,
1479-81.

OPRM1 A118G and ABCB1 C3435T may influence opioid
requirements in Chinese patients with cancer pain. *Asian Pac
J Cancer Prev*, 14, 2937-43.

of rotation from sustained-release morphine tablet to
transdermal fentanyl of matrix type or sustained-release

of oxycodone in the management of cancer pain. *Palliat

education interventions for the management of cancer pain:

belief about analgesics, analgesic adherence and pain
experience in Taiwanese cancer outpatients. *Asian Pac J

treatment for pain among cancer patients by rational-emotive
behavior therapy—efficacy in both India and Iran. *Asian Pac
J Cancer Prev*, 13, 4561-5.

of analgesics in cancer propagation. *Best Pract Res Clin
Anaesthesiol*, 28, 139-51.

Oncol*, 32, 1671-6.

Mika J, Popiole-Barczyk K, Rojewska E, et al (2014). Delta-
opioid receptor analgesia is independent of microglial
9, e104420.

oxycodone for cancer-related pain? A randomized, open-
label, controlled trial. *J Pain Symptom Manage*, 26. [Epub
ahead of print].

nanocurcumin to attenuate morphine tolerance: comparison
between negatively charged PLGA and partially and fully

analgesics as adjuvants to opioid analgesia for cancer pain
management in an inpatient palliative unit: does this improve
pain control and reduce opioid requirements? *Support Care
Cancer*, 29. [Epub ahead of print].

opioids for breakthrough pain in patients with cancer. *J