THE PROPERTIES OF NONOSCILLATION AND FINITE VALENCE

JONG SU AN

1. Introduction.

In this paper we shall consider the differential equation

\[y''(z) + p(z)y(z) = 0, \quad |z| < 1, \]

where \(p(z) \) is a regular function in the open unit circle \(E \). The ratio \(f(z) = u(z)/v(z) \) of any two independent solution \(u(z) \) and \(v(z) \) of (1.1) will be a function \(f(z) \), meromorphic in \(E \) with only simple poles, and such that \(f'(z) \neq 0 \). The Schwarzian derivative of \(f(z) \),

\[S_f(z) = \varphi_f'(z) - \frac{1}{2}\varphi_f^2(z), \quad \varphi_f(z) = f''(z)/f'(z) \]

is connected with \(p(z) \) by

\[S_f(z) = 2p(z). \]

If no solution of (1.1) (except the solution \(y(z) = 0 \)) has more than one zero in \(E \) then \(f(z) \) is univalent in \(E \). Conversely, every univalent function \(f(z) \) in \(E \) can be written as the ratio of two independent solutions of the equation (1.1). These connections were first stated by Z.Nehari ([1] Theorem 1). In this paper we give that the connections of nonoscillation and finite valence. In Section 2, Theorem 2.1 may be state us a criteria of nonossilation. In Section 3, we obtain a simpler criteria for the finite valent of single valent meromorphic function.

2. A criteria of nonoscillation.

(1.1) is called nonoscillation in \(E \) if none of its solutions (except \(y(z) = 0 \)) has infinite many zeros in \(E \). Correspondingly we call a single valued meromorhic function finite valent in a domain \(D \) if for each \(a \) the equation \(f(z) = a \) has only a finite number of solutions \(z \) in \(D \).

Received October 26, 1995.
Theorem 2.1. Let $p(z)$ be regular in $|z| < 1$ and assume there exists $x_0, 0 < x_0 < 1$, such that for all z with $x_0 < |z| < 1$

(2.1) \[(1 - |z|^2)^2 |p(z)| \leq 1.\]

Then (1.1) is nonoscillation in $|z| < 1$.

Proof. Let $z_1, z_2 (z_1 \neq z_2)$ be any two points inside E. z_1, z_2 determine uniquely a circle C passing through them and orthogonal to $|z| = 1$. Let us call the part of C which lies between z_1 and z_2 and inside E, the orthogonal arc between z_1 and z_2, and let us denote it by $[z_1 z_2]$. Let x_0 be fixed and denote the ring $x_0 < |z| < 1$ by R.

Assume now that there exists a nontrivial solution $y(z)$ of (1.1) with infinitely many zeros in E. From this infinity of zeros we choose a sequence converging to a point α on $|z| = 1$. It follow that we can choose two zeros z_1 and z_2 of $y(z)$, belonging to this sequence, such that they, together with the orthogonal arc between them, lie in R.

There exists a linear transformation from $|z| < 1$ onto $|\zeta| < 1$ given by

(2.2) \[z = e^{i\theta} \frac{\zeta - \alpha}{1 - \bar{\alpha} \zeta}, \quad |\alpha| < 1,\]

which carries z_1 and z_2 into $\zeta = \rho$ and $\zeta = -\rho$ respectively $(0 < \rho < 1)$. (2.2) transforms $[z_1 z_2]$ into the segment $(-\rho, \rho)$. Define for $|\zeta| < 1$ by

(2.3) \[g(\zeta) = f \left(e^{i\theta} \frac{\zeta - \alpha}{1 - \bar{\alpha} \zeta} \right).\]

The substitution (2.2) transforms (1.1) into

(2.4) \[y_1''(\zeta) + p_1(\zeta)y_1(\zeta) = 0,\]

where

(2.5) \[S_g(\zeta) = 2p_1(\zeta)\]

and

(2.6) \[y \left(e^{i\theta} \frac{\zeta - \alpha}{1 - \bar{\alpha} \zeta} \right) = y_1(\zeta)\sigma(\zeta).\]
Here \(\sigma(\zeta) \) is regular and nonzero in \(|\zeta| < 1 \). It follows that there exists a solution \(y_1(\zeta) \neq 0 \) of (2.4) such that \(y_1(\rho) = y_1(-\rho) = 0 \). Setting \(\zeta = x + iy \), multiplying (2.4) on the segment \((-\rho, \rho)\) by \(\bar{y}_1 \) and integrating from \(-\rho\) to \(\rho \), we obtain

\[
\int_{-\rho}^{\rho} |y_1'|^2 dx = \int_{-\rho}^{\rho} p_1 |y_1|^2 dx.
\]

Writing \(y_1 = u + iv \) we have

(2.7) \[
\int_{-\rho}^{\rho} (u_x^2 + v_x^2) dx = \int_{-\rho}^{\rho} p_1 (u^2 + v^2) dx.
\]

It can be shown that (2.2) and (2.3) imply

\[
|S_f(z)|(1 - |z|^2)^2 = |S_\varphi(\zeta)|(1 - |\zeta|^2)^2.
\]

It follows therefore by (1.2), (2.1) and (2.5) that

\[
(1 - x^2)^2 |p_1(x)| \leq 1, \quad -\rho \leq x \leq \rho.
\]

Hence,

\[
\left| \int_{-\rho}^{\rho} p_1 (u^2 + v^2) dx \right| \leq \int_{-\rho}^{\rho} \frac{u^2 + v^2}{(1 - x^2)^2} dx < \rho^2 \int_{-\rho}^{\rho} \frac{u^2 + v^2}{(\rho^2 - x^2)^2} dx.
\]

Now the inequality

\[
\rho^2 \int_{-\rho}^{\rho} \frac{u^2}{(\rho^2 - x^2)^2} dx < \int_{-\rho}^{\rho} u'^2 dx
\]

holds for continuously differentiable real functions \(u(x), \ -\rho \leq x \leq \rho \), which have at \(\pm \rho \) zeros of the first order [1]. Then we have

\[
\left| \int_{-\rho}^{\rho} p_1 (u^2 + v^2) dx \right| < \int_{-\rho}^{\rho} (u_x^2 + v_x^2) dx,
\]

which gives the desired contradiction to (2.7) and we have therefore proved Theorem 2.1. □

This nonoscillation Theorem may now be stated as a criteria of finite valent for meromorphic functions.
COROLLARY 2.1.1. Let \(f(z) \) be meromorphic in \(|z| < 1 \) and assume that
\[
(1 - |z|^2)^2 |S_f(z)| \leq 2 \text{ for } x_0 < |z| < 1, \ 0 < x_0 < 1
\]
Then \(f(z) \) is finite valent in \(|z| < 1 \).

Proof. Assume that there exists a complex number \(\omega \) (which may be \(\infty \)) such that \(f(z) - \omega = 0 \) has an infinity of roots in \(E \), then there exist \(z_1, z_2, (z_1 \neq z_2) \) such that \(f(z_1) = f(z_2) = \omega \), and that \(z_1, z_2 \) and the orthogonal arc between them lie in \(R \).

Consider now \(f(z) \) and the corresponding (1.1) not in \(E \), but only in any simply connected domain \(D \) containing the arc \([z_1z_2]\) and contained in \(R \). We obtain therefore a solution \(y(z) \) of (1.1), analytic and therefore single valued in \(D \), such that \(y(z_1) = y(z_2) = 0 \), while \(p(z) \) satisfies (2.1) in \(D \) (and especially on \([z_1z_2]\)). But only this used in the proof of Theorem 2.1. \(\Box \)

NEHARI RESULT ([2]) : For the unit circle he proved that if \(p(z) \) is regular in \(|z| < 1 \) and if
\[
(2.8) \quad \int_0^{2\pi} |p(e^{i\theta})| d\theta < \infty,
\]
then (1.1) is nonoscillation.

The integral on the left hand side of (2.8) is defined as the limit, for \(\rho \to 1 \), of the nondecreasing function
\[
\int_0^{2\pi} |p(e^{i\theta})| d\theta
\]
and (2.8) is therefore equivalent to
\[
(2.9) \quad \int_0^{2\pi} |p(\rho e^{i\theta})| d\theta < c, \ c < \infty, \ 0 < \rho < 1.
\]

Nehari Result may be deduced from Theorem 2.1. Indeed, setting
\[
p(z) = \sum_{n=0}^{\infty} a_n z^n,
\]
(2.9) implies
\[|a_n| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|p(\rho e^{i\theta})|}{\rho^{n+1}} \rho d\theta < \frac{c}{2\pi \rho^n}, \quad n = 0, 1, \ldots. \]

Letting \(\rho \rightarrow 1 \), we obtain \(|a_n| \leq c/2\pi \) and therefore
\[|p(z)| \leq \sum_{n=0}^{\infty} |a_n||z_n|^n \leq \frac{c}{2\pi (1 - |z|)}. \]

This implies now the existence of at \(x_0 \), such (2.1) holds for \(x_0 < |z| < 1 \), i.e., the assumption of Theorem 2.1 is satisfied. So (1.1) is nonoscillation.

3. A finite valent theorem for a domain.

Let \(D \) be a simply connected domain in the \(z \) plane, having at least two boundary points and let \(w = \psi(z) \) be a function mapping \(D \) onto \(|w| < 1 \). Let \(D' \) be any closed domain lying in the interior of \(D \) and denote by \(R' \) the domain \(D - D' \). The map of \(R' \) under the transformation \(w = \psi(z) \) covers a circular ring \(R, x_0 < |w| < 1 \), with \(0 < x_0 < 1 \) and \(x_0 \) near enough to 1. Let \(f(z) \) be a meromorphic function in \(D \) and define \(g(w) \) in \(|w| < 1 \) by
\[g(w) = f(\psi^{-1}(w)). \]

\(f(z) \) is finite valent in \(D \) if and only if \(g(w) \) is so in \(|w| < 1 \). The transformation formula \(S_f(z) \) under the conformal mapping \(w = \psi(z) \) is
\[(3.1) \quad [S_f(z) - S_\psi(z)] = S_g(w) \left(\frac{dw}{dz} \right)^2. \]

Applying now Corollary 2.1.1 to \(g(w) \) it follows that \(f(z) \) will be finite valent in \(D \) if the condition
\[(3.2) \quad |S_f(z) - S_\psi(z)| \leq \frac{2}{(1 - |\psi(z)|^2)^2} \left| \frac{d\psi}{dz} \right|^2 \]
holds for all \(z \in D - D' \). Similarly it follows that if \(p(z) \) is regular in \(D \) and if
\[(3.3) \quad |p(z) - \frac{1}{2} S_\psi(z)| \leq \frac{1}{(1 - |\psi(z)|^2)^2} \left| \frac{d\psi}{dz} \right|^2 \]
holds for all \(z \) in \(D - D' \), then (1.1) is nonoscillation in \(D \).
REMARK. (3.2) and (3.3) are independent of the normalization of the Riemann mapping function \(w = \psi(z) \) mapping \(D \) onto \(|w| < 1\). Let \(w_1 = \psi_1(z) \) be another such function mapping \(D \) onto \(|w_1| < 1\). The function \(w_1(w) = \psi_1(\psi^{-1}(w)) \) is a linear mapping of \(|w| < 1\) onto \(|w_1| < 1\) and it follows by the invariance of the Schwarzian derivative with respect to all linear transformation, that \(S_{w_1}(z) = S_w(z) \), i.e,

\[
(3.4) \quad S_{\psi_1}(z) = S_{\psi}(z).
\]

Moreover, for a linear mapping of the unit circle onto itself, the relation

\[
\frac{1 - |w_1(w)|^2}{1 - |w|^2} = \left| \frac{dw_1}{dw} \right|
\]

holds, which implies

\[
(3.5) \quad \frac{1}{(1 - |\psi_1(z)|^2)^2} \left| \frac{d\psi_1}{dz} \right|^2 = \frac{1}{(1 - |\psi(z)|^2)^2} \left| \frac{d\psi}{dz} \right|^2.
\]

(3.4) and (3.5) show clearly that condition (3.2) and (3.3) are independent of the normalization of the mapping \(\psi(z) \).

Restricting ourselves to domains bounded by a finite number of Jordan curves, we have the following property:

Let \(D \) be a multiply connected domain in the \(z \) plane, bounded by a finite number of Jordan curves. Let \(S \) be its universal covering surface. Let \(w = \psi(z) \) map \(S \) onto \(|w| < 1\) and let \(D' \) be any closed domain in \(D \). A function \(f(z) \), meromorphic and single valued in \(D \), will be finitely valent there if condition (3.3) holds for all \(z \) in \(D - D' \).

This property enable us now to obtain a simpler criterion for the finite valence of single valued meromorphic functions in the case in which the \(n \)-boundaries of the domain are analytic Jordan curves.

THEOREM 3.1. Let \(D \) be a domain in the \(z \)-plane such that its boundary \(B \) consists of a finite number of analytic Jordan curves. Let \(S \) be its universal covering surface. Let \(z_0 \in D \) and denote by \(B_\varepsilon \) the level curve \(g(z, z_0, D) = \varepsilon, \ \varepsilon > 0, \) of the harmonic Green's function \(g(z, z_0, D) \) with pole at \(z_0 \). Let \(w = \psi(z) \) map \(S \) onto \(|w| < 1\) and \(f(z) \) be meromorphic and single valued in \(D \) and set

\[
M(\varepsilon) = \max_{z \in B_\varepsilon} |S_f(z)|.
\]
If

\[\lim_{\varepsilon \to 0} \varepsilon^2 M(\varepsilon) = 0, \]

then \(f(z) \) is finite valent in \(D \).

Proof. Suppose \(D \) is not simply connected. Choose \(\psi(z) \) on \(S \) so that \(\psi(z_0) = 0 \). Let \(z \) be the coordinate in \(D \) and not on \(S \), so that \(\psi(z) \) is a many valued function. By the connecting the \(n \) - boundary curves \(B_1, \ldots, B_n \) of \(D \) by \(n - 1 \) cuts \(\nu_1, \ldots, \nu_{n-1} \), we obtain a simply connected domain \(D^* \). \(D^* \) allows us to fix uniquely a branch \(\psi_1(z) \) of \(\psi(z) \). Assume that none of the cuts \(\nu_1, \ldots, \nu_{n-1} \) go through \(z_0 \). Let the branch \(\psi_1(z) \) be defined \(\psi_1(z_0) = 0 \), and consider the behavior of this branch in \(D \) and on \(B \). From the analyticity of the bounary curves it follows that \(\psi_1(z) \) and its derivatives are piecewise analytic on \(B \). Moreover, \(\frac{d\psi_1(z)}{dz} \neq 0 \) in \(\overline{D} = D \cup B \) and it follows that, for all \(z \) in \(D \),

\[|S_{\psi_1}(z)| = |S_{\psi}(z)| \leq M, \ 0 < M < \infty, \]

\[\left| \frac{d\psi_1(z)}{dz} \right| \geq m, \ 0 < m < \infty. \]

For every \(\varepsilon > 0 \) let us now consider the following two closed region in \(D \):

\[D_1(\varepsilon) = \{ z : g(z, z_0, D) \geq \varepsilon \} \]

and

\[D_2(\varepsilon) = \{ z | z = \psi^{-1}(w), \ |w| \leq e^{-\varepsilon} \}. \]

Then we have [5, pp. 50-51]

\[D_2(\varepsilon) \subset D_1(\varepsilon). \]

(3.9) implies now that \(|\psi(z)| \geq e^{-\varepsilon} \) for the level curve \(B_\varepsilon(g(z, z_0, D) = \varepsilon) \) and in particular

\[|\psi_1(z)| \geq e^{-\varepsilon}, \ z \in B_\varepsilon, \varepsilon > 0. \]
We have therefore for each \(z \in B_\epsilon \)

\[
1 - |\psi_1(z)|^2 = (1 + |\psi_1(z)||1 - |\psi_1(z)|| \leq 2(1 - e^{-\epsilon}) < 2\epsilon
\]

which implies

\[
(3.10) \quad M(\epsilon)(1 - |\psi_1(z)|^2)^2 < 4M(\epsilon)\epsilon^2.
\]

Using now our assumption (3.6), it follows from (3.1), (3.5), (3.7) (3.8) and (3.10) that there exists \(\epsilon_0 > 0 \) such that

\[
|S_f(z) - S_{\psi_1}(z)| \leq \frac{2}{(1 - |\psi_1(z)|^2)^2} \left| \frac{d\psi_1}{dz} \right|^2.
\]

for all \(z \) with \(0 < g(z, z_0, D) < \epsilon_0 \), i.e., for all \(z \in D - D_1(\epsilon_0) \). So we have proved Theorem 3.1 for a multiply connected domain.

If \(D \) is simply connected domain we use condition (3.2). Relation (3.7) and (3.8) hold now for the single valued function \(\psi(z) \) and in this case, clearly, \(D_1(\epsilon) = D_2(\epsilon) \). Therefore Theorem 3.1 is established. \(\square \)

References

Department of Mathematics Education
College of Educaton
Pusan National University
Pusan 609-735, Korea