A STUDY ON WEAK BI-IDEALS OF NEAR-RINGS

YONG UK KO

Abstract. From the notion of bi-ideals in near-rings, various generalizations of regularity conditions have been studied. In this paper, we generalize further the notion of bi-ideals and introduce the notion of weak bi-ideals in near-rings and obtain some characterizations using this concept in left self distributive near-rings.

1. Introduction

In this paper, by a near-ring we mean a right near-ring. For basic definitions and notations, we may refer to Pilz [3]. Tamizh Chelvam and Ganesan [4] introduced the notion of bi-ideals in near-rings. Further Tamizh Chelvam [5] introduced the concept of b-regular near-rings and obtained equivalent conditions for regularity in terms of bi-ideals. In this paper the notion weak bi-ideals has been introduced and studied to the extent possible.

Let N be a right near-ring. For two subsets A and B of N, AB = \{ab | a ∈ A, b ∈ B\} and A*B = \{a_1(a_2 + b) - a_1a_2 | a_1, a_2 ∈ A and b ∈ B\}. A subgroup B of (N, +) is said to be a bi-ideal of N if BNB \cap (BN)*B ⊆ B [4]. In the case of a zero-symmetric near-ring, a subgroup B of (N, +) is a bi-ideal if BNB ⊆ B. A subgroup Q of (N, +) is called a quasi-ideal of N if QN \cap NQ \cap N*Q ⊆ Q [4]. If N is zero-symmetric, a subgroup Q of (N, +) is a quasi-ideal of N if QN \cap NQ ⊆ Q.

A near-ring N is said to be left (right)-unital if a ∈ Na(a ∈ aN) for all a ∈ N. A near-ring N is said to be unital if it is both left as well as right unital. An element a ∈ N is said to be regular if a = aba for some b ∈ N. A near-ring N is said to be regular if every element in N is regular. It may be noted that a regular near-ring is a unital near-ring, but not the converse. An element a ∈ N is said to be strongly regular if a = ba^2, for some b ∈ N. A near-ring N is called strongly regular if every element in N is strongly regular. N is said to satisfy IFP (Insertion of Factors Property) if ab = 0 implies axb = 0 for all x ∈ N.

Received May 25, 2007.

2000 Mathematics Subject Classification. 16Y30.

Key words and phrases. near-rings, bi-ideals, weak bi-ideals, left self distributive, strongly regular.

©2008 The Busan Gyeongnam Mathematical Society

145
A near-ring is called left bi-potent if $Na = Na^2$ for $a \in N$. A subgroup M of $(N, +)$ is said to be a left (right) N-subgroup if $NM \subseteq M(MN \subseteq M)$. A near-ring N is said to be two sided if every left N-subgroup is a right N-subgroup and vice versa. A near-ring N is called b-regular near-ring if $a \in (a)_N(N(a))$ for every $a \in N$ where $(a)_N$ is the right (left) N-subgroup generated by $a \in N$.[6]. Note that every regular near-ring is b-regular.

A near-ring N is said to be left self distributive if $abc = abac$ for all $a, b, c \in N$. Let E be the set of all idempotents of N and L the set of all nilpotent elements of N.

2. A Study on Weak Bi-ideals

In this section, we introduce weak bi-ideals and obtain some of the properties of this concept.

Definition 2.1. A subgroup B of $(N, +)$ is said to be a weak bi-ideal if $B^3 \subseteq B$.

Example 2.2. Every bi-ideal is a weak bi-ideal, but the converse is not true. For, consider the near-ring N constructed on the Klein’s 4-group according to the scheme $(0, 0, 2, 1)$ (p. 408, Pilz [3]). In this near-ring, one can check that $\{0, b\}$ and $\{0, c\}$ are weak bi-ideals. Note that $\{0, b\}N\{0, b\} = \{0, c, b\}$ and hence $\{0, b\}$ is not a bi-ideal of N.

Proposition 2.3. If B is a weak bi-ideal of a near-ring N and S is a sub near-ring of N, then $B \cap S$ is a weak bi-ideal of N.

Proof. Let $C = B \cap S$. Now $C^3 = (B \cap S)((B \cap S)(B \cap S)) \subseteq (B \cap S)(BB \cap SS) \subseteq (B \cap S)BB \cap (B \cap S)SS \subseteq BBB \cap SSS = B^3 \cap SS \subseteq B \cap S = C$, i.e., $C^3 \subseteq C$. Therefore C is a weak bi-ideal of N. □

Proposition 2.4. Let B be a weak bi-ideal of N. Then Bb and $b'B$ are the weak bi-ideals of N where $b, b' \in B$ and b' is a distributive element.

Proof. Clearly Bb is a subgroup of $(N, +)$. Also $(Bb)^3 = BbBbBb \subseteq BbB \subseteq Bb$. Since b' is distributive, $b'B$ is a subgroup of $(N, +)$ and $(b'B)^3 = b'Bb'Bb'B \subseteq b'BBB \subseteq b'B^3 \subseteq b'B$. Hence Bb and $b'B$ are weak bi-ideals of N. □

Corollary 2.5. Let B be a weak bi-ideal of N. For $b, c \in B$, if b is distributive, then bBc is a weak bi-ideal of N.

Proposition 2.6. Let N be a left self-distributive left-unital near-ring. Then $B^3 = B$ for every weak bi-ideal B of N if and only if N is strongly regular.

Proof. Let B be a weak bi-ideal of N. If N is strongly regular, then N has no non-zero nilpotent elements. This further implies that N has IFP. Let $x \in N$ and $x = ax^2$ for $a \in N$. Now $(xax - x)x = 0$ and so $x(xax - x) = 0$ as N has IFP. Hence $(xax - x)^2 = 0$ and so $xax - x = 0$. i.e., x is regular.
and \(N \) is regular. Let \(b \in B \). Since \(N \) is regular, \(b = bab \) for some \(a \in N \).

By our assumption that \(N \) is left self-distributive, we have \(bab = babb \). Thus \(b = bab = babb = bbb = b^3 \subseteq B^3 \), i.e., \(B \subseteq B^3 \). Hence \(B = B^3 \) for every weak bi-ideal \(B \) of \(N \). Conversely let \(a \in N \). Since \(Na \) is a weak bi-ideal of \(N \) and \(N \) is a left-unital near-ring, we get \(a \in Na = (Na)^3 = NaNaNa \subseteq NaNa \), i.e., \(a = n_1an_2a \). Since \(N \) is left self-distributive, \(a = n_1an_2a \), i.e., \(N \) is strongly regular.

Proposition 2.7. Let \(N \) be a left self-distributive left unital near-ring. Then \(B = NB^2 \) for every strong bi-ideal \(B \) of \(N \) if and only if \(N \) is strongly regular.

Proof. Assume that \(B = NB^2 \) for every strong bi-ideal \(B \) of \(N \). Since \(Na \) is a strong bi-ideal of \(N \) and \(N \) is a left unital near-ring, we have \(a \in Na = N(Na)^2 = NNaNa \subseteq NaNa \), i.e., \(a = n_1an_2a \). Since \(N \) is a left self-distributive near-ring, \(a = n_1an_2a = n_1an_2a \in Na^2 \), i.e., \(N \) is strongly regular. Conversely, let \(B \) be a strong bi-ideal of \(N \). Since \(N \) is strongly regular, for \(b \in B \), \(b = nb^2 \in NB^2 \), i.e., \(B \subseteq NB^2 \). Hence \(NB^2 = B \) for every strong bi-ideal \(B \) of \(N \).

Theorem 2.8. Let \(N \) be a left self-distributive left unital near-ring. Then \(B^3 = B \) for every weak bi-ideal \(B \) of \(N \) if and only if \(NB^2 = B \) for every strong bi-ideal \(B \) of \(N \).

Proof. Follows from the Propositions 2.6 and 2.7.

Proposition 2.9. Let \(N \) be a left self-distributive left-unital near-ring. Then \(B = BNB \) for every bi-ideal \(B \) of \(N \) if and only if \(N \) is regular.

Proof. Let \(B \) be a bi-ideal of \(N \). If \(N \) is regular, then \(B = BNB \) for every bi-ideal \(B \) of \(N \). Conversely, let \(B = BNB \) for every bi-ideal \(B \) of \(N \). Since \(Na \) is a bi-ideal of \(N \) and \(N \) is a left-unital near-ring, we have \(a \in Na = NaNaNa \subseteq NaNa \), i.e., \(a = n_1an_2a \). Since \(N \) is a left self-distributive near-ring, \(a = n_1an_2a = n_1an_2a \in Na^2 \), i.e., \(N \) is strongly regular and as in the proof of Proposition 2.6, \(N \) is regular.

Proposition 2.10. Let \(N \) be a left self-distributive left-unital near-ring. Then \(B = B^3 \) for every weak bi-ideal \(B \) of \(N \) if and only if \(A \cap C = AC \) for any two left \(N \)-subgroups \(A \) and \(C \) of \(N \).

Proof. Assume that \(B = B^3 \) for every weak bi-ideal \(B \) of \(N \). By the Proposition 2.6, \(N \) is strongly regular. Therefore \(N \) is regular. Let \(A \) and \(C \) be any two left \(N \)-subgroups of \(N \). Let \(x \in A \cap C \). Since \(N \) is regular, \(x = xzx \) for some \(a \in N \). Therefore \((xa)x \in ANC \subseteq AC \) which implies that \(A \cap C = AC \).

On the other hand, let \(x \in AC \). Since \(N \) is strongly regular, \(L = 0 \) and so \(en = ne \) for all \(e \in E \). Then \(x = yz \in AC \) with \(y \in A \) and \(z \in C \). Now \(x = yz = (yb)z \). Since \(by \) is an idempotent element \((by)z = (by)z(by) \). Thus \(x = yz = (yb)z \in NA \subseteq A \). Thus \(x \in A \cap C \). From the two inclusions proved above, we get that \(AC = A \cap C \).
Conversely let $a \in N$. Since Na is a left N-subgroup of N, from the assumption we get that $Na = Na \cap Na = NaNa$. But $Na = Na \cap N = NaN$ implies that $Na = NaNa$. Therefore $Na = Na^2$. Since N is a left-unital near-ring, $a \in Na = Na^2$, i.e., N is strongly regular. By the Proposition 2.6, $B = B^3$ for every weak bi-ideal B of N. □

Theorem 2.11. Let N be a left self-distributive left unital near-ring. Then the following conditions are equivalent.

(i) $B = B^3$ for every weak bi-ideal B of N.

(ii) N is regular and $NxNy = NyNx$ for all $x, y \in N$.

(iii) $NxNy = Nxy$ for all $x, y \in N$.

(iv) N is left bi-potent.

(v) N is Boolean.

Proof. (i) \Rightarrow (ii) Assume that $B = B^3$ for every weak bi-ideal B of N. By the Proposition 2.6, N is strongly regular and so N is regular. Again by the Proposition 2.10, $A \cap B = AB$ for two left N-sub groups A and B of N. Let $x, y \in N$. Since Nx and Ny are left N-sub groups of N, from the above fact we get that $NxNy = Nx \cap Ny = Ny \cap Nx = NyNx$.

(ii) \Rightarrow (iii) Let $x, y \in N$. Let A be a left N-subgroup of N. Trivially, $A^2 \subseteq A$. Since N is regular, for any $a \in N, a = aba$ for some $b \in N$. Hence $a = a(ba) \in A(NA) \subseteq AA = A^2$. Thus $A = A^2$. Since $Nx \cap Ny$ is a left N-subgroup of N, $Nx \cap Ny = (Nx \cap Ny)^2 \subseteq NxNy \subseteq Ny$. Again by the assumption, $NxNy = NyNx \subseteq Nx$. Therefore $Nx \cap Ny = NxNy$. Now $Nx = Nx \cap N = NxN$ and from this we get that $Nxy = Nxy$. Therefore $Nxy = Nx \cap Ny$ for all $x, y \in N$.

(iii) \Rightarrow (iv) Let $a \in N$. Then $Na = Na \cap Na = NaNa = Na^2$. i.e., N is left bi-potent near-ring.

(iv) \Rightarrow (v) By the assumption that $a \in Na = Na^2, N$ is strongly regular and so N is regular. Let $x \in N$. Then $x = xxy = xyy = x^2$, i.e., N is Boolean.

(v) \Rightarrow (i) Let B be a weak bi-ideal of N. Let $x \in B$. By the assumption, $x = x^2 = x^3 \in B^3$. Therefore $B \subseteq B^3$ and hence $B = B^3$. □

References

A STUDY ON WEAK BI-IDEALS OF NEAR-RINGS

Department of Mathematics Education, College of Education, Silla University, Pusan 617-736, KOREA.

E-mail address: yucho@silla.ac.kr