Introduction

Cancer is one of the leading causes of mortality and morbidity worldwide (Jemal et al., 2004) and in addition to genetic features, environmental factors are also important in modulating the individual susceptibility to it (Cao and Li, 2006).

Carcinogenesis of head and neck is a multistep process (Chaudhary et al., 2010) and the molecular mechanism of complex interaction between the tumour cells and tumour microenvironment play an important role in this process (Gialeli et al., 2011). Matrix metalloproteinases (MMPs) have the ability to regulate the tumour microenvironment and their expression and activation is increased in almost all human cancers compared to normal tissue (Egeblad and Werb, 2002).

MMPs are a family of structurally related zinc dependent endopeptidases collectively capable of degrading almost all components of extracellular matrix (Vihinen and Kahari, 2002). MMPs are important not only in normal, physiological and biological processes such as embryogenesis, normal tissue remodelling, wound healing and angiogenesis but also in diseases such as arthritis, cancer and tissue ulceration (Sekhon, 2010).

Structure and Classification

Currently 24 different types of MMPs have been identified among vertebrates, 23 of them have been found in humans (Overall and Lopez-otin, 2002; Vihinen and Kahari, 2002; Chaudhary et al., 2010; Sekhon, 2010) (Table 1). Several MMPs have been localised to the same chromosomal location 11q23, a region that shows amplification in several solid tumours (Curran and Murray, 1999).

On the basis of substrate specificity, sequence similarity and domain organisation vertebrate MMPs can be divided in to 6 groups-Collagenases, Gelatinases, Stromelysins, Matrilysins, Membrane Type MMPs and other MMPs (Visse and Nagase, 2003).

MMPs contain several distinct domains (Figure 1) that are conserved among various members of the family and are as follows: i) Predomain or the secretion leader sequence (absent in MT-MMPs); ii) Propeptide that contains highly conserved PRGCGVPDV sequence and proteolytic cleavage of which is required for enzymatic activation; iii) Catalytic domain which has a conserved sequence that is responsible for catalytic activity.

Keywords: MMPs - MMPI - TIMP - cancer - endopeptidases - microenvironment

Asian Pac J Cancer Prev, 15 (3), 1085-1091

MINI-REVIEW

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

Lalita Yadav1*, Naveen Puri1, Varun Rastogi1, Pranali Satpute2, Riyaz Ahmad3, Geetpriya Kaur1

Abstract

Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.

Keywords: MMPs - MMPI - TIMP - cancer - endopeptidases - microenvironment

1Department of Oral and Maxillofacial Pathology, Kalka Dental College, Meerut, 2Department of Oral and Maxillofacial Pathology, Government Dental College, Nagpur, 3GMC, Akola Maharashtra, India *For correspondence: drlalita9@gmail.com

Figure 1. Different Domains of MMPs
Table 1. Classification of MMPs, their Chromosomal Location and Substrate

<table>
<thead>
<tr>
<th>Type</th>
<th>Common Name</th>
<th>Chromosomal Location</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagenases</td>
<td>MMP-1</td>
<td>11q22,23</td>
<td>Collagen (I,III, V, VII, VIII) Casein, Perlecan, Entactin, Laminin, Pro-MMP-2, 9 & Serpins</td>
</tr>
<tr>
<td>Neutrophil Collagenases</td>
<td>MMP-2</td>
<td>11q22,23</td>
<td>Collagen (IV, V, X, XIV), Gelatin, Plasminogen, Aggrecan, Perlecan, Fibronecin</td>
</tr>
<tr>
<td>Collagenases</td>
<td>MMP-3</td>
<td>11q22,23</td>
<td>Collagen (IV, V, X, XIV), Gelatin, Plasminogen, Aggrecan, Perlecan, Fibronecin</td>
</tr>
<tr>
<td></td>
<td>MMP-4</td>
<td>Not in humans</td>
<td>Type I Collagen</td>
</tr>
<tr>
<td>Gelatinases</td>
<td>MMP-5</td>
<td>16q13</td>
<td>Gelatin, Collagen (IV, V, X, XIV), Elastin, Fibronecin</td>
</tr>
<tr>
<td></td>
<td>MMP-6</td>
<td>20q13,14</td>
<td>Gelatin, Collagen (IV, V, X, XIV), Elastin, Fibulin III, Osteoectin</td>
</tr>
<tr>
<td>Stromelysins</td>
<td>MMP-7</td>
<td>11q12,23</td>
<td>Collagen (III, V), Gelatin, Casein, Fibronecin</td>
</tr>
<tr>
<td></td>
<td>MMP-8</td>
<td>11q12,23</td>
<td>Collagen (III, V), Gelatin, Casein, Fibronecin, Elastin, Pro-MMP-9</td>
</tr>
<tr>
<td></td>
<td>MMP-9</td>
<td>11q22,22</td>
<td>Gelatin, Collagen (IV, V) Pro-MMP-9</td>
</tr>
<tr>
<td>Membrane type MMPs</td>
<td>MMP-11</td>
<td>22q11,2</td>
<td>Fibronectin, Laminin, Aggrecan, Gelatin</td>
</tr>
<tr>
<td></td>
<td>MMP-12</td>
<td>14q22,22</td>
<td>Elastin, Gelatin, Collagen (IV, V), Fibronecin, Laminin, Vitronecin, Proteoglycan</td>
</tr>
<tr>
<td></td>
<td>MMP-13</td>
<td>11q22,22</td>
<td>Collagen (IV, V), Fibronecin, Laminin, Aggrecan, Perlecan</td>
</tr>
<tr>
<td></td>
<td>MMP-14</td>
<td>14q12,22</td>
<td>Collagen (I, III, V), Gelatin, Fibronecin, Laminin, Aggrecan, Tenascin.</td>
</tr>
<tr>
<td></td>
<td>MMP-15</td>
<td>14q22,22</td>
<td>Fibronectin, Laminin, Aggrecan, Perlecan</td>
</tr>
<tr>
<td></td>
<td>MMP-16</td>
<td>8q21</td>
<td>Collagen III, Gelatin, Casein</td>
</tr>
<tr>
<td></td>
<td>MMP-17</td>
<td>12q24</td>
<td>Fibrinogen, TNF Precursor</td>
</tr>
<tr>
<td></td>
<td>MMP-18</td>
<td>20q11,22</td>
<td>Proteoglycan</td>
</tr>
<tr>
<td></td>
<td>MMP-19</td>
<td>16p13,3</td>
<td>Collagen IV, Gelatin, Fibronecin</td>
</tr>
<tr>
<td>Other MMPs</td>
<td>MMP-20</td>
<td>12q14</td>
<td>Type I Collagen</td>
</tr>
<tr>
<td></td>
<td>MMP-21</td>
<td>11q22</td>
<td>Amelogenin, Aggrecan</td>
</tr>
<tr>
<td></td>
<td>MMP-22</td>
<td>12q14</td>
<td>Gelatin</td>
</tr>
<tr>
<td></td>
<td>MMP-23</td>
<td>1q13,14</td>
<td>Type I Collagen</td>
</tr>
<tr>
<td></td>
<td>MMP-24</td>
<td>1q13,14</td>
<td>Amelogenin, Aggrecan</td>
</tr>
<tr>
<td></td>
<td>MMP-25</td>
<td>1q13,14</td>
<td>Gelatin</td>
</tr>
<tr>
<td></td>
<td>MMP-26</td>
<td>1q13,14</td>
<td>Amelogenin, Aggrecan</td>
</tr>
<tr>
<td></td>
<td>MMP-27</td>
<td>1q13,14</td>
<td>Gelatin</td>
</tr>
<tr>
<td></td>
<td>MMP-28</td>
<td>1q13,14</td>
<td>Gelatin</td>
</tr>
</tbody>
</table>

Figure 2. Factors Affecting MMP Gene Expression

Proenzyme Activation

MMPs are synthesized as inactive zymogens and require activation. MMPs remain inactive by an interaction between cysteine-sulphhydryl group of propeptide domain and zinc ion bound to the catalytic domain (Stennicke and Werb, 2001). The cysteine–sulphhydryl group within the propeptide domain of the latent MMPs forms a bridge with the catalytic zinc and blocks the enzymatic activity. Activation can occur by physical or chemical means (Stamenkovic, 2003) by disturbing the cysteine–zinc interaction of the cysteine switch (Chen et al., 1993). MMP activation requires participation of other proteases to remove propeptide domain (Lijnen, 2001). Most MMPs are activated in pericellular space by tissue and plasma proteinases, bacterial proteinases or other MMPs but MMP11,23,28 and MT-MMPs are activated intracellularly prior to secretion by Golgi associated furin proteases (Velasco et al., 1999). Activation of ProMMPs by plasmin is an important pathway in vivo and other mechanism of activation is via cell surface MT-MMPs (Basbaum and Werb, 1996).

Inhibition of Enzyme Activity

Proteolytic activity of MMPs can be inhibited specifically by TIMP and non-specifically by α1 proteinase inhibitor and α2 macroglobulin (Westerman and Kahari, 1999; Brew et al., 2000).

TIMP are specific inhibitors that bind MMPs in a 1:1 stoichiometry (Brew et al., 2000). Four TIMPs have been identified in vertebrates in which TIMP 1 and 3 are
glycoproteins whereas TIMP2 and 4 are unglycosylated (Leco et al., 1994). TIMP 1, 2 and 4 are secreted and TIMP 3 is anchored in the ECM. TIMP have a conserved structure divide in to an N- and C- terminal domain containing three conserved disulfide bonds (Williamson et al., 1990). TIMP-1 is a 28.5 KD glycoprotein and inhibits all activated collagenases (Denhardt et al., 1993). TIMP2 is a 21 KD nonglycosylated protein which is an inhibitor of MMP 2 and can be secreted as complex with pro-MMP2 or in an unbound form (Stetler-stevenson et al., 1989). TIMP3 and 4 cloned from cDNA library (Uria et al., 1994; Greene et al., 1996).

MMPs in Cancer

In the context of tumour biology, the MMPs were initially believed to facilitate metastasis by breakdown of physical barriers provided by extracellular matrix and basement membrane, but now appear to have multiple biological functions in different steps of carcinogenesis including growth regulatory effects on both primary and secondary tumours (Chambers and Matrisian, 1997).

There are 6 fundamental alterations that underlie cancer progression. These are the self support in growth signals, insensitivity to growth inhibitory signals, evasion of apoptosis, infinite replication, sustained angiogenesis signals, insensitivity to growth inhibitory signals, evasion of apoptosis, infinite replication, sustained angiogenesis

Regulation of Growth

MMPs can regulate the growth of tumour cells by the following mechanisms: i) By release of cell membrane bound precursors of some growth factors (Peschon et al., 1998); ii) By modulating the bioavailability of growth factors that are sequestered by ECM proteins. e.g-IGF (Manes et al., 1997); iii) By indirectly regulating proliferative signals through integrins (Agrez et al., 1994). Because of the shedding of the E cadherin, β catenin translocates to the nucleus and leads to proliferation (Maretzky et al., 2005).

MMPs can also inhibit growth by the following mechanism: i) By activation of TGF-β; ii) By generation of proapoptotic molecules. e.g. Fas ligand or TNF α (Egeblad and Werb, 2002).

Regulation of Apoptosis

MMPs perform both the apoptotic and antiapoptotic action. Antiapoptotic actions are mediated by the following mechanisms: i) By cleaving the Fas ligand (Mitsiades et al., 2001); ii) Byproteolytic shedding of tumour associated MHC complex class I related protein (Waldhauer et al., 2008); iii) By activating serine/threonine kinase, AKT/ Protein kinase B (Gialleli et al., 2009).

Apoptotic actions are mediated by changing the ECM composition. MMPs cleave the adhesion molecules and leads to apoptosis (Gialleli et al., 2011).

Regulation of Angiogenesis

Angiogenesis is a complex process by which new blood vessels form from existing vessels (Rundhaung, 2003) and this process is essential for tumour growth (Hanahan and Folkman, 1996). MMPs have dual role in the process of angiogenesis – they promote as well as inhibit angiogenesis. MMPs that play important role in angiogenesis are MMP 2,9&14 whereas MMP1&7 plays a minor role (Rundhaung, 2003).

MMPs promote the process of angiogenesis by the following mechanism: i) By degradation of basement membrane and other ECM components (Stetler-Stevenson, 1999); ii) By releasing ECM bound pro-angiogenic factors (Stetler-Stevenson, 1999). MMP 9 plays key role in angiogenic switch by increasing the bioavailability of important angiogenic factors such as VEGF b – FGFR (Cornelius et al., 1998); iii) By triggering the integrin intracellular signalling (Stetler-Stevenson,1999).

MMPs inhibit the process of angiogenesis by the following mechanism: i) By cleavage of plasminogen which releases angiotatin (Cornelius et al., 1998); ii) By cleaving collagen XVIII which produces endostatin (Ferreras, 2000); iii) By shedding of cell surface bound urokinase type plasminogen activator receptors which are required for the endothelial cell invasion in to fibrin (Koolwijk et al., 2001).

Regulation of Invasion and Metastasis

Tumour invasion is a multistep process in which cell motility is coupled with proteolysis and involves interaction of cells with ECM (Zhang et al., 2012). During invasion malignant cells detach from primary tumour and invade through basement membrane and stromal ECM (Vihinen and Kahari, 2002). Proteolytic degradation of basement membrane and ECM is an essential step for invasion and requires proteases (Sekhon, 2010). The steps involved in the process of invasion are shown in Figure 3.

Cadherin are cell adhesion molecules that mediate cell-cell adhesion in normal mucosal cells and maintain epithelial integrity (Choi and Myers, 2008) and its deregulation is associated with cancer progression (Birchmeier et al.,1996). Decreased expression of E-cadherin causes loss of cell adhesion and contributes to cell dissociation, increased motility and invasion (Takeichi, 1991).

E-cadherin is cleaved by MMP3 and 7 (Noe et al., 2001) and this cleavage also triggers the epithelial to mesenchymal transition(EMT) (Birchmeier et al.,1996).

Figure 3. Flow Chart

Detachment of cells by loss of intercellular junction
↓
Epithelial to mesenchymal transition(EMT)
↓
Migration
↓
Invasion

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.3.1085

Epithelial mesenchymal transition is a process in which epithelial cells change from epithelial phenotype to mesenchymal phenotype leading to loss of epithelial integrity, increased migration, invasion and ultimately metastasis (Thiery, 2002). MMP28 causes the proteolytic activation of TGF–β which is a powerful inducer of EMT (Illman et al., 2006).

MMPs are involved in the cell migration by removing sites of adhesion, exposing new building sites, cleaving cell-cell or cell-matrix receptors and releasing chemo attractants from ECM (McCawley and Matrisian, 2001). MMP2&14 degrades laminin5 and reveals a cryptic site that triggers motility (Egeblad and Werb, 2002).

The ability to invade and establish colonies at remote site is a characteristic of malignant neoplasm (Curran and Murray, 1999). For neoplastic lesion to invade and metastasize, neoplastic cells must be capable of degrading the extracellular matrix and accessing blood vessels and lymphatics (Thomas et al., 1999). Proteolytic enzymes play a fundamental role in cancer progression providing an access for tumour cells to vessels and lymphatic system and thus support the growth and metastasis (Chambers et al., 2002). It is known that basement membrane which separates the epithelial and mesenchymal compartments represent first barrier to invasion (Thomas et al., 1999). MMP2 and 9 both can degrade type IV collagen of basement membrane and thus helps in invasion (Ikebe et al., 1999).

To promote invasion there is localisation of MMPs in specialised surface protrusion known as invadopodia. MMPs which localise to invadopodia are MMP 2, 9, and 14 that help in the degradation of basement membrane (Thomas et al., 1999). Once cancer cells cleave basement membrane then degradation of interstitial collagen is essential for further spread. MMP1 plays an important role in metastasis by degrading the interstitial collagen (Murray et al., 1996). During metastasis cancer cells cross several ECM barriers, first they cross basement membrane then invade surrounding stroma, enter blood vessels or lymphatics and then after extravasation establish new colonies (Egeblad and Werb, 2002). Several studies indicate that MMP9 is required for intravasation (Kim et al., 1998) and similar to intravasation, MMPs are necessary for the circulatory tumour cells to be able to exit the blood vessels (extravasation), although this step is not rate limiting for the establishment of metastasis. At the distant site, MMPs are required for local migration, establishment of a microenvironment conducive for metastatic growth and angiogenesis for sustained growth (Rundhaung, 2003).

Once in the circulation, tumour cells are particularly vulnerable to destruction by innate and adaptive immunity (Kumar et al., 2004). Immune system is capable of recognising and attacking cancer cells and to survive cancer cells develop many ways to escape immune surveillance (Gialeli et al., 2011).

Tumour specific cytotoxic T cells, natural killer cells, neutrophils and macrophages are the inflammatory cells that are capable of recognising and attacking cancer cells (Egeblad and Werb, 2002). When T cells are activated by antigen they secrete locally acting protein called cytokines. Under the influence of cytokine called interleukin 2 (IL-2), T- cells proliferate (Kumar et al., 2004). MMPs can cleave the IL-2Rα and thereby suppressing their proliferation (Sheu et al., 2001). TGF β is a cytokine that down regulate the immune responses by affecting the lymphocyte growth, activation and differentiation (Kumar et al., 2004). MMPs activate TGF β and thus indirectly regulate the T lymphocyte function (Gorelik and Flavell., 2001). Chemokines are family of small protein that act primarily as chemo attractants for specific types of leucocytes (Kumar et al., 2004). Several chemokines are targets of MMPs so MMPs can indirectly affect the leukocytes action (Egeblad and Werb, 2002).

MMP Inhibition Strategies

The relation of MMPs overproduction and tumour progression has prompted the development of various strategies aimed to block the proteolytic activity of these enzymes (Folgueras et al., 2004). By understanding the steps involved in regulation of this proteolytic system there can be different strategies by which MMPs can be inhibited. There are three major levels of regulation of these enzymes: i) Transcription; ii) Activation; iii) Inhibition.

Targeting the transcription again can be at three levels as shown in Figure 5, first by interfering with the extracellular factors for e.g. interferon inhibit the transcription of MMPs (Kuga et al., 2003), second by blocking the signal transduction pathway such as MAPK pathway and ERK pathway (Folgueras et al., 2004) and third is by targeting the nuclear factors of transcription for e.g. AP-1 and NF-kB (Karim and Chang, 2001) that influence the expression of MMP.

MMPs are secreted as zymogens and its activation is an important regulatory step of MMP activity (Nagase et al.,

Regulation of Immune Surveillance

Figure 4. Different Mechanisms of Inhibition of MMPs

Figure 5. Different Steps in Regulation of MMPs
Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.3.1085

...so anti-MMP monoclonal antibodies can be an effective strategy for MMP inhibition (Folgueras et al., 2004).

After the activation the activity of MMPs can be regulated by its inhibition which can be endogenous or exogenous. Endogenous inhibition can be nonspecific for e.g. by α-2 macroglobulin, or specific by TIMP (Vihinen and Kahari, 2002). Human α-2 macroglobulin is a plasma glycoprotein of 725 KDa consisting of 4 identical subunits of 180 KDa (Strickland et al., 1990). TIMP consist of 21-29 KDa protein and besides their inhibitory activity they posses other biological capacities as well (Ganea et al., 2007).

Synthetic Inhibitors

Taking in to consideration the important roles that MMPs play in multistep process of carcinogenesis, various synthetic agents are developed in an attempt to control the activity of MMPs. Several generation of MMPI are tested in phase III clinical trials in humans, including synthetic peptides, nonpeptidic molecules, chemically modified tetracyclines and bisphosphonates (Vihinen and Kahari, 2002).

Side effects of drugs include musculoskeletal pain due to inhibition of TNF-α converting enzyme (TACE) and shedding of TNF-α receptor II (TNF-RII) (Nelson et al., 2000).

Peptidomimetic MMPI

These are pseudopeptide derivatives that mimic the cleavage site of MMP substrates (Wojtowicz-praga et al.,1996). They act as competitive inhibitors which inhibit the MMP activity by interacting with the Zn$^{2+}$ in catalytic sites and then chelating it (Gialeli et al., 2011). This category includes Batimastat (BB-94), Marimastat (BB-2516) and Salimastat (BB-3644) (Chaudhary et al., 2010).

Batimastat is the first MMPI which was tested in humans, (Wojtowicz-praga et al., 1996) but it has broad spectrum of inhibition and low water solubility because of which its intraperitoneal administration is required. To overcome these drawbacks Marimastat was introduced which can be orally administered but associated with the side effects of musculoskeletal pain (Steward and Thomas, 2000).

Nonpeptidomimetic MMPI

These are more specific than peptidomimetic because these are based on the three dimensional X ray crystallographic confirmation of Zn binding site (Chaudhary et al., 2010). Oral bioavailability is better than peptidomimetic inhibitors (Vihinen and Kahari, 2002) and this category include Prinomastat (AG-3340), Tanomastat (BAY12-9566), BMS-275291(D2163) and MMI 270 B (CGS 27023 A) (Chaudhary et al., 2010).

Prinomastat is a low molecular wt MMP inhibitor, structure of which mimic collagen. It inhibits the activity of MMP1,2,3,7,9 and 14 (Hidalgo and Eckhardt, 2001).

BAY inhibits the activity of MMP-2,3,9 and 13 (Vihinen and Kahari, 2002). BMS lacks the musculoskeletal side effects (Lockhart et al., 2003) orally bio available and inhibits the angiogenesis by inhibiting the MMP-2 and MMP-9 activity (Vihinen and Kahari, 2002). MMI is in phase I clinical trial and inhibits the activity of MMP 1,2&3 (Chaudhary et al., 2010).

Tetracycline Derivatives

This category includes Metastat (COL-3,CMT-3), Minocycline and Doxycycline (Gialeli et al., 2011). Metastat has limited systemic toxicity and lacks the antimicrobial activity (Lokeshwar et al., 2001) because of the removal of the dimethyl amino group (Hidalgo and Eckhardt, 2001). Mode of inhibition of MMP activity is by binding to metal ions such as Zn$^{2+}$ (Sapadin and Fleischmajer, 2006).

Bisphophonates

Bisphophonates were originally developed to inhibit bone resorption, but it also inhibits MMP-2 secretion by indirectly acting through TIMP (Vihinen and Kahari, 2002).

Natural MMP Inhibitors

This category include Neovastat (AE 941) extracted from shark cartilage (Chaudhary et al., 2010) and has antiangiogenic and antimetastatic effects (Falardeau et al., 2001) by inhibiting MMP-2,9,12,13 and VEGF (Chaudhary et al., 2010). Another agent is Genistein a soy isoflavonoid similar to estradiol which interferes with the expression of several MMPs and TIMPs (Kousidou et al., 2006).

Strategies to Improve the Efficacy of MMPI

i) Should be used as preventive drugs, for e.g. in patients with genetic predisposition of cancer or postoperatively in a patient in which there is no metastasis (Eccles et al., 1996); ii) It would be better to target specific MMPs because at a high tolerated dose drugs lose their selectivity for MMP (Egeblad and Werb, 2002); iii) Precise identification of set of proteases, that should be targeted in a specific situation, with the importance of cancer degradome (Lopez-otin and Overall, 2002). i.e. the complete set of proteases produced by a specific tumour at a specific stage of development; iv) Drugs targeting the specific exosites should be used. Exosites are the binding sites related to substrate selection of MMPs, which are present outside the active domain (Overall, 2002).

Future Considerations

Several studies have demonstrated that MMPs not only participate in tumour invasion and metastasis or the late stages of the carcinogenesis but they are also involved in early stages in both favourable and unfavourable manner. MMPs are a diverse group of enzymes with overlapping...
References

of gastric carcinoma cells through cross talk of Smad pathway in a three-dimensional culture model. Oncogene, 22, 7838-47.

