Legumain Protein as a Potential Predictive Biomarker for Asian Patients with Breast Carcinoma

Mei Wu, Guang-Rui Shao*, Fei-Xue Zhang, Wen-Xiu Wu, Ping Xu, Zheng-Min Ruan

Abstract

Background: Treatment for breast cancer is mainly performed by surgical resection of primary tumors and chemotherapy. However, after tumor invasion and metastases, breast cancer is hard to control. Clarification of the pathogenic mechanisms would be helpful to the prognosis or therapy for the breast cancer. The aim of this study is to investigate the clinical and prognostic implications of legumain protein. Materials and Methods: In this study, we examined mastectomy specimens from 114 breast cancer and matching, 26 adjacent non-cancerous tissues using immunohistochemistry. Results: The results indicated that positive expression of legumain protein in breast cancer was 51.8% (59/114) and the positive expression of legumain protein in adjacent non-cancerous tissue was 11.5% (3/26). It appeared to be related with lymph node metastasis of breast cancer ($p=0.02$) and correlation analysis indicated that legumain expression was correlated positively with the estrogen receptor (ER) and mutant-type p53 expression (both $p<0.05$). Positive legumain expression was significantly associated with shorter overall survival time in breast cancer patients (log-rank $p=0.01$). Multivariate survival analysis suggested that the positive legumain expression was an independent predictor of poorer overall survival in patients with breast cancer (HR=0.24; 95%CI 0.11-0.65, $p=0.03$). Conclusions: Legumain might be a new potential biomarker for breast cancer, which may reflect the prognosis and overall survival.

Keywords: Breast cancer - legumain - prognostic biomarker - positive expression
Materials and Methods

Patients and tissue specimens

In this study, 114 patients who had histologically confirmed invasive breast cancer between June 2001 and July 2003 were included. The inclusion criteria were performed according to the following details, including curative operations were carried out, resected specimens were pathologically examined, a complete medical record was available.

The present study was approved by the Ethics Committee of The second Hospital of Shandong University. All of the patients involved in this study have been gave their consent and approved this study.

Immunohistochemistry experimental procedures

The thin slices of tumor tissues were treated in 4% formaldehyde solution over one night, and then incubated with paraffin embedding. The paraffin tissues were sliced into 4 µm-thick sections on the glass slides coated with 3-aminopropyl triethoxysilane for immunohistochemistry (staining with hematoxylin and eosin to determine histological type and grade of tumors).

The above sections were treated for immunohistochemistry according the previous report (Lewen et al., 2008; Wang et al., 2012). Then the sections were incubated with polyclonal rabbit anti-human legumain antibody (1:500) (Abcam, UK), Monoclonal mouse anti-human ER antibody (1:500) (Santa Cruz, CA, USA), polyclonal rat anti-human mutant-type tumor protein 53 (p53) antibody (1:100) (Santa Cruz, CA, USA) overnight at 4℃. Following washings with PBS, sections were incubated for 20min at 37℃. The secondary antibodies, pol peroxidase-anti-mouse/rabbit immunoglobulin (1:1000) (Zhongshan, Beijing, China) were then applied to the sections for 30min at 37℃. The immunoreactive products were visualized by DAB kits, following extensive washings. Sections were then counterstained in Gill’s Hematoxylin and dehydrated in ascending grades of methanol before clearing in xylene, and mounting under a coverslip.

Nuclear staining for ER and mutant-type p53 was graded 1 if<10% of the cells were stained; 2+ if 10%-50% of the cells were stained; 3+ if>50% of the cells were stained. The grades of 2+ and 3+ were considered as positive one.

Legumain expression judgment criteria

The legumain expression was analyzed by calculating with semi-quantitatively method. The judging criteria was listed as followings: 0 represents<25% legumain expression in neoplastic cells; 1 represents≥25 and<50% legumain expression in neoplastic cells; 2 represents≥50% legumain expression in neoplastic cells. Among the above judgment, the samples that obtained the score of 1 or 2 were considered as the positive samples.

Statistical analysis

The data in this study were analyzed with SPSS statistics software 19.0 (Microfost, IL., USA). Relationships between tumor markers and other parameters were studied using independent t-tests. Spearman correlation analysis was used to study the correlation between ER or wild-type p53 and legumain protein expression. Disease-specific survival was analyzed using the Kaplan-Meier method. The log-rank test was used to analyze survival differences. Multivariate analysis was carried out using the Cox proportional hazards model selected in forward stepwise. The P-value of less than 0.05 was considered as the statistical significance.

Results

Legumain expression in breast cancer tissues and adjacent non-cancerous tissues

The immunohistochemical examination results indicated that the positive expression of legumain protein in breast cancer was 51.75% (59/114) and the positive expression of legumain protein in adjacent non-cancerous tissue was 11.54% (3/26) (Figure 1).

Patient characteristic

The mean age of the 114 patients studied was 50.2 years (range 31-78years). Eighteen cases had ductal carcinoma in situ (DCIS), and 96 cases had invasive ductal carcinomas (IDC). Within the total sample, 61 patients had no lymph node metastasis and 24 with pN1, 19 with pN2, and 10 with pN3 metastasis (Table 1). From the Table 1 we could find that legumain protein expression was related with lymph node metastasis of breast cancer (p=0.02). However, the legumain expression was not related with age, tumor type and sex (p=0.36, 0.58, and 0.43, respectively).

ER and p53 expressing enhanced in legumain positive samples

In the legumain positive samples, we analyzed the
Table 1. Correlations of Legumain Expression with Clinicopathological Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Positive Legumain Expression (n=59)</th>
<th>Negative Legumain Expression (n=55)</th>
<th>p values*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>50.2±2.1</td>
<td>50.97±2.3</td>
<td>0.36</td>
</tr>
<tr>
<td>Sex</td>
<td>1.3:1</td>
<td>1.2:1</td>
<td>0.43</td>
</tr>
<tr>
<td>Metastasis</td>
<td>No</td>
<td>Yes</td>
<td>0.02</td>
</tr>
<tr>
<td>Tumor types</td>
<td>DCIS</td>
<td>IDC</td>
<td>0.58</td>
</tr>
<tr>
<td>Gender</td>
<td>Male:Female</td>
<td>1.3:1</td>
<td>0.65</td>
</tr>
<tr>
<td>Age</td>
<td>50.2±2.1</td>
<td>50.97±2.3</td>
<td>0.36</td>
</tr>
<tr>
<td>Sex</td>
<td>1.3:1</td>
<td>1.2:1</td>
<td>0.43</td>
</tr>
<tr>
<td>Metastasis</td>
<td>No</td>
<td>Yes</td>
<td>0.02</td>
</tr>
<tr>
<td>Tumor types</td>
<td>DCIS</td>
<td>IDC</td>
<td>0.58</td>
</tr>
<tr>
<td>Gender</td>
<td>Male:Female</td>
<td>1.3:1</td>
<td>0.65</td>
</tr>
</tbody>
</table>

*p values were calculated through Cox proportional hazard model

Table 2. Multivariate Survival Analysis in the Retrospective Cohort Study of 114 Breast Cancer

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Hazard ratio</th>
<th>95%CI</th>
<th>p values*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.27</td>
<td>0.57-2.83</td>
<td>0.31</td>
</tr>
<tr>
<td>Gender</td>
<td>0.88</td>
<td>0.59-1.46</td>
<td>0.68</td>
</tr>
<tr>
<td>Tumor types (DCIS)</td>
<td>0.76</td>
<td>0.44-1.35</td>
<td>0.65</td>
</tr>
<tr>
<td>Metastasis (Yes)</td>
<td>5.68</td>
<td>2.43-9.27</td>
<td>0.62</td>
</tr>
<tr>
<td>Legumain (Positive)</td>
<td>0.24</td>
<td>0.11-0.65</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*p values were calculated through Cox proportional hazard model

Figure 2. ER and Mutant-type p53 Expression in Legumain Positive and Negative Samples. A) ER positive rate in legumain positive and negative samples. B) Mutant-type p53 positive rate in legumain positive and negative samples. **P<0.01 represents the ER or mutant-type p53 positive rate in legumain positive samples compared to legumain negative samples

ER and p53 expression. The result indicated that the ER level was significantly increased in legumain positive samples compared to legumain negative samples (Figure 2A, p<0.05). Also, the mutant-type p53 was significantly increased in legumain positive samples compared to legumain negative samples (Figure 2B, p<0.05). Thus, the ER and mutant-type p53 expression was found to be related with legumain expression.

Figure 3. Correlation Analysis Between the Legumain Expression and ER or Mutant-type p53 Expression. A) Correlation analysis between legumain expression and ER expression. B) Correlation analysis between legumain expression and mutant-type p53 expression

Figure 4. The 5-year Survival Time of Breast Cancer Patients. A) The 5-years survival time of breast cancer patient with legumain positive compared to legumain negative expression. B) The 5-years survival time of breast cancer patients with lymph metastasis or without lymph metastasis

Correlation between ER or mutant-type p53 and legumain expression

The correlation analysis results indicated that the legumain expression was correlated positively with the ER expression (Figure 3A, r=0.8763, p<0.05). Also, the legumain expression was correlated positively with the mutant-type p53 expression (Figure 3B, r=0.7963, p<0.05).

Legumain levels and overall survival

The 5-year survival time in patients with high levels of
Legumain or positive legumain protein was 55%, while the 5-years survival time in patients with legumain negative levels was 82% months (Figure 4A). Positive legumain expression was significantly associated with shorter overall survival time in breast cancer patients (Figure 4A, Log-Rank \(p<0.01 \)). However, the lymph node-positive group was not associated with the survival time in breast cancer patients (Figure 4B, Log-Rank \(p>0.05 \)).

Multivariate survival analysis suggested that the positive legumain expression was an independent predictor of poorer overall survival in patients with breast cancer (HR=0.24; 95%CI 0.11-1.06, \(p=0.03 \); Table 2). Similar to the Log-Rank analysis, the lymph node-positive was not an independent predictor of poorer overall survival in breast cancer patients (HR=5.68; 95%CI 2.43-9.27, \(p=0.62 \); Table 2).

Discussion

Breast cancer is the most common cancer among the women all over the world. Breast cancer is usually treated with surgery, which may be followed by chemotherapy or radiation therapy, or both. Hormone receptor-positive cancers are often treated with hormone-blocking therapy over courses of several years (Asif et al., 2014). Monoclonal antibodies, or other immune-modulating treatments, may be administered in certain cases of metastatic and other advanced stages of breast cancer (Casas et al., 2013). However, all of the above therapeutic methods are limited to a subset of patients whose tumors express hormone receptor, ER, or targeting the immune modulating treatments. Therefore, the clinical significant biomarker in breast cancer is very important for judging the optimal therapeutic time or with optimal therapeutic methods (Parajuly et al., 2012).

Legumain is recognized as lysosomal protease, which has an extremely restricted specificity desiring an asparagine of substrates (Santamaria et al., 2012). The lysosomal protease always highly expressed in neoplastic cells, which might contribute to neoplastic progression via control signaling molecules and their receptors (Sevenich et al., 2010). The above characteristic of protease may be helpful to diminish apoptosis and enhance neoplasms proliferation. Legumain has been detected in several types of human cancers, including breast carcinomas, colon carcinomas, and central nerve system neoplasms (Gawenda et al., 2007). Legumain has also been utilized as a biomarker of initiation and progression in a few tumors (Reisfeld, 2013), however, the functions or role as a predictor or prognostic biomarker for breast cancer has not been explored.

It’s the first time that we discussed the correlation between legumain expression and breast cancer in Asian breast cancer patients. A previous study reported that amplification of legumain was detected in 24% breast cancer on western patients (Gawenda et al., 2007). In our study, the positive legumain protein rate in breast cancer patients was 51.75%, which may be caused by the definition of the positive legumain expression between our and the former study.

In this study, in order to explore the mechanism of the changes of legumain in breast cancer, we examined the expression of ER and p53 protein expression by using the Immunohistochemistry assay. The results indicated that the expression of ER and mutant-type p53 was significantly enhanced in legumain positive samples. The correlation analysis results indicated that the legumain expression was correlated positively with the ER expression (r=0.8763, \(p<0.05 \)). Also, the legumain expression was correlated positively with the mutant-type p53 expression (r=0.7963, \(p<0.05 \)). These results indicated that the relationship between legumain positive expression and breast cancer may be caused by the ER or mutant-type p53 expression in tumor tissues. However, the specific pathway that the regulating the legumain protein also needs to be studied in the further researches.

Our study shown that the positive legumain expression was significantly associated with shorter overall survival time in breast cancer patients (55% overall survival, Log-Rank \(p<0.01 \)), compared to 82% in legumain negative expression patients. This result could guidance the clinical doctors make a prognostic diagnose or pre-therapy for the breast patients. Multivariate survival analysis suggested that the positive legumain expression was an independent predictor of poorer overall survival in patients with breast cancer.

In the recent years, researchers have discovered some efficient predictive marker for the breast cancers. He et al. (2014) found that FOXA1 was a novel promising prognostic biomarker in the breast cancer. Velaiutham et al. (2008) found that the serum CA15-3 correlates with the survival of breast cancer. Through all of the above markers with a relative higher sensitivity and specificity, the clinical confirmation also have not been obtained. Therefore, for the biomarker or predictive marker for breast cancer, the large sample of restrospective study analysis is needed in the future breast cancer study.

However, there are also a few conflicts of our study compared to the previous study. We found that positive expression of legumain protein was related to lymph node metastasis, however, the lymph node metastasis was not related with the overall survival of breast patients. There may be some reasons causing these differences, such as different sub-groups and ethnic differences. Therefore, the specific role of legumain in breast cancer also needed to be clarified.

In conclusion, legumain might be a new potential biomarker for breast cancer, which may reflect the prognosis of the overall survival of the breast cancer patients.

References

