RELATIONS BETWEEN DECOMPOSITION SERIES AND TOPOLOGICAL SERIES OF CONVERGENCE SPACES

Sang Ho Park

Abstract. In this paper, we will show some relations between decomposition series \(\{ \pi^\alpha q : \alpha \text{ is an ordinal} \} \) and topological series \(\{ \tau_\alpha q : \alpha \text{ is an ordinal} \} \) for a convergence structure \(q \) and the formula \(\pi^\beta(\tau_\alpha q) = \pi^{\omega^\alpha \beta} q \), where \(\omega \) is the first limit ordinal and \(\alpha \) and \(\beta(\geq 1) \) are ordinals.

I. Introduction and Preliminaries

A convergence structure \(q \) on a set \(X \) defined by [1] in 1964 is a function from the set \(F(X) \) of all filters on \(X \) into the set \(P(X) \) of all subsets of \(X \), satisfying the following conditions:

1. \(x \in q(\dot{x}) \) for all \(x \in X \);
2. \(F \leq G \) implies \(q(F) \subseteq q(G) \);
3. \(x \in q(F) \) implies \(x \in q(F \cap \dot{x}) \),

where \(\dot{x} \) denotes the principal ultrafilter containing \(\{ x \} \); \(F \) and \(G \) are in \(F(X) \). Then the pair \((X, q) \) is called a convergence space. If \(x \in q(F) \), then we say that \(F \) \(q \)-converges to \(x \). The filter \(\mathcal{V}_q(x) \) obtained by intersecting all filters which \(q \)-converge to \(x \) is called the \(q \)-neighborhood filter at \(x \). If \(\mathcal{V}_q(x) \) \(q \)-converges to \(x \) for each \(x \in X \), then \(q \) is said to be pretopological and the pair \((X, q) \) is called a pretopological convergence space.

Received January 17, 2006.

2000 Mathematics Subject Classification: 54A05, 54A10, 54A20.

Key words and phrases: convergence structure(space), pretopological convergence structure(space), decomposition series, topological series.
Let \(C(X) \) be the set of all convergence structures on \(X \), partially ordered as follows:

\[
q_1 \leq q_2 \iff q_2(\mathcal{F}) \subseteq q_1(\mathcal{F}) \text{ for all } \mathcal{F} \in \mathcal{F}(X).
\]

If \(q_1 \leq q_2 \), then we say that \(q_1 \) is coarser than \(q_2 \), and \(q_2 \) is finer than \(q_1 \). By [2], we know that if \(q_1 \) is pretopological, then

\[
q_1 \leq q_2 \iff \mathcal{V}_{q_1}(x) \subseteq \mathcal{V}_{q_2}(x) \text{ for all } x \in X.
\]

For any \(q \in C(X) \), we define a related convergence structure \(\pi(q) \), as follows:

\[
x \in \pi(q)(\mathcal{F}) \iff \mathcal{V}_q(x) \subseteq \mathcal{F}.
\]

In this case, \(\pi(q) \) is called the pretopological modification of \(q \).

In 1973, Kent and Richardson [3] introduced the associated decomposition series \(\{ \pi^\alpha q : \alpha \text{ is an ordinal} \} \) defined by

\[
\pi^\alpha q(\mathcal{F}) \xrightarrow{q} x \iff \mathcal{V}_q^\alpha(x) \subseteq \mathcal{F}, \text{ for each } \mathcal{F} \in \mathcal{F}(X),
\]

where

\[
A \in \mathcal{V}_q^\alpha(x) \iff x \in I_q^\alpha(A), \text{ and}
\]

\[
I_q^\alpha(A) = \begin{cases} \quad I_q(I_q^{\alpha-1}(A)), & \text{if } \alpha - 1 \text{ exists,} \\ \cap_{\beta < \alpha} I_q^\beta(A), & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}
\]

In 1996, Park [4] studied the \(n \)-th pretopological modification \(\pi^n q \) and quotient map for a convergence space \(q \).

In 1999, for a convergence space \((X, q)\) with a second convergence structure \(p \), Wilde [5] introduced that \((X, q)\) is “\(p \)-topological” iff \(\mathcal{F} \xrightarrow{q} x \) implies \(\mathcal{V}_p(\mathcal{F}) \xrightarrow{q} x \). Also they showed that there is a finest \(p \)-topological convergence structure \(\tau_p q \) on \(X \) coarser than \(q \) and \(\mathcal{F} \xrightarrow{\tau_p q} x \) iff there exist \(\mathcal{G} \xrightarrow{q} x \), such that \(\mathcal{F} \geq \mathcal{V}_p^n(\mathcal{G}) \), for some \(n \in \mathbb{N} \). Furthermore, they induced the topological series for \(q \), the descending ordinal sequence \(\{ \tau_\alpha q : \alpha \text{ is an ordinal} \} \) defined recursively on \(X \) as follows:
Decomposition Series and Topological Series

\[\tau_0 q = q \]
\[\tau_1 q : \mathcal{F} \xrightarrow{\tau_1 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}^n_q(\mathcal{G}) \]
\[\tau_2 q : \mathcal{F} \xrightarrow{\tau_2 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}^n_{\tau_1 q}(\mathcal{G}) \]
\[\tau_3 q : \mathcal{F} \xrightarrow{\tau_3 q} x \iff \exists \mathcal{G} \xrightarrow{q} x \text{ and } n \in N \text{ such that } \mathcal{F} \geq \mathcal{V}^n_{\tau_2 q}(\mathcal{G}) \]
\[\vdots \]
\[\tau_\alpha q : \mathcal{F} \xrightarrow{\tau_\alpha q} x \iff \exists \mathcal{G} \xrightarrow{q} x, \text{ } n \in N \text{ and } \beta < \alpha \text{ such that } \mathcal{F} \geq \mathcal{V}^n_{\tau_\beta q}(\mathcal{G}). \]

In this paper, we will show some relations between decomposition series \(\{\pi^\alpha q : \alpha \text{ is an ordinal} \} \) and topological series \(\{\tau_\alpha q : \alpha \text{ is an ordinal} \} \) for a convergence structure \(q \) and the formula \(\pi^\beta(\tau_\alpha q) = \pi^{\omega^{\alpha \beta}} q \), where \(\omega \) is the first limit ordinal and \(\alpha \) and \(\beta (\geq 1) \) are ordinals.

2. Decomposition Series, the Neighborhood and Interior Filter of a Filter

We shall summarize some results from [3] and other sources using more modern notation and terminology. We are mainly interested in comparing properties of decomposition series with those of the topological series, which will be introduced in [5].

Let \((X, q) \) be a convergence space. For \(A \subseteq X \), we recall that \(I^0_q(A) = A, I^1_q = I_q(A) = \{ x : A \in V_q(x) \} \)

Given an ordinal number \(\alpha \geq 1 \), let \(I^\alpha_q \) and \(cl^\alpha_q \) denote the \(\alpha \)th iterations of interior operator and closure operator for \(q \), respectively. For \(A \subseteq X \), we inductively define:

\[I^\alpha_q(A) = \begin{cases}
I_q(I_q^{\alpha-1}(A)), & \text{if } \alpha - 1 \text{ exists}, \\
\cap_{\beta < \alpha} I_q^\beta(A), & \text{if } \alpha \text{ is a limit ordinal.}
\end{cases} \]

\[cl^\alpha_q(A) = \begin{cases}
cl_q(cl_q^{\alpha-1}(A)), & \text{if } \alpha - 1 \text{ exists}, \\
\cup_{\beta < \alpha} (cl_q^\beta(A)), & \text{if } \alpha \text{ is a limit ordinal.}
\end{cases} \]
PROPOSITION 2.1. ([5]). For every ordinal \(\alpha \) and \(A \subseteq X \), \(X \setminus cl^\alpha_q(A) = I^\alpha_q(X \setminus A) \).

If \((X, q)\) is a convergence space and \(\alpha \geq 1 \), let \(\pi^\alpha q \) be the pre-topology on \(X \) whose neighborhood filter is \(\mathcal{V}^\alpha_q(x) \), that is, \(\mathcal{V}_{\pi^\alpha q}(x) = \mathcal{V}^\alpha_q(x) \), where \(A \in \mathcal{V}^\alpha_q(x) \iff x \in I^\alpha_q(A) \). Since \(\beta < \alpha \) implies \(I^\alpha_q(A) \subseteq I^\beta_q(A) \), it follows that \(\mathcal{V}^\alpha_q(x) \subseteq \mathcal{V}^\beta_q(x) \), and consequently \(\pi^\alpha q \leq \pi^\beta q \).

Definition 2.2. ([3], [5]). The descending chain \(\{ \pi^\alpha q : \alpha \geq 1 \} \) of pretopologies on \(X \) is called the decomposition series of \((X, q)\).

Clearly \(\pi^1 q = \pi q \) is the pretopological modification of \(q \), which is the finest pretopological convergence structure on \(X \) coarser than \(q \).

Definition 2.3. ([5]). For any ordinal \(\alpha, p \in C(X) \) and \(G \in F(X) \), we define the neighborhood filter \(\mathcal{V}_p(G) \) and the interior filter \(I_p(G) \) of \(G \), respectively, as follows:

\[
\mathcal{V}_p^1(G) = \mathcal{V}_p(G), \quad \mathcal{V}_p^\alpha(G) = \{ A \subseteq X : I^\alpha_p(A) \in G \}.
\]

\[
I_p^1(G) = I_p(G), \quad I_p^\alpha(G) = \{ I^\alpha_p(G) : G \in \mathcal{V}_p(G) \} \quad \text{if} \quad I_p(G) \neq \emptyset, \quad \forall G \in \mathcal{G},
\]

where \([\mathcal{B}] \) means the filter generated by \(\mathcal{B} \) if \(\mathcal{B} \) is a filter base.

Then we know that if \(\alpha < \beta \), then \(\mathcal{V}_p^\beta(G) \leq \mathcal{V}_p^\alpha(G) \leq G \leq I_p^\alpha(G) \leq I_p^\beta(G) \).

PROPOSITION 2.4. For any ordinals \(\alpha, \beta, x \in X \) and \(A \subseteq X \),

1. \(I^\alpha q^+\beta(A) = I^\beta_q(I^\alpha q(A)) \).
2. \(\mathcal{V}^\alpha q^+\beta(x) = \mathcal{V}^\beta q(I^\alpha q(x)) \).

Proof. (1) Let \(\alpha \) be a fixed ordinal. We use transfinite induction on \(\beta \). If \(\beta = 1 \), \(I^\alpha q^+1 = I_q(I^\alpha q(A)) \) follows by definition. Next, let \(\beta \) be any arbitrary ordinal.

Case 1. Assume that there exists \(\bar{\beta} \) such that \(\bar{\beta} + 1 = \beta \). By the induction hypothesis, \(I^\alpha q^+\bar{\beta}(A) = I^\bar{\beta}_q(I^\alpha q(A)) \), and so \(I^\alpha q^+\beta(A) = I^\alpha q^+\bar{\beta}+1(A) = I_q(I^\alpha q^+\bar{\beta}(A)) = I_q(I^\beta_q(I^\alpha q(A))) = I^\beta_q(I^\alpha q(A)) \).

Case 2. Assume that \(\beta \) is a limit ordinal. \(I^\alpha q^+\beta(A) = \cap_{\gamma < \beta} I^\alpha q^+\gamma(A) = \cap_{\gamma < \beta} I^\gamma_q(I^\alpha q(A)) = I^\beta_q(I^\alpha q(A)) \).
(2) \(A \in \mathcal{V}_q^{\alpha+\beta}(x) \iff x \in I_q^{\alpha+\beta}(A) \iff x \in I_q^\beta(I_q^\alpha(A)) \iff I_q^\alpha(A) \in \mathcal{V}_q^\beta(x) \iff A \in \mathcal{V}_q^\alpha(\mathcal{V}_q^\beta(x)). \)

Corollary 2.5. For any ordinals \(\alpha, \beta, \) and \(F \in F(X), \)

1. \(I_q^{\alpha+\beta}(F) = I_q^\beta(I_q^\alpha(F)) \) if these are filters.
2. \(\mathcal{V}_q^{\alpha+\beta}(F) = \mathcal{V}_q^\alpha(\mathcal{V}_q^\beta(F)). \)

3. \(p \)-Topological Convergence Spaces

In this section, we will summation some propositions about \(p \)-topological convergence space of [5] and [6], and change two propositions, which are the following Theorem 3.4 and 3.7.

Henceforth \((X, q)\) means a convergence space equipped with a second convergence structure \(p. \)

Definition 3.1. ([5]). A convergence space \((X, q)\) is \(p \)-topological iff \(F \overset{q}{\rightarrow} x \) implies that there exists a \(G \overset{q}{\rightarrow} x \) such that \(F \geq I_p(G). \)

Proposition 3.2. ([5]). \((X, q)\) is \(p \)-topological, iff \(F \overset{q}{\rightarrow} x = \Rightarrow \mathcal{V}_p(F) \overset{q}{\rightarrow} x. \)

Proposition 3.3. ([5]). Let \((X, q)\) be a pretopological convergence. Then \((X, q)\) is \(p \)-topological iff \(\mathcal{V}_q(x) = I_p(\mathcal{V}_q(x)) \).

Proof. \((\Rightarrow)\) Since \(\mathcal{V}_q(x) \overset{q}{\rightarrow} x \) and \((X, q)\) is \(p \)-topological, there exists \(G \overset{q}{\rightarrow} x \) such that \(\mathcal{V}_q(x) \geq I_p(G). \) Then \(G \geq \mathcal{V}_q(x) \), so \(G \geq I_p(G) \). This implies \(G = \mathcal{V}_q(x) = I_p(G) = I_p(\mathcal{V}_q(x)) \)

\((\Leftarrow)\) Let \(F \overset{q}{\rightarrow} x. \) Then \(F \geq \mathcal{V}_q(x) = I_p(\mathcal{V}_q(x)). \) Thus, \((X, q)\) is \(p \)-topological, since \(\mathcal{V}_q(x) \overset{q}{\rightarrow} x. \)

Theorem 3.4. If \((X, q)\) is a pretopological and \(p \)-topological, then \(q \leq \pi^\omega p. \)
Proof. Since (X, q) is a pretopological and p-topological, $V_q(x) = I_p(V_q(x))$.

Claim: $V_q(x) \leq V_\omega^p(x)$. Let $V \in V_q(x)$. Then $I_p(V) \subseteq I_p(V_q(x)) = V_q(x)$. By Induction, $I_p^n(V) \subseteq V_q(x)$ for all $n \in \mathbb{N}$, so $x \in I_p^n(V)$ for all $n \in \mathbb{N}$. Thus $x \in \cap_{n<\omega} I_p^n(V) = I_\omega^p(V)$, and hence $V \subseteq V_\omega^p(x)$. Thus the Claim is proved.

From $V_\omega^p(x) = V_\pi^\omega(x)$, we obtain $q \leq \pi^\omega p$. □

Proposition 3.5. ([5]). Let p and q be topological. Then (X, q) is p-topological iff $q \leq \pi^\omega p$.

Proof. Since q is topological, $V_q(x)$ has a filter base of q-open sets.

(\implies) Since (X, q) is p-topological and topological, by Theorem 3.4, $q \leq \pi^\omega p = p$.

(\impliedby) Let $q \leq p$. Then $I_q(A) \subseteq I_p(A) \subseteq A$. This implies that each q-open set is p-open, so $I_p(V_q(x)) = V_q(x)$, by Proposition 3.3. (X, q) is p-topological. □

Proposition 3.6. ([5]). If (X, q) is p-topological and $p < p'$, then (X, q) is p'-topological.

Proof. It follows from $p < p'$ implies $I_p(\mathcal{G}) \supseteq I_p'(\mathcal{G})$. □

Note that for $q \in C(X)$, $\tau_q = \{ A \subseteq X : I_q(A) = A \}$ is a topology on X and τ_q is the convergence structure defined by

$$\tau_q(\mathcal{F}) \overset{q}{\rightsquigarrow} x \iff V_{\tau_q}(x) \subseteq \mathcal{F}, \text{ for each } \mathcal{F} \in F(X),$$

where $V_{\tau_q}(x)$ is the τ_q-neighborhood filter at $x \in X$. Then τ_q is the finest topological convergence structure on X coarser than q.([5]).

Now, we obtain the following theorem, which is different from Corollary 2.4 of [6].

Theorem 3.7. If (X, q) is p-topological, then:

1. $(X, \pi q)$ is p-topological and $\tau_q \leq \pi q \leq \pi^\omega p$.
2. $(X, \tau q)$ is p-topological.
Proof. (1) Let \(F \rightarrow x \); then there exists a \(G \rightarrow x \) such that \(F \geq I_p(G) \geq I_p(V_q(x)) \). This holds for every \(F \rightarrow x \), so

\[
V_{\pi q}(x) = V_q(x) = \bigcap \{ F \in F(X) : F \rightarrow x \} \geq I_p(V_q(x)) = I_p(V_{\pi q}(x)).
\]

Thus \((X, \pi q)\) is \(p \)-topological, so the first part is proved.

It is clear that \(\tau q \leq \pi q \). Since \((X, \pi q)\) is \(p \)-topological and pre-topological, by Theorem 3.4, \(\pi q \leq \pi^\omega p \).

(2) Since \((X, \tau q)\) is \(\tau q \)-topological and \(\tau q \leq \pi q \leq \pi^\omega p \leq p \), by Proposition 3.6, \((X, \tau q)\) is \(p \)-topological. \(\square \)

Definition 3.8 For \(q, p \in C(X) \), \(\tau_p q \) is defined by:

\[
F \rightarrow x \iff \exists G \rightarrow x \text{ and } n \in N \text{ such that } F \geq V^n_p(G).
\]

Proposition 3.9. For \(q, p \in C(X) \), \((X, \tau_p q)\) is \(p \)-topological.

Proof. Let \(F \rightarrow x \). Then there exists \(G \rightarrow x \) and \(n \in N \) such that \(F \geq V^n_p(G) \), so \(V_p(F) \geq V_p(V^n_p(G)) = V^n+1_p(G) \), [5]. Thus \(V_p(F) \rightarrow x \). This means \((X, \tau_p q)\) is \(p \)-topological. \(\square \)

4. Relations between Decomposition Series and Topological Series of Convergence Spaces

In this section, we will remind “topological series” defined by [5] and show relations between decomposition series and supratopological series, the formul\(\pi^\beta(\tau_\alpha q) = \pi^{\omega^\alpha \beta} q \), where \(\omega \) is the first limit ordinal and \(\alpha \) and \(\beta(\geq 1) \) are ordinals.

Let \(q \in C(X) \) and \(\alpha \geq 0 \) ordinal number. The topological series for \(q \) is the descending ordinal sequence \(\{\tau_\alpha q\} \) defined recursively on \(X \) as follows:

\[
\begin{align*}
\tau_0 q &= q \\
\tau_1 q : F \rightarrow x &\iff \exists G \rightarrow x \text{ and } n \in N \text{ such that } F \geq V^n_q(G)
\end{align*}
\]
τ_2q : F \xrightarrow{\tau_2q} x \iff \exists G \xrightarrow{q} x \text{ and } n \in N \text{ such that } F \geq V_n(\tau_1q)(G)

τ_3q : F \xrightarrow{\tau_3q} x \iff \exists G \xrightarrow{q} x \text{ and } n \in N \text{ such that } F \geq V_n(\tau_2q)(G)

\vdots

τ_\alpha q : F \xrightarrow{\tau_\alpha q} x \iff \exists G \xrightarrow{q} x \text{ and } n \in N \text{ and } \beta < \alpha \text{ such that } F \geq V_n(\tau_\beta q)(G),

where we know that \(\tau_1q = \tau_q q, \tau_2q = \tau_{\tau_1q}q = \tau_{\tau_qq}q, \ldots \), etc.

Also, we know that if there exists \(\alpha' \) such that \(\alpha = \alpha' + 1 \), then

F \xrightarrow{\tau_{\alpha'}q} x \iff \exists G \xrightarrow{q} x \text{ and } n \in N \text{ such that } F \geq V_n(\tau_{\alpha}q)(G),

Proposition 4.1. ([5]). For \(q \in C(X) \), there exists \(\tilde{q} \) which is the finest \(q \)-topological convergence structure on \(X \), and \(F \xrightarrow{\tilde{q}} x \iff F \geq V^n_q(x) \) for some \(n \in N \).

Lemma 4.2. If \(G \xrightarrow{q} x \), then \(V^{n+1}_q(x) \leq V^n_q(G) \).

Proof. A \(\in V^{n+1}_q(x) \implies x \in I^{n+1}_q(A) \implies x \in I_q(I^n_q(A)) \implies I^n_q(A) \in V_q(x) \implies I^n_q(A) \in G \), since \(G \xrightarrow{q} x \implies G \geq V_q(x) \). Thus \(A \in V^n_q(G) \). \(\square \)

Proposition 4.3. \(\tilde{q} = \tau_1q \).

Proof. We have already known \(\tilde{q} \geq \tau_1q \), so it remain to show \(\tau_1q \geq \tilde{q} \).

Let \(F \xrightarrow{\tau_1q} x \). Then there exists \(G \xrightarrow{q} x \) and \(n \in N \) such that \(F \geq V^n_q(G) \).

By the above Lemma, \(F \geq V^n_q(G) \geq V^{n+1}_q(x) \), so \(F \xrightarrow{\tilde{q}} x \). \(\square \)

Proposition 4.4. (1) \(q \geq \pi^n q \geq \tilde{q} \geq \pi^\omega q \). (2) \(\pi(\tau_1q) = \pi^\omega q \).

Proof. (1) It is clear that \(q \geq \pi^n q \). Let \(n \in N \) and \(F \in F(X) \). Then \(F \xrightarrow{\pi^n q} x \iff F \geq V^n_q(x) \implies F \xrightarrow{\tilde{q}} x \), since \(x \xrightarrow{\tilde{q}} x \). Thus, \(\pi^n q \geq \tilde{q} \) for each \(n \in N \).
Also, $\mathcal{F} \xrightarrow{\bar{q}} x \iff \exists n \in N$ such that $\mathcal{F} \geq V^m_q(x) \geq \cap_{m<\omega} V^m_q(x) = V^\omega_q(x) = V^\omega_{\pi_q}(x) = V^\omega_{\pi(\tau_1 q)}(x) \iff \mathcal{F} \xrightarrow{\pi_q} x$.

(2) Since $\bar{q} = \tau_1 q$, by (1), $\pi(\tau_1 q) \geq \pi(\pi_q) = \pi_q$. While, by Theorem 3.7, $\pi(\tau_1 q) \leq \pi_q$, since $\tau_1 q$ is a q-topological. Thus, $\pi(\tau_1 q) = \pi_q$.

We know that for $q \in C(X)$, the first term in the topological series for q is $\tau_1 q = \bar{q}$. $\tau_1 q$ is the finest topological convergence structure on X and also the lower q-topological modification of q, since $\tau_1 q = \bar{q} \leq \pi_q \leq q$. Note that q has no upper q-topological modification unless q is a topology. We next show that that $\tau_2 q$ is related to $\tau_1 q$ exactly as $\tau_1 q$ is related to q. Note that the lower $\tau_1 q$-topological modification of $\tau_1 q$ is $\tilde{\tau}_1 q$ defined by:

$\mathcal{F} \xrightarrow{\tilde{\tau}_1 q} x \iff \exists G \xrightarrow{\tau_1 q} x$ and $n \in N$ such that $\mathcal{F} \geq V^n_{\tau_1 q}(G)$.

Proposition 4.5. For any $q \in C(X)$, $\tau_2 q = \tilde{\tau}_1 q$.

Proof. $\mathcal{F} \xrightarrow{\tau_2 q} x \implies \exists G \xrightarrow{q} x$ and $n \in N$ such that $\mathcal{F} \geq V^n_{\tau_1 q}(G)$. But $G \xrightarrow{\tau_1 q} x$ since $\tau_1 q \leq q$. Thus $\mathcal{F} \xrightarrow{\tilde{\tau}_1 q} x$.

Conversely, $\mathcal{F} \xrightarrow{\tilde{\tau}_1 q} x \implies \exists G \xrightarrow{\tau_1 q} x$ and $n \in N$ such that $\mathcal{F} \geq V^n_{\tau_1 q}(G)$. Also, $G \xrightarrow{\tau_1 q} x \implies \exists H \xrightarrow{q} x$ and $m \in N$ such that $G \geq V^m_q(H)$. Thus $\mathcal{F} \geq V^n_{\tau_1 q}(V^m_q(H)) \geq V^n_{\tau_1 q}(V^m_{\tau_1 q}(H)) = V^{n+m}_{\tau_1 q}(H)$. Thus $\mathcal{F} \xrightarrow{\tau_2 q} x$. □

Proposition 4.6. $\pi(\tau_1 q) = \pi_q$ and $\pi(\tau_2 q) = \pi_q(\tau_1 q)$.

Proof. The first equality follows from the Proposition 4.4. The second equality follows from $\pi(\tau_2 q) = \pi(\tilde{\tau}_1 q) = \pi_q(\tau_1 q)$. □

Proposition 4.7. If α is a limit ordinal, $\mathcal{V}_q^\alpha(x) = \cap_{\beta<\alpha} \mathcal{V}_q^\beta(x)$.
\[
\text{Proof. } A \in \mathcal{V}_q^\alpha(x) \iff x \in I_q^\alpha(A) = \cap_{\beta < \alpha} I_q^\beta(A) \iff x \in I_q^\beta(A), \forall \beta < \alpha \iff A \in \mathcal{V}_q^\beta(x), \forall \beta < \alpha \iff A \in \cap_{\beta < \alpha} \mathcal{V}_q^\beta(x). \quad \blacksquare
\]

Proposition 4.8. \(\mathcal{V}_{\tau_n q}(x) = \mathcal{V}_q^{\omega^n}(x) \) and \(\mathcal{V}_{\tau\omega q}(x) = \mathcal{V}_q^{\omega^\omega}(x) \) for all \(x \in X \).

Proof. As we showed in Proposition 4.6, \(\pi(\tau_2 q) = \pi^\omega(\tau_1 q) \). Thus for any \(x \in X \), \(\mathcal{V}_{\tau_2 q}(x) = \mathcal{V}^\omega_{\tau_1 q}(x) \). Also, by Proposition 4.4, \(\mathcal{V}_{\tau_1 q}(x) = \mathcal{V}^\omega_q(x) \). By Corollary 2.5, \(\mathcal{V}^2_{\tau_1 q}(x) = \mathcal{V}_{\tau_1 q}(\mathcal{V}^\omega_{\tau_1 q}(x)) = \mathcal{V}_q(\mathcal{V}^\omega_q(x)) = \mathcal{V}^{\omega^2}_q(x) \). Similarly, \(\mathcal{V}^n_{\tau_1 q}(x) = \mathcal{V}^{\omega^n}_q(x) \). Thus \(\mathcal{V}^\omega_{\tau_1 q}(x) = \cap_{n<\omega} \mathcal{V}^{\omega^n}_q(x) = \mathcal{V}^{\omega^2}_q(x) \).

Expanding the reasoning of Proposition 4.6, we have \(\mathcal{V}_{\tau_3 q}(x) = \mathcal{V}^\omega_{\tau_2 q}(x) \), for all \(x \in X \), since \(\pi(\tau_3 q) = \pi^\omega(\tau_2 q) \). \(\mathcal{V}^2_{\tau_2 q}(x) = \mathcal{V}_{\tau_2 q}(\mathcal{V}^\omega_{\tau_2 q}(x)) = \mathcal{V}^{\omega^2}_q(x) \). Similarly, \(\mathcal{V}^n_{\tau_2 q}(x) = \mathcal{V}^{\omega^n}_q(x) \), so \(\mathcal{V}_{\tau_3 q}(x) = \mathcal{V}^{\omega^3}_q(x) \). Likewise, we obtain \(\mathcal{V}^n_{\tau_{\omega q}}(x) = \mathcal{V}^{\omega^n}_q(x) \). This implies that \(\mathcal{V}_{\tau\omega q}(x) = \mathcal{V}^\omega_q(x) \). \(\quad \blacksquare \)

For \(q \in C(X) \) and any ordinal \(\alpha \), let \(\tau_0 q \) and \(\sigma_0 q \) be defined inductively by \(\tau_0 q = \sigma_0 q \) and:

\[
\mathcal{F} \xrightarrow{\tau_0 q} x \iff \exists \mathcal{G} \xrightarrow{\tau_1 q} x, \text{ } n \in N \text{ and } \beta < \alpha \text{ such that } \mathcal{F} \geq V^n_{\sigma_\beta q}(\mathcal{G}),
\]

\[
\mathcal{F} \xrightarrow{\sigma_0 q} x \iff \exists \mathcal{G} \xrightarrow{\sigma_\beta q} x, \text{ } n \in N \text{ and } \beta < \alpha \text{ such that } \mathcal{F} \geq V^n_{\sigma_\beta q}(\mathcal{G}),
\]

Note that \(\tau_1 q = \sigma_1 q \) is the lower \(q \)-topological modification of \(q \). If \(\alpha + 1 \) is any non-limit ordinal, \(\sigma_{\alpha+1} q = \tau_1(\sigma_\alpha q) \); in other words, \(\sigma_{\alpha+1} q \) is the lower \(\sigma_\alpha q \)-topological modification of \(\sigma_\alpha q \). If \(\alpha \) is a limit ordinal, \(\sigma_\alpha q = \inf \{ \sigma_\beta q : \beta < \alpha \} \). Our first goal is to prove \(\sigma_\alpha q = \tau_\alpha q \) for every ordinal \(\alpha \).

Proposition 4.9. For any ordinal \(\alpha \), \(\tau_\alpha q \geq \sigma_\alpha q \).
Decomposition Series and Topological Series

Proof. Assume that \(\tau_\beta q \geq \sigma_\alpha q \) for every ordinal \(\beta < \alpha \). Then
\[F \xrightarrow{\tau_\alpha q} x \implies \exists G \xrightarrow{q} x \text{ and } \beta < \alpha \text{ such that } F \geq V^n_{\tau_\beta q}(G) \geq V^n_{\sigma_\alpha q}(G). \]

Also, since \(G \xrightarrow{q} x, G \xrightarrow{\sigma_\alpha q} x \), thus \(F \xrightarrow{\sigma_\alpha q} x \). \(\square \)

Proposition 4.10. For any ordinal \(\alpha \), \(\tau_\alpha q = \sigma_\alpha q \).

Proof. The result is known for \(\alpha = 1 \). Assume the equality holds for \(\beta < \alpha \). By Proposition 4.9, it remains to show that \(F \xrightarrow{\sigma_\alpha q} x \implies F \xrightarrow{\tau_\alpha q} x \).

Case 1. \(\exists \alpha' \) such that \(\alpha = \alpha' + 1 \). Let \(F \xrightarrow{\sigma_{\alpha'} q} x \). Then there exists \(F \xrightarrow{\sigma_{\alpha'} q} x \) and \(n \in \mathbb{N} \) such that \(F \geq V^n_{\sigma_{\alpha'} q}(G) = V^n_{\tau_{\alpha'} q}(G) \). Also, by induction hypothesis, \(G \xrightarrow{q} x \), so there exists \(\mathcal{H} \xrightarrow{q} x, \beta < \alpha' \) and \(m \in \mathbb{N} \) such that \(G \geq V^m_{\tau_\beta q}(H) \). Thus, \(F \geq V^n_{\tau_{\alpha'} q}(G) \geq V^m_{\tau_{\alpha'} q}(V^n_{\tau_{\alpha'} q}(H)) \geq V^{n+m}_{\tau_{\alpha'} q}(H) \), and hence \(F \xrightarrow{\tau_\alpha q} x \).

Case 2. \(\alpha \) is a limit ordinal. Then by induction hypothesis, \(\tau_\beta q = \sigma_\beta q \) for \(\beta < \alpha \), so \(\sigma_\alpha q = \inf\{\sigma_\beta q : \beta < \alpha\} = \inf\{\tau_\beta q : \beta < \alpha\} = \tau_\alpha q \). \(\square \)

Proposition 4.11. For any ordinal \(\alpha \), \(\tau_1(\tau_\alpha q) = \tau_{\alpha+1} q \). Thus \(V_{\tau_{\alpha+1} q}(x) = V^\omega_{\tau_\alpha q}(x) \) for all \(x \in X \).

Proof. The first assertion follows by Proposition 4.10 and the note preceding Proposition 4.9. The second follows Proposition 4.6, since \(\pi(\tau_1 p) = \pi^\omega p \) holds for any convergence structure \(p \), letting \(p = \tau_\alpha q \). \(\square \)

Proposition 4.12. For any ordinal \(\alpha \) and \(x \in X \), \(V_{\tau_\alpha q}(x) = V_{\tau_q}^\alpha(x) \).

Proof. We will use induction on \(\alpha \). For \(\alpha = 1 \), the result follows by Proposition 4.11. Assume the equality holds for every \(\beta < \alpha \).

Case 1. Assume that there exists \(\alpha' \) such that \(\alpha = \alpha' + 1 \). then by Proposition 4.11, \(V_{\tau_{\alpha'} q}(x) = V_{\tau_{\alpha'} q}^\omega(x) \), where by induction hypothesis,
\(\forall_{\alpha', q}(x) = \forall_q^{\omega^{\alpha'}}(x) \). Thus \(\forall_{\alpha', q}^2(x) = \forall_{\alpha', q}^1(\forall_{\alpha', q}(x)) = \forall_q^{\omega^{\alpha'}2}(x) \), and similarly \(\forall_{\alpha', q}^n(x) = \forall_q^{\omega^{\alpha'}n}(x) \). Thus \(\forall_{\alpha', q}(x) = \forall_{\alpha', q}^{\omega}(x) = \bigcap_{n<\omega} \forall_{\alpha', q}^n(x) = \bigwedge_{n<\omega} \forall_q^{\omega^{\alpha'}n}(x) = \forall_q^{\omega^{\alpha'}\omega}(x) = \forall_q^{\omega^{\alpha'+1}}(x) = \forall_q^{\omega^{\alpha'}}(x) \).

Case 2. Assume that \(\alpha \) is a limit ordinal. By induction hypothesis, \(\forall_{\alpha', q}(x) = \forall_q^{\omega^{\alpha'}}(x) \) for \(\beta < \alpha \). Thus \(\forall_{\alpha', q}(x) = \bigcap_{\beta<\alpha} \forall_q^{\omega^{\beta}}(x) = \forall_q^{\omega^{\alpha'}}(x) \).

Consequently, our last result is the following Theorems.

Theorem 4.13. For every ordinal \(\alpha \) and \(\beta \geq 1 \) and every \(x \in X \),

1. \(\forall_{\alpha', q}(x) = \forall_q^{\omega^{\alpha'}}(x) \).
2. \(\pi^\beta(\tau_{\alpha}) = \pi^{\omega^{\alpha'}}q \).

Proof. (1) We will use induction on \(\beta \). For \(\beta = 1 \), the result follows by Proposition 4.12. Assume the equality holds for every \(\gamma < \beta \).

Case 1. \(\exists \beta' \) such that \(\beta = \beta' + 1 \). Then by Corollary 2.5, \(\forall_{\alpha', q}^\beta(x) = \forall_{\alpha', q}^{\beta'+1}(x) = \forall_{\alpha', q}^\beta(\forall_{\alpha', q}(x)) = \forall_{\alpha', q}^{\omega^{\alpha'}\beta'}(x) = \forall_q^{\omega^{\alpha'}\beta}(x) \).

Case 2. \(\beta \) is a limit ordinal. By induction hypothesis, \(\forall_{\alpha', q}^{\gamma}(x) = \forall_q^{\omega^{\alpha'}\gamma}(x) \) for \(\gamma < \beta \). Thus \(\forall_{\alpha', q}(x) = \bigcap_{\gamma<\beta} \forall_q^{\gamma\alpha'}(x) = \bigcap_{\gamma<\beta} \forall_q^{\omega^{\alpha'}\gamma}(x) = \forall_q^{\omega^{\alpha'}\beta}(x) \).

(2) By (1), it is clear.

Finally, we define the lengths of decomposition series and topological series of \(q \in C(X) \), \(l_D q \), and \(l_T q \), respectively by:

\[
\begin{align*}
l_D q &= \inf\{ \lambda : \lambda \text{ is an ordinal such that } \pi^{\lambda}q = \pi^{\lambda+1}q \}, \\
l_T q &= \inf\{ \lambda : \lambda \text{ is an ordinal such that } \tau_{\lambda}q = \tau_{\lambda+1}q \}.
\end{align*}
\]

We know that \(l_D q = \inf\{ \lambda : \lambda \text{ is an ordinal s.t. } I_{\lambda}^\alpha(A) = I_{\lambda+1}^\alpha(A), \forall A \subseteq X \} = \inf\{ \lambda : \lambda \text{ is an ordinal such that } \pi^{\lambda}q = q \} \).

Proposition 4.14. For \(q \in C(X) \) and an ordinal \(\alpha \),

1. If \(l_T q \leq \alpha \), then \(\tau_{\alpha}q = q \);
2. If \(l_T q \leq \alpha \), then \(l_D q \leq \omega^\alpha \).
Proof. (1) Let $\lambda = l_T q$. Then $\tau_{\lambda} q = \tau_{\lambda + 1} q = \tau q$. Since $\lambda \leq \alpha$, $\tau_{\lambda} q \geq \tau_{\alpha} q \geq \tau q$. Thus $\tau_{\alpha} q = \tau q$.

(2) Since $l_T q \leq \alpha$, $\tau_{\alpha} q = \tau q$. Thus $\pi(\tau_{\alpha} q) = \pi(\tau q)$, so $\pi^{\omega_{\alpha}} q = \tau q$. Finally, $l_D q \leq \omega^\alpha$. \hfill \Box

References

Department of Mathematics,
College of Natural Science,
Geongsang National University
Jinju 660-701 Korea
E-mail: sanghop@nongae.gsmu.ac.kr