RESEARCH ARTICLE

Value of Contrast-Enhanced Ultrasonography in the Differential Diagnosis of Enlarged Lymph Nodes: a Meta-Analysis of Diagnostic Accuracy Studies

Ya Jin¹, Yu-Shuang He¹, Ming-Ming Zhang², Shyam Sundar Parajuly³, Shuang Chen¹, Hai-Na Zhao¹, Yu-Lan Peng¹*

Abstract

Objective: To evaluate the diagnostic accuracy of contrast-enhanced ultrasonography (CEUS) in differentiating between benign and malignant enlarged lymph nodes using meta-analysis.

Materials and Methods: PubMed, Embase, SCI and Cochrane databases were searched for studies (up to September 1, 2014) reporting the diagnostic performance of CEUS in discriminating between benign and malignant lymph nodes. Inclusion criteria were: prospective study; histopathology as the reference standard; and sufficient data to construct 2×2 contingency tables. Methodological quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Patient clinical characteristics, sensitivity and specificity were extracted. The summary receiver operating characteristic curve was used to examine the accuracy of CEUS. A meta-analysis was performed to evaluate the clinical utility in identification of benign and malignant lymph nodes. Sensitivity analysis was performed after omitting outliers identified in a bivariate boxplot and publication bias was assessed with Egger testing.

Results: The pooled sensitivity, specificity and AUROC were 0.92 (95%CI, 0.85-0.96), 0.91 (95%CI, 0.82-0.95) and 0.97 (95%CI, 0.95-0.98), respectively. After omitting 3 outlier studies, heterogeneity decreased. Sensitivity analysis demonstrated no disproportionate influences of individual studies. Publication bias was not significant.

Conclusions: CEUS is a promising diagnostic modality in differentiating between benign and malignant lymph nodes and can potentially reduce unnecessary fine-needle aspiration biopsies of benign nodes.

Keywords: Contrast-enhanced ultrasonography - differential diagnosis - lymph nodes - meta-analysis

Introduction

Lymph node status is one of the major predictors of prognosis in patients with cancer (Innace et al., 2010; Deng et al., 2014; Fayaz et al., 2014; Gasparri et al., 2014; Kawada et al., 2014). Furthermore, correctly diagnosing the enlarged lymph nodes in patients with or without primary tumors is essential to allow selection of an appropriate treatment strategy (Esen., 2010). A large number of modalities may be used to characterize lymph nodes, such as computed tomography, magnetic resonance imaging and gray scale ultrasound; these depend mainly on morphological characteristics for the identification of enlarged lymph nodes (Schröder et al., 2002; Riegger et al., 2012). Gray scale ultrasound combined with color Doppler ultrasonography can be applied to estimate the shape (L/T ratio), margins, internal structure and vascularization of lymph nodes (Ahuja et al., 2002; Stramare et al., 2004). Alternative diagnostic modalities include ultrasonography-guided fine needle aspiration biopsy (US-FNAB). However, each of these various methods has its own limitations in the clinical diagnosis of lymph nodes, meriting the development of improved techniques. How to improve the diagnostic accuracy of enlarged lymph nodes and reduce unnecessary puncture of benign lymph nodes remains a challenge.

Recent advances in ultrasound technology, including commercially available ultrasonographic contrast agents (Levovist and SonoVue), contrast-specific ultrasonographic modes, and quantitative software (Qontraxt (Rubaltelli et al., 2007) and TIC analysis (Steppan et al., 2010)), have improved the accuracy of ultrasonography in the diagnosis of lymphadenopathy. This has particularly been the case for contrast-enhanced ultrasonography-guided fine needle aspiration cytology, which can improve the puncture success rate (Sun et al., 2012; Karina et al., 2013).

Nowadays, more and more studies are focusing on the use of contrast-enhanced ultrasonography (CEUS) in the differential diagnosis of benign and malignant lymph...
nodes (including cervical, axillary, inguinal, mediastinal and abdominal lymph nodes) and our meta-analysis provides summaries of the results of relevant studies, estimates of the average diagnostic accuracy of CEUS, the uncertainty of this average, and the variability of the study findings around the estimates.

Materials and Methods

The methodology used in this meta-analysis based on the Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy, version 1.0 (Deeks et al., 2010).

Data sources and search strategies

We carried out a systematic literature search of Pubmed, Embase, Cochrane Library Central and SCI databases, with the last search undertaken on September 1, 2014. The search terms used were: “Contrast media OR Contrast-enhanced OR Microbubble”, “Ultrasonography OR Ultrasound” and “Lymph nodes”. These keywords were identified in the medical subject heading, title or abstract. To identify additional relevant studies, the literature search was also performed manually.

Selection of studies

All titles and abstracts of the retrieved studies were screened independently by two reviewers. Duplicates, reviews, letters, comments, case reports, and articles reporting other diseases, other diagnostic techniques or reviews, letters, comments, case reports, and articles published more than once were omitted. The corresponding author was contacted by email with a request for the full text when this could not be obtained online; if the full text or original data was not provided, the study was excluded from our analysis. The remaining studies were considered potentially eligible for inclusion, and their full text was retrieved.

Inclusion and exclusion criteria

All potentially eligible articles were assessed independently by two reviewers, using predefined inclusion and exclusion criteria. Discrepancies were resolved by consensus. If no consensus could be reached, a third reviewer was consulted.

The inclusion criteria were as follows: (a) original full paper publication; (b) human study; (c) evaluation of CEUS for the differentiation of benign and malignant lymph nodes; (d) inclusion of at least 20 lesions; (e) published in English; (f) included an accepted reference method, using specimens obtained from surgery or lymph node biopsy; (g) reported data that allowed construction of 2×2 contingency tables and calculation of the true-positive (TP), false-positive (FP), true-negative (TN) and false-negative (FN) rates for the use of CEUS for the diagnosis of benign and malignant lymph nodes.

The exclusion criteria were as follows: (a) no evaluation of the value of CEUS for the differential diagnosis of benign and malignant lymph nodes; (b) no relevant data on the sensitivity and specificity, or the number of TNs, TPs, FNs and FPs; (c) inclusion of less than 20 lesions; (d) review article (including meta-analyses), corresponding letter or editorial not reporting original data; (e) published in abstract form only; (f) published more than once.

Data extraction

For each study, the following information was extracted: (a) author, publication year, the type and dose of contrast agent, the type of scanners, imaging modality; (b) participant characteristics (age, sex, the number of patients and lesions and the number of lesions histologically proven to be malignant); (c) statistics for the meta-analysis: TP, FP, TN, FN, sensitivity and specificity.

Quality assessment

Methodological quality was assessed according to the revised tool for Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) (Smidt et al., 2008; Deeks et al., 2010; Whiting et al., 2011). The full QUADAS-2 tool consists of four domains: patient selection, index test, reference standard, and flow and timing. Each domain was assessed in terms of the risk of bias according to the signaling questions, and the first three domains were judged in terms of concerns regarding applicability. Each question was scored “yes” if reported, “no” if not reported, or “unclear” if there was inadequate information in the article to make a judgment.

Data synthesis and statistical analysis

To assess data inhomogeneity, a random-effects model was applied to control for differences in the reported data (e.g., patient characteristics and methods used). This represents a classic, non-iterative method to account for inter-study heterogeneity. \(\chi^2 \) and F statistics were computed. F values were interpreted according to the proposal of Higgins and Thompson (Higgins et al., 2002), with heterogeneity determined as either low (F≤25%), medium (25% <F≤50%) or high (50% <F≤75%). Factors influencing diagnostic accuracy were assessed by means of formal meta-regression analysis (Lijmer et al., 2002). The parameters listed in the Data Extraction and Quality Assessment sections (see above) were used as covariates. \(p<0.05 \) was considered to indicate a significant difference.

Summary sensitivities, specificities and the summary receiver operating characteristic curve with corresponding 95% confidence intervals (CIs) were used to examine the accuracy of CEUS in the differential diagnosis of enlarged lymph nodes. Data synthesis was performed within the bivariate mixed-effects binary regression modeling framework (Reitsma et al., 2005). It is possible that the accuracy of the following clinical subgroups could differ, and therefore act as potential source of heterogeneity: (1) with a primary tumor versus without; (2) imaging modality: low MI with SonoVue. We evaluated subgroups according to quality assessment and data extraction.

In addition, a bivariate box plot was used to assess the distributional properties of sensitivity versus specificity and for identifying possible outliers. After omitting these outliers and according to the results of the subgroups analysis, sensitivity analysis was performed and the change in heterogeneity was observed. The Deeks’ funnel plot asymmetry test was also used to investigate whether
all the studies were from a single population, and to search for publication bias (Deeks et al., 2005).

The QUADAS figure was drawn using Revman 5.0 (Cochrane Collaboration). All statistical analyses were performed using the MIDAS and METANDI modules in Stata 12.0 (Stata Corp, Texas, USA).

Results

Search results and data extraction

A total of 442 articles were identified, and duplicate studies (n=57) were excluded using EndNote software (Thomson Reuters, New York, USA). After scanning the titles and abstracts, studies that were considered irrelevant to our analysis were excluded (n=326), leaving 59 potentially eligible articles. Of these 59 studies, 16 fulfilled the inclusion criteria (Moritz et al., 2000; Schmid-Wendtner et al., 2002; Rubaltelli et al., 2004; Kanamori et al., 2006; Rubaltelli et al., 2007; Hocke et al., 2008; Wang et al., 2009; De Giorgi et al., 2010; Podkrajsek et al., 2011; Rubaltell et al., 2011; Zheng et al., 2011; Xue et al., 2011; Slaisova et al., 2013; Poanta et al., 2014; Rubaltelli et al., 2014). A flow chart for the study selection procedure is shown in Figure 1.

The main characteristics of the included studies were summarized in Table 1. We evaluated a total of 1495 patients and 1563 lesions (584 malignant, 979 benign) in our meta-analysis. Among the 16 included studies, 15 used qualitative CEUS (Moritz et al., 2000; Schmid-Wendtner et al., 2002; Rubaltelli et al., 2004; Kanamori et al., 2006; Rubaltelli et al., 2007; Hocke et al., 2008; Wang et al., 2009; De Giorgi et al., 2010; Podkrajsek et al., 2011; Rubaltell et al., 2011; Zheng et al., 2011; Xue et al., 2011; Slaisova et al., 2013; Poanta et al., 2014; Rubaltelli et al., 2014). Assessment of study quality

According to the QUADAS scale, the methodological quality was rated as “not good” for all the included studies. Only one study fulfilled over 10 items (Xue et al., 2011); three studies met seven items (Rubaltelli et al., 2007; Wang et al., 2009; Poanta et al., 2014), five met eight (Moritz et al., 2000; Schmid-Wendtner et al., 2002; Kanamori et al., 2006; De Giorgi et al., 2010; Podkrajsek et al., 2011), and the remaining studies met nine. Our assessment of methodological quality is summarized in Figure 2.

Diagnostic accuracy of CEUS in the differential diagnosis of benign and malignant lymph nodes

Synthesis of general diagnostic performance: For
Table 1. Main Characteristics of the Studies Included Evaluating the Performance of CEUS in the Differential Diagnosis of Benign and Malignant Lymph Nodes

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Imaging modality</th>
<th>Type Of Scanner</th>
<th>NO. patients</th>
<th>Mean age</th>
<th>Female (%)</th>
<th>Contrast agent</th>
<th>Dose of agent</th>
<th>No. lesions</th>
<th>Histologically proven malignant</th>
<th>Sen (%)</th>
<th>Spe (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubaltelli 2007</td>
<td>CEUS/MI(0.05-0.2)/Qontraxt</td>
<td>7.5MHZ Linear transducer</td>
<td>31</td>
<td>53.6 ±14.4</td>
<td>41.9</td>
<td>SonoVue</td>
<td>4.8ml</td>
<td>31</td>
<td>12</td>
<td>91.7</td>
<td>89</td>
</tr>
<tr>
<td>De Giorgi 2010</td>
<td>CEUS/MI(0.03)</td>
<td>3-9MHZ Linear transducer</td>
<td>15</td>
<td>49</td>
<td>33.3</td>
<td>SonoVue</td>
<td>2.4ml</td>
<td>19</td>
<td>6</td>
<td>100</td>
<td>61.5</td>
</tr>
<tr>
<td>Hocke 2008</td>
<td>Contrast-enhanced EUS in Power-Doppler mode</td>
<td>electronic linear ultrasound probe</td>
<td>122</td>
<td>63±15</td>
<td>24.6</td>
<td>SonoVue</td>
<td>2.4ml</td>
<td>122</td>
<td>48</td>
<td>60.4</td>
<td>91.9</td>
</tr>
<tr>
<td>Kanamori 2006</td>
<td>CE-EUS/Color Doppler mode</td>
<td>7.5MHZ</td>
<td>25</td>
<td>63.7</td>
<td>32</td>
<td>Levovist</td>
<td>2.5g/8ml</td>
<td>25</td>
<td>16</td>
<td>87.5</td>
<td>100</td>
</tr>
<tr>
<td>Moritz 2000</td>
<td>contrast-enhanced color Doppler sonography</td>
<td>12MHZ Multi-frequency transducer</td>
<td>39</td>
<td>30-81</td>
<td>17.9</td>
<td>Levovist</td>
<td>2.5g/8ml; 4g/1ml</td>
<td>94</td>
<td>37</td>
<td>100</td>
<td>98.2</td>
</tr>
<tr>
<td>Podkrajsek 2011</td>
<td>CEUS/low MI</td>
<td>7-12MHZ Linear transducer</td>
<td>27</td>
<td>55</td>
<td>100</td>
<td>SonoVue</td>
<td>2.4ml</td>
<td>27</td>
<td>13</td>
<td>69.2</td>
<td>82.4</td>
</tr>
<tr>
<td>Rubaltelli 2004</td>
<td>CE-HUS/MI (0.05-0.2)</td>
<td>7.5MHZ Linear transducer</td>
<td>45</td>
<td>51</td>
<td>37.8</td>
<td>SonoVue</td>
<td>4.8ml</td>
<td>56</td>
<td>26</td>
<td>92.3</td>
<td>93.3</td>
</tr>
<tr>
<td>Rubaltelli 2011</td>
<td>CEUS/MI (0.05-0.2)</td>
<td>7.5MHZ Linear transducer</td>
<td>44</td>
<td>54</td>
<td>47.8</td>
<td>SonoVue</td>
<td>4.8ml</td>
<td>44</td>
<td>13</td>
<td>100</td>
<td>93.5</td>
</tr>
<tr>
<td>Schmid-Wendtner 2002</td>
<td>Signal-enhanced Color-Doppler Sonography</td>
<td>8-10MHZ Linear transducer</td>
<td>19</td>
<td>57</td>
<td>47.4</td>
<td>Levovist</td>
<td>2.5g/8ml</td>
<td>20</td>
<td>9</td>
<td>88.9</td>
<td>90.9</td>
</tr>
<tr>
<td>Wang 2009</td>
<td>DCUS/MI (0.18-0.35)</td>
<td>2-5MHZ 4V1 vector transducer</td>
<td>62</td>
<td>50.0 ±11.4</td>
<td>38.7</td>
<td>SonoVue</td>
<td>2.4ml</td>
<td>59</td>
<td>47</td>
<td>89.4</td>
<td>75</td>
</tr>
<tr>
<td>Slaisova 2013</td>
<td>CEUS/MI (0.04)</td>
<td>3-9MHZ Linear probe</td>
<td>133</td>
<td>51</td>
<td>45.1</td>
<td>SonoVue</td>
<td>1.5ml</td>
<td>133</td>
<td>100</td>
<td>98</td>
<td>54.5</td>
</tr>
<tr>
<td>Xue 2011</td>
<td>DCUS/MI(0.2)</td>
<td>1.5MHZ</td>
<td>76</td>
<td>58.3</td>
<td>36.8</td>
<td>SonoVue</td>
<td>2.4ml</td>
<td>76</td>
<td>15</td>
<td>86.7</td>
<td>60.7</td>
</tr>
<tr>
<td>Zheng 2011</td>
<td>DCUS/low MI</td>
<td>1-4MHZ 4V1 vector transducer</td>
<td>162</td>
<td>58.3</td>
<td>21.6</td>
<td>Sonovue</td>
<td>2.4ml</td>
<td>162</td>
<td>97</td>
<td>78.4</td>
<td>78.5</td>
</tr>
<tr>
<td>Rubaltelli 2014</td>
<td>CEUS</td>
<td>3.5-14MHZ</td>
<td>540</td>
<td>53.7</td>
<td>NC</td>
<td>SonoVue</td>
<td>4.8ml</td>
<td>540</td>
<td>66</td>
<td>100</td>
<td>98.7</td>
</tr>
<tr>
<td>Poanta 2014</td>
<td>CEUS/MI(0.07)</td>
<td>3–9MHZ linear probe</td>
<td>61</td>
<td>51.2</td>
<td>54.1</td>
<td>SonoVue</td>
<td>2.4ml</td>
<td>61</td>
<td>29</td>
<td>93.1</td>
<td>100</td>
</tr>
<tr>
<td>Yu 2010</td>
<td>CEUS/MI (0.06)</td>
<td>3-9MHZ Linear array probe</td>
<td>94</td>
<td>46</td>
<td>48.9</td>
<td>SonoVue</td>
<td>2.4ml</td>
<td>94</td>
<td>50</td>
<td>80</td>
<td>93.2</td>
</tr>
</tbody>
</table>

Sen: sensitivity; Spe: specificity; DCUS: double contrast-enhanced ultrasonography, an oral ultrasonic contrast agent combined with an intravenous contrast agent; CE-HUS: contrast-enhanced harmonic ultrasonography; CE-EUS: contrast-enhanced endoscopic ultrasonography
Contrast-Enhanced US in Differential Diagnosis of Enlarged Lymph Nodes: A Meta-Analysis of Accuracy

the differential diagnosis of benign and malignant lymph nodes by CEUS, the F-values for sensitivity and specificity were 85.68% (95%CI, 79.68-91.68), 91.61% (95%CI, 88.6-94.63) (p=0.000). The summary sensitivity and specificity were 0.92 (95%CI, 0.80-0.97) and 0.91 (95%CI, 0.82-0.95), respectively (Figure 3). The summary DOR was 115 (95%CI, 36-365) and the area under the summary receiver operating characteristics curve (AUROC) was 0.97 (95%CI, 0.95-0.98) (Figure 4). The positive and negative LRs were 9.8 (95%CI, 5.0-19.1) and 0.08 (95%CI, 0.04-0.17), respectively.

Synthesis of diagnostic performance into subgroups:

Seven studies (Rubaltelli et al., 2004; Kanamori et al., 2006; Rubaltelli et al., 2007; Hocke et al., 2008; Yu et al., 2010; Slaisova et al., 2013; Poanta et al., 2014;) included patients with enlarged lymph nodes only, while the other nine studies (Moritz et al., 2000; Schmid-Wendtner et al., 2002; Wang et al., 2009; De Giorgi et al., 2010; Podkrajsek et al., 2011; Rubaltelli et al., 2011; Xue et al., 2011; Zheng et al., 2011; Rubaltelli et al., 2014) included patients with enlarged lymph nodes and primary tumors.

Three studies used Color Doppler assessment (Moritz et al., 2000; Schmid-Wendtner et al., 2002; Kanamori et al., 2006), one used Power Doppler mode (Hocke et al., 2008) and the remaining studies used low mechanical index with SonoVue.

The pooled estimates for sensitivity, specificity, PLR and NLR in the subgroups were presented in Table 2.

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Mean sensitivity</th>
<th>Mean specificity</th>
<th>Positive Likelihood Ratio</th>
<th>Negative Likelihood Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Primary Tumor (n=9)</td>
<td>0.89(95%CI 0.77-0.95)</td>
<td>0.92(95%CI 0.80-0.97)</td>
<td>10.7(95%CI 4.3-26.6)</td>
<td>0.12(95%CI 0.05-0.26)</td>
</tr>
<tr>
<td>Without Primary Tumor (n=7)</td>
<td>0.94 (95%CI 0.80-0.98)</td>
<td>0.89(95%CI 0.75-0.95)</td>
<td>8.3(95%CI 3.4-20.3)</td>
<td>0.07(95%CI 0.02-0.27)</td>
</tr>
<tr>
<td>Color and Power Doppler mode (n=4)</td>
<td>0.91 (95%CI 0.61-0.98)</td>
<td>0.96(95%CI 0.89-0.99)</td>
<td>21.7(95%CI 7.1-66.5)</td>
<td>0.1(95%CI 0.02-0.51)</td>
</tr>
<tr>
<td>Low MI with SonoVue (n=12)</td>
<td>0.93 (95%CI 0.85-0.96)</td>
<td>0.88(95%CI 0.77-0.94)</td>
<td>7.3(95%CI 3.7-16.1)</td>
<td>0.08(95%CI 0.04-0.18)</td>
</tr>
</tbody>
</table>

*Sono Vue: the type of contrast agent; MI: Mechanical Index

Sensitivity analysis of the factors influencing the diagnostic performance of CEUS

According to the subgroups analysis, we excluded the studies of power and color Doppler modes that were used with Levovist and evaluated the diagnostic accuracy of CEUS using low MI and SonoVue (Figure 5).

Table 3. Sensitivity Analysis

<table>
<thead>
<tr>
<th>Factor</th>
<th>Pooled results</th>
<th>Outlier exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pooled value</td>
<td>95% CI</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.9</td>
<td>0.82-0.94</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.9</td>
<td>0.82-0.95</td>
</tr>
<tr>
<td>PLR</td>
<td>9.4</td>
<td>4.7-18.8</td>
</tr>
<tr>
<td>NLR</td>
<td>0.12</td>
<td>0.06-0.21</td>
</tr>
<tr>
<td>AUROC</td>
<td>0.95</td>
<td>0.93-0.97</td>
</tr>
<tr>
<td>DOR</td>
<td>81</td>
<td>0.26-260</td>
</tr>
</tbody>
</table>

*DOR, diagnostic odds ratio; AUROC, area under the summary receiver operating characteristics curves; NLR, negative likelihood ratio; PLR, positive likelihood ratio

Figure 5. Forest Plots Showing the Sensitivity and Specificity of CEUS Used With Low MI and Sonovue for the Differentiating Between Benign and Malignant Lymph Nodes

Figure 6. The Bivariate Box Plot for Evaluating the Outliers

Figure 7. The Deeks’ Funnel Plot Asymmetry Test For Evaluating Publication Bias among the Included Studies
A bivariate boxplot (Figure 6) showed that three studies (Moritz et al., 2000; Hocke et al., 2008; Slaisova et al., 2013) were heterogeneous with respect to the other studies. After omitting the three studies, sensitivity analysis was performed: the heterogeneity (I^2) of sensitivity decreased from 85.68% (95%CI, 79.68-91.68) to 60.92% (95%CI, 37.28-84.59) and from 91.61% (95%CI, 86.6-94.63) to 85.21% (95%CI, 78.24-92.19) of specificity. The results of the summary estimates were presented in Table 3.

Assessment of publication bias
To address publication bias, a funnel plot was constructed of log DOR against the standard error of the estimate of log DOR. According to Deeks’ funnel plot asymmetry test, there was no publication bias among the included studies (p=0.15; Figure 7).

Discussion
The prevalence of enlarged lymph nodes is quite high. In past years, B-mode and Color-Doppler sonography were usually used as a first-line procedure to differentiate benign and malignant lymph nodes. There is no single criterion or even a combination of criteria that is sensitive or specific enough to diagnose malignancy; therefore, fine-needle aspiration is currently the primary diagnostic procedure. However, it has been shown to be a cost-effective method, and is limited by sampling difficulties and reliable fine-needle aspiration is dependent on the sampler’s experience and the cytologist’s expertise (Fatima et al., 2011).

Our meta-analysis has investigated the diagnostic performance of CEUS in differentiating between benign and malignant lymph nodes. Analysis of 1563 lesions demonstrated consistently high pooled sensitivity, specificity, positive LR and DOR, but it also showed a lower negative LR. According to these results, CEUS can be used in clinical practice as an excellent diagnostic tool for diagnosis of malignant lymph nodes. This finding is of great importance because of the limitations of current approaches to identification of lymph nodes.

Subgroup analysis in this research showed that the sensitivity of CEUS seemed to be lower in patients without a primary tumor, indicating that the capability of CEUS for recognizing malignant lymph nodes in patients with a primary tumor is higher than in patients without. Furthermore, subgroup analysis revealed that the F-value of the subgroup with a primary tumor was much lower than that of the subgroup without a primary tumor, implying that the homogeneity of the studies included in the subgroup with a primary tumor is better. Overall, our analysis suggests that CEUS shows promise as a screening method in clinical practice for use in patients with enlarged lymph nodes, especially those with a primary tumor.

In the subgroup analysis, the sensitivity, specificity, positive likelihood ratio of the Doppler mode subgroup were higher than the subgroup of low MI. This result could be elaborated by the fewer number of studies of Doppler mode and because the methodology of CUES has changed dramatically since its introduction in the late 90s, the earlier high MI and Doppler mode used with Levovist are only of historical interest. We excluded the studies of power and color Doppler modes that were used with Levovist and evaluated the diagnostic accuracy of CEUS using low MI and SonoVue, the sensitivity and specificity are 90% and 81%, respectively and this result may reveal the real clinical value.

The major limitation of this meta-analysis was the extent of the observed heterogeneity. We used a random effects approach to analyze the heterogeneous data, and a bivariate box plot was used to identify possible outliers. In the evaluation of the accuracy of CEUS, excluding three outliers reduced the heterogeneity without substantially changing the summary estimates. Possible reasons underlying the differences between the three outliers and the other studies include higher malignant lymph nodes rates, different doses of contrast agent, and the lymph node site.

In addition, it is plausible that part of the heterogeneity was caused by a large variation in the qualitative and quantitative criteria used for determining the stage of lymph nodes. Among the included studies, fifteen used qualitative criteria, and one used both qualitative and quantitative criteria, as follows: (1) intense homogeneous enhancement with no perfusion defects for benign lymph nodes, and intense inhomogeneous enhancement in the arterial phase with perfusion defects or hypo-enhancement for malignant lymph nodes; (2) in the color code image, vessels have a regular appearance with both venous and arterial vessels visible for benign lymph nodes, and an irregular appearance with only arterial vessels visible for malignant lymph nodes; (3) predominantly hilar vessels for benign lymph nodes, and predominantly peripheral vessels or an absence of vessels for malignant lymph nodes; (4) differentiation between benign and malignant lymph nodes made on the basis of the rapidity of enhancement, intensity of enhancement (5) quantitative criteria: analysis of the time-intensity curve. Since more than three studies are needed for a meta-analysis using Stata, subgroup analysis could not be performed to evaluate the accuracy of quantitative CEUS and CEUS used with the Doppler mode and the contrast agent of Levovist. This may be another reason for the significant heterogeneity in our analysis. Additional sources of heterogeneity may include the sex proportion, the mean lymph node size, the primary tumor of the included patients, the choice of imaging modality, the design of the procedure, and QUADAS score. Nonetheless, the heterogeneity in this type of diagnostic study remains a concern, and to some extent it influences the certainty of the conclusions.

In conclusion, our meta-analysis showed that CEUS has the potential to be used as a valuable examination, with high sensitivity and specificity, to help characterize lymph nodes. However, the clinical value of CEUS needs further examination. Future large-scale studies, the development of the analytical software (like Stata, Meta-disc and Revman), particularly with regard to the accuracy of quantitative CEUS for evaluating lymph nodes, are required to evaluate the screening improvement that has been hypothesized.
Acknowledgements

This research is supported by the Chengdu Science and Technology Bureau Foundation of The clinical research for the prediction of breast cancer on the basis of ultrasonic imaging features.

References

