A NOTE ON THE AUSTIN’S GROUPOIDS

JUNG R. CHO AND JÓZEF DUDEK

Abstract. On a groupoid satisfying the Austin’s identity, every
n-ary linear term is essentially n-ary. That is, if a term has no
variables appearing more than once, then the term depends on
every variable it involves.

1. Introduction

A groupoid is a pair \((G, \cdot)\) of a set \(G\) and a binary operation \(\cdot\)
defined on \(G\). A term or a word in a set \(X = \{x_1, x_2, \cdots\}\) of symbols
is an expression built up from \(X\) using the groupoid operation. We
use the notation \(x^2\) for the term \(xx\). Thus \(x^2x, xx^2\) and \(x^2x^2\) represent
\((xx)x, x(xx)\) and \((xx)(xx)\), respectively.

A term is called \(n\)-ary if it involves \(n\) distinct variables in its expres-
sion, and linear if each variable appears at most once in the expression.
On a groupoid \((G, \cdot)\), an \(n\)-ary term \(f(x_1, x_2, \cdots, x_n)\) defines a map-
ing of \(G^n\) into \(G\) by substitution. A mapping defined by a term in
this way is called a term function. An \(n\)-ary term is called essentially
\(n\)-ary over a groupoid \((G, \cdot)\) if, as a term function, it depends on each
\(x_i\) for \(i = 1, 2, \cdots, n\). That is,

\[f(a_1, \cdots, a_{i-1}, b, a_{i+1}, \cdots, a_n) \neq f(a_1, \cdots, a_{i-1}, c, a_{i+1}, \cdots, a_n) \]

for some elements \(a_1, \cdots, a_{i-1}, a_{i+1}, \cdots, a_n, b, c\) in \(G\).
By $p_n(G, \cdot)$, we denote the number of all essentially n-ary terms over (G, \cdot) for all $n \geq 0$. We say that a groupoid (G, \cdot) is term infinite if $p_n(G, \cdot)$ is infinite for all $n \geq 2$. Of course, term infinite algebras are infinite but not conversely.

A groupoid (G, \cdot) is called nontrivial if G has more than one element, and proper if the basic operation xy is essentially binary. In another word, a groupoid which is neither a left-zero semigroup nor right-semigroup is proper.

The groupoid identity

\[(A) \quad ((y^2y)x)(y^2(y^2y)z) = x\]

is called the Austin’s identity, and a groupoid (G, \cdot) satisfying this identity is called an Austin’s groupoid. Since its appearance in [1], this identity appeared in many papers ([3], [4], [5], [6], [8]), because the identity initiated the research on identities which have no nontrivial finite models.

A nontrivial Austin’s groupoid has the following interesting properties.

Theorem 1. ([1], [2]) *Every nontrivial Austin’s groupoid is infinite.*

Theorem 2. ([6]) *Every nontrivial Austin’s groupoid is term-infinite.*

In [7], in comparison with the Austin’s identity, it was shown that the identity $((y^2y)x)(y^2z) = x$ is the shortest groupoid identity which has no nontrivial finite models.

In this paper, we show the following theorem.

Theorem 3. *On a non-trivial Austin’s groupoid, every n-ary linear term is essentially n-ary for all $n \geq 1$.*
2. Some properties of Austin’s groupoids

An element \(a \) of a groupoid is called \textit{idempotent} if \(a^2 = a \).

For every \(n \geq 1 \), define two special terms \(f_n \) and \(g_n \) by
\[
\begin{align*}
 f_n(x_1, x_2, \ldots, x_n) &= (\cdots((x_1x_2)\cdots)x_{n-1})x_n \\
 g_n(x_1, x_2, \ldots, x_n) &= x_1(x_2(\cdots(x_{n-2}(x_{n-1}x_n))\cdots)).
\end{align*}
\]

With a groupoid \((G, \cdot)\) and an element \(a \) of \(G \), we define a mapping \(T_a : G \rightarrow G \) by \(T_a(x) = (a^2a)x \) for all \(x \) in \(G \).

Lemma 2.1. If \((G, \cdot)\) is a nontrivial Austin’s groupoid, then we have the following.

i. For each \(a \) in \(G \), the mapping \(T_a \) is injective.

ii. \((G, \cdot)\) is proper.

iii. \((G, \cdot)\) has no idempotent element.

iv. The terms \(x \), \(x^2 \) and \(x^2x \) are essentially unary and pairwise distinct.

v. The terms \(f_n \) and \(g_n \) are essentially \(n \)-ary for all \(n \geq 1 \).

Proof. (i) If \(T_a(x) = T_a(y) \) then, by the Austin’s identity,
\[
 x = ((a^2a)x)((a^2(a^2)a)z) = (T_a(x))((a^2(a^2)a)z) = (T_a(y))((a^2(a^2)a)z) = ((a^2a)y)((a^2(a^2)a)z) = y.
\]

(ii) Assume that \(xy \) does not depend on \(x \), then we have \(xy = y^2 \). Putting \((u^2a)v \) for \(x \) and \((u^2(u^2a))z \) for \(y \) in this identity, we get
\[
 v = ((u^2a)v)((u^2(u^2a))z) = xy = y^2 = (u^2(u^2a))z^2,
\]
which is impossible in a nontrivial groupoid. Assume now that \(xy \) does not depend on \(y \), then we have \(xy = x^2 \) and so \(T_a(b) = (a^2a)b = (a^2a)^2 \) for all \(b \) in \(G \). That is, \(T_a \) is constant, which contradicts (i). Therefore, \(xy \) is essentially binary. (iii) Suppose to the contrary that \((G, \cdot)\) has an idempotent element, say \(a \). Note that \(a^2a = a^2(a^2a) = a \) and so \((ax)(ay) = ((a^2a)x)(a^2(a^2a))y = x \). In particular, \(a(ay) = (aa)(ay) = a \). Putting \(au \) for \(x \) in \(x = (ax)(ay) \), we obtain that \(au = (a(au))(ay) = a(ay) = a \) and hence \(x = (ax)(ay) = aa = a \), a contradiction. (iv) By (iii), \(x^2 \) is essentially unary and \(x^2 \neq x \). Assume \(x^2x = c \), a constant. Then \(x = ((y^2y)x)((y^2(y^2y))z) = (cx)((y^2c)z) \).
Putting $y = c$, we get $x = (cx)((c^2)c) = (cx)(cz)$. Putting c for x and y, we have $c = c^2c^2$. Putting c^2 for x in $c = x^2x$ we have $c = (c^2)c^2 = cc^2$. Now putting c^2 for x in $(cx)(cz)$, we have $c^2 = (cc^2)(cz) = c(cz)$ and so $c^2 = cc^2 = c$, a contradiction to (iii). Thus x^2x is essentially unary. Now we show that $x^2x \neq x$. Assume $x^2x = x$, then $x = ((y^2y)x)((y^2y)z) = (yx)((y^2y)z) = (xy)(yz)$. Putting x^2 for y, we have $x = (x^2x)(x^2z)$ and hence $xx = (x^2x)(x^2x) = x$, a contradiction to (iii). Thus $x^2x \neq x$. Now assume $x^2x = x^2$, then

\[x^2 = (y^2x^2)((y^2y)^2)z. \]

Putting x for y and x^2 for z in (1), we have $x^2 = (x^2x^2)((x^2x^2)x^2) = (x^2x^2)((x^2x^2)x^2) = (x^2x^2)(x^2x^2) = (x^2x^2)x^2 = (x^2x^2) = (x^2)^2$. That is, x^2 is an idempotent element, which is a contradiction to (iii). Thus $x^2x \neq x^2$. (v) We use induction on n. It is clear for $n = 1, 2$ as (G, \cdot) is proper. Let $n \geq 3$ and assume that g_k are essentially k-ary for $1 \leq k \leq n - 1$. By (A), we have

\[
g_{n-1}(x_2, \ldots, x_{n-1}) = x_2(x_3(\cdots (x_{n-1}x_n)\cdots))
\]

\[
= [(y^2y)(x_2(x_3(\cdots (x_{n-1}x_n)\cdots)))]((y^2y)^2)z)
\]

\[
= g_n(y^2y, x_2, \ldots, x_n)(y^2y)z).
\]

By induction hypothesis, g_{n-1} and hence g_n depends on x_2, \ldots, x_n. We also have

\[
g_{n-1}(x_1, x_2, \ldots, x_{n-1}) = x_1(x_2(\cdots (x_{n-2}x_{n-1})\cdots))
\]

\[
= x_1(x_2(\cdots (x_{n-2}(y^2y)_{n-1})(y^2y))z))\cdots))
\]

\[
= g_n(x_1, x_2, \ldots, x_{n-2}, (y^2y)_{n-1}, (y^2y)z).
\]

By induction hypothesis, g_{n-1} and hence g_n depends on x_1. Thus g_n depends on all its variables. To prove f_n is essentially n-ary for $n \geq 3$, we first show that $f_3(x, y, z) = (xy)z$ is essentially ternary. Assume f_3 does not depend on x. Then $(xy)z = (uy)z$. Putting $(x^2x)y$ for x and $(x^2(x^2x))z$ for y in this identity, we have $[(x^2x)y][(x^2x^2)z]z = [u((x^2(x^2x))^2)]z$, and so $yz = [u((x^2(x^2x))^2)]z$. This implies that yz does not depend on y, which is a contradiction to (ii). Thus, f_3 depends on x. Since $y = ((x^2x)y)((x^2x^2)z) = f_3(x^2x, y, x^2(x^2x))z$ we
infer that f_3 depends on y. Using (A) again, we infer that f_3 depends on z by the identity $uz = (((x^2x)u)((y^2(y^2)))v)z = f_3((x^2x)u, (y^2(y^2))v, z)$. Thus we have proved that f_3 is essentially ternary. Now, suppose $n > 3$ and assume that f_k is essentially k-ary for $2 \leq k \leq n - 1$. Observe that, by the identity (A), we have

$$f_{n-1}(x_2, x_3, \ldots, x_n) = f_n((x^2x)x_2, (x^2(x^2)x)z, x_3, \ldots, x_n)$$

Thus we have proved that f_n is essentially ternary. Now, suppose $n > 3$ and assume that f_k is essentially k-ary for $2 \leq k \leq n - 1$. Observe that, by the identity (A), we have

$$f_{n-1}(x_2, x_3, \ldots, x_n) = f_n((x^2x)x_2, (x^2(x^2)x)z, x_3, \ldots, x_n)$$

Thus, by induction hypothesis, we deduce that f_n depends on all variables. That is, f_n is essentially n ary for all $n \geq 2$.

Corollary 2.2. For a nontrivial Austin’s groupoid (G, \cdot), we have $p_n(G, \cdot) \geq 2$ for all $n \geq 1$.

Lemma 2.3. Let (G, \cdot) be a nontrivial Austin’s groupoid. Then we have

i. For mappings $\phi_1, \phi_2 : G \to G$, we have $\phi_1 = \phi_2$ if and only if $\phi_1(xy) = \phi_2(xy)$ for all $x, y \in G$. Here, xy can be replaced by f_n or g_n for any $n \geq 1$.

ii. For any a in G, the mappings T_a is not the identity mapping.

iii. The mapping $n \mapsto T_a^n$ is injective or there exists an integer m such that $T_a^n(x) = x$ for all x in G.

iv. The term $(x^2x)y$ depends on y and $(x^2x)y \neq y$.

Proof. (i) Assume that $\phi_1(xy) = \phi_2(xy)$. Putting $(y^2y)x$ for x and $(y^2(y^2))z$ for y, we have $\phi_1(x) = \phi_2(x)$. Further proof proceeds by induction on the arity of the terms. (ii) Assume that $T_a(x) = x$ for some a and all $x \in G$. Then we have $(a^2a)x = x$. Putting $x = a^2a$ we see that a^2a is idempotent, which contradicts Lemma 2.1(iii). Thus $T_a \neq Id$. (iii) Suppose the mapping $n \mapsto T_a^n$ is not injective, then $T_a^j = T_a^k$ for some $j < k$. Then $T_a^{k-j}(T_a^j(b)) = T_a^k(b) = T_a^j(b)$ for all b in G. Since T_a and hence T_a^j is injective by Lemma 2.1(i), we see that $T_a^k-auto(x) = x$ for all x in G. That is, $T_a^{k-j} = Id$. (iv) The fact that $(x^2x)y$ depends on y follows from Lemma 2.1(i). If $(x^2x)y = y$, then $(x^2x)(x^2x) = x^2x$, which contradicts Lemma 2.1(iii). Thus $(x^2x)y \neq y$. □
3. Proof of Theorem

In this section, we prove Theorem 3 by induction on the arity of linear terms.

For \(n = 1, 2, 3 \), the conclusion follows by Lemma 2.1. Let \(n \geq 4 \) and assume that the assertion is true for all \(k \)-ary linear terms for \(1 \leq k \leq n-1 \). Let \(f \) be an \(n \)-ary linear term. So, all variables in \(f \) are mutually distinct. We have two cases: (1) \(f \) contains at least two subterms of the form \(x_ix_j \) and (2) \(f \) contains only one subterm of the form \(x_ix_j \). Assume case (1) and so \(f \) contains subterms \(x_1x_2 \) and \(x_3x_4 \) after relabeling of variables if needed. Then, there are \((n-1)\)-ary linear terms \(g \) and \(h \) such that

\[
 f(x_1, x_2, \ldots, x_n) = g(x_1x_2, x_3, \ldots, x_n) = h(x_1, x_2, x_3x_4, x_5, \ldots, x_n).
\]

Then using (A) we have

\[
 f((y^2y)x_1, (y^2y)x_3, \ldots, x_n) = g(x_1, x_3, \ldots, x_n)
\]

and

\[
 f(x_1, x_2, (y^2y)x_3, (y^2y)x_5, \ldots, x_n) = h(x_1, x_2, x_3x_4 \ldots, x_n).
\]

Since \(g \) and \(h \) are essentially by induction hypothesis, these identities show that \(f \) depends on all \(x_1, x_2, \ldots, x_n \), i.e., \(f \) is essentially \(n \)-ary. Now, consider case (2). Since \(n \geq 4 \), \(f \) contains a subterm of the form \((x_1x_2)x_3 \) or \(x_3(x_1x_2) \). There is a \((n-1)\)-ary linear term \(g \) such that \(f(x_1, x_2, \ldots, x_n) = g(x_1x_2, x_3, \ldots, x_n) \), and then we have

\[
 f((y^2y)x_1, (y^2y)x_3, \ldots, x_n) = g(x_1, x_3, \ldots, x_n).
\]

By induction \(g \) depends on \(x_1, x_3, \ldots, x_n \), and hence so does \(f \). If \(f \) contains \((x_1x_2)x_3 \) as a subterm, let \(f(x_1, \ldots, x_n) = h((x_1x_2)x_3, x_4, \ldots, x_n) \) for some \((n-2)\)-ary linear term \(h \). Then \(f(y^2y, x_2, (y^2y)x_4, \ldots, x_n) = h(x_2, x_4, \ldots, x_n) \) and so \(f \) also depends on \(x_2 \). If \(f \) contains \(x_3(x_1x_2) \) as a subterm, since \(g_n \) is essentially \(n \)-ary by Lemma 2.1(v), we may assume that \(f \) is not of the form of \(g_n \). Then \(f \) is of the form

\[
 f(x_1, x_2, \ldots, x_n) = \ldots ([x_k(\ldots (x_3(x_1x_2)) \ldots)]x_{k+1}) \ldots
\]

for some \(k \geq 3 \). Putting \(y^2y \) for \(x_k \) and \((y^2y)z \) for \(x_{k+1} \), we have by (A) that

\[
 f(x_1, x_2, \ldots, x_{k-1}, y^2y, (y^2y)z, x_{k+2}, \ldots, x_n)
 = \ldots (\ldots (x_3(x_1x_2)) \ldots) \ldots,
\]
where the right-hand side is a linear term without the variables x_k and x_{k+1}. By induction, f depends on each variables appearing on the right-hand side, in particular on x_2 as well. Consequently, f depends on every variable it involves. This completes the proof.

REFERENCES

Department of Mathematics
Pusan National University
Busan 609-735, Korea
E-mail: jungcho@pusan.ac.kr

Mathematical Institute
University of Wroclaw
pl. Grunwaldzki 2/4
50-384 Wroclaw, Poland
E-mail: dudek@math.uni.wroc.pl