LOCAL CONVERGENCE OF NEWTON-LIKE METHODS FOR GENERALIZED EQUATIONS

IOANNIS K. ARGYROS

ABSTRACT. We provide a local convergence analysis for Newton-like methods for the solution of generalized equations in a Banach space setting. Using some ideas of ours introduced in [2] for nonlinear equations we show that under weaker hypotheses and computational cost than in [7] a larger convergence radius and finer error bounds on the distances involved can be obtained.

1. Introduction

In this study we are concerned with the problem of approximating a solution \(x^\ast \) of the generalized equation

\[
o \in f(x) + g(x) + F(x),
\]

where \(X, Y \) are Banach spaces, \(f: X \to Y \) is a Fréchet-differentiable operator in a neighborhood \(U \) of \(x^\ast \), \(g: X \to Y \) is continuous at \(x^\ast \) and \(F \) denotes a set-valued map from \(X \) into the subsets of \(Y \).

If \(F = \{0\} \) and \(g = 0 \) equation (1) reduces to a regular nonlinear equation. If \(F = \{0\} \) and \(g \neq 0 \) equation is again a regular nonlinear equation studied in [2] and the references there. Here we are interested in generating a sequence \(\{x_n\} \) \((n \geq 0)\) approximating \(x^\ast \) in cases when \(F = \{0\} \) and \(g = 0 \) or not.

The most popular method for approximating \(x^\ast \) is undoubtedly Newton-like method of the form

\[
o \in f(x_n) + g(x_n) + \left(f'(x_n) + [x_{n-1}, x_n, g]\right)(x_{n+1} - x_n) + F(x_{n+1})
\]

where \(f'(x) \) denotes the Fréchet-derivative of operator \(f \) and \([x, y; g] \) simply denoted by \([x, y]\) is the first order divided difference of \(g \) at the points \(x, y \) satisfying \([x, y] \in L(X, Y)\), and

\[
[x, y](y - x) = g(y) - g(x) \quad \text{for } x \neq y.
\]

If \(g \) is Fréchet-differentiable at \(x \in X \) then \([x, x] = g'(x)\).

Received October 9, 2008; Accepted April 8, 2009.

2000 Mathematics Subject Classification. 65H10, 65G99, 47H17, 49M15.

Key words and phrases. Newton-like methods, Banach space, local convergence, radius of convergence, generalized equations, Fréchet derivative, Lipschitz/center-Lipschitz condition.
Geoffroy and Pietrus provided a local convergence analysis for method (2) in [7]. Here we are motivated by this paper, our work in [2] and optimization considerations. Using more precise error estimates and a combination of Lipschitz as well as center Lipschitz conditions on f' and g we provide a finer convergence analysis than before [5]–[7] with the advantages already stated in the abstract of this paper.

2. Local Convergence Analysis of Method (2)

We need the definition of a divided difference of order 2 [9], the definition Aubin continuity of a set-valued map [1] and a generalization of the Ioffe–Tikhomirov theorem on fixed points of operators [6], [8].

Definition 1. We say that an operator in $L(X, L(Y, Z))$ denoted by $[x, y, z; g]$ or simply $[x, y, z]$ is called a divided difference of order two of the operator $y: X \to Y$ at the points $x, y, z \in X$ if
\[[x, y, z](z - x) = [y, z] - [x, y] \]
for all distinct points x, y and z from X. (4)

If g is twice Fréchet-differentiable at $x \in X$ then
\[[x, x, x] = \frac{g''(x)}{2}. \]

Definition 2. A set-valued map $\Gamma: X \rightrightarrows Y$ is said to be M-pseudo-Lipschitz about $(x_0, y_0) \in \text{Graph } \Gamma = \{(x, y) \in X \times Y \mid y \in \Gamma(x)\}$ if there exist neighborhoods V of y_0 and U of x_0 such that
\[e(\Gamma(v) \cap U, \Gamma(w)) \leq M\|v - w\| \]
for all $v, w \in V$. (5)

From now on we set for $x \in X, r > 0$
\[U(x, r) = \{z \in X \mid \|z - x\| \leq r\}. \]

Lemma 3. Let (X, ρ) be a Banach space, let T map X to the closed subsets of X, let $q_0 \in X$, and let $r > 0$, and $\lambda \in [0, 1)$ be such that the following hold true:
\[\text{dist}(q_0, T(q_0)) < r(1 - \lambda), \]
\[e(T(v) \cap U(q_0, r), T(w)) \leq \lambda\rho(v, w) \]
for all $v, w \in U(q_0, r)$. (6)

Then T has a fixed point in $U(q_0, r)$. If T is single-valued, then x is the unique fixed point of T in $U(q_0, r)$.

We will make the following assumptions:
(A1) F has a closed graph;
(A2) f is Fréchet differentiable in some neighborhood V of x^*;
(A3) g is differentiable at x^*.
(A4) f' is L-Lipschitz on V and L_0-center Lipschitz on V. That is there exist positive constants L and L_0 such that
\[
\|F'(y_1) - F'(y_2)\| \leq L\|y_1 - y_2\| \tag{8}
\]
and
\[
\|F'(y) - F'(x^*)\| \leq L_0\|y - x^*\| \quad \text{for all } y, y_1, y_2 \in V; \tag{9}
\]
(A5) there exists a positive constant K such that for all $x, y, z \in V,$
\[
\|[x, y, z]\| \leq K; \tag{10}
\]
(A6) the set-valued map
\[
G(x)^{-1} = [f(x^*) + f'(x^*)(x - x^*) + g(x) + F(x)]^{-1} \tag{11}
\]
is M-pseudo-Lipschitz around $(0, x^*)$.

We can state the main local convergence result for method (2):

Theorem 4. Under assumptions (A1)–(A6) the following hold true:
for every $c > M\left(\frac{L}{2} + K\right) = c_0$ there exists $\delta > 0$ such that for any distinct initial guesses $x_0, x_1 \in U(x^*, \delta)$, there exists a sequence $\{x_n\}$ $(n \geq 0)$ generated by Newton-like method (2) such that
\[
\|x_{n+1} - x^*\| \leq c\|x_n - x^*\| \max\{\|x_n - x^*\|, \|x_{n-1} - x^*\|\} \quad (n \geq 1). \tag{12}
\]
Before starting the proof it is convenient to define operators R_n and T_n by
\[
R_n(x) = f(x^*) + g(x) + f'(x^*)(x - x^*) - f(x_n) - g(x_n) - (f'(x_n) + [x_{n-1}, x_n])(x - x_n) \quad (n \geq 1), \tag{13}
\]
and
\[
T_n(x) = G^{-1}[R_n(x)] \quad (n \geq 1). \tag{14}
\]
Note that x_{k+1} is a fixed point of T_k if and only if $R_k(x_{k+1}) \in G(x_{k+1})$, i.e., if and only if
\[
o \in f(x_k) + g(x_k) + f'(x_k) + [x_{k-1}, x_k](x_{k+1} - x_k) + F(x_{k+1}). \tag{15}
\]

We also need the auxiliary result:

Proposition 5. Under the hypotheses of Theorem 4, there exists $\delta > 0$ such that for all $x_0, x_1 \in U(x^*, \delta)$ $(x_0, x_1, x^* \text{ distinct}),$ the map T_1 has a fixed point x_2 in $U(x^*, \delta)$ satisfying
\[
\|x_2 - x^*\| \leq c\|x_1 - x^*\| \max\{\|x_1 - x^*\|, \|x_0 - x^*\|\}. \tag{16}
\]

Proof. In view of (A6) there exist positive constants a and b such that
\[
e (G^{-1}(y_1) \cap U(x^*, a), G^{-1}(y_2)) \leq M\|y_1 - y_2\| \quad \text{for all } y_1, y_2 \in U(0, b). \tag{17}
\]
Choose a fixed $\delta \in (0, \delta_0)$ where
\[
\delta_0 = \min \left\{ a, \frac{1}{c}, \left(\frac{2b}{4L + L_0 + 8K} \right)^{1/2} \right\}. \tag{18}
\]
We shall show conditions (6) and (7) of Lemma 3 hold true where \(q_0 = x^* \) and \(T = T_1 \), for some constants \(r \) and \(\lambda \) to be determined.

We first note that

\[
\text{dist}(x^*, T_1(x^*)) \leq e(G^{-1}(0) \cap U(x^*, \delta), T_1(x^*)).
\]

Let \(x_0, x_1 \in U(x^*, \delta) \) such that \(x_0, x_1 \) and \(x^* \) are distinct, then we obtain in turn by (3), (4), (8)-(10) and (18)

\[
\begin{align*}
\|R_1(x^*)\| & \leq f(x^*) + g(x^*) - f(x_1) - g(x_1) - (f'(x_1) + [x_0, x_1])(x^* - x_1) \\
& \leq \|f(x^*) - f(x_1) - f'(x_1)(x^* - x_1)\| \\
& \quad + \|g(x^*) - g(x_1) - [x_0, x_1](x^* - x_1)\| \\
& = \|f(x^*) - f(x_1) - f'(x_1)(x^* - x_1)\| \\
& \quad + ||[x_0, x_1, x^*](x^* - x_0)(x^* - x_1)|| \\
& \leq \frac{L}{2} \|x^* - x_1\|^2 + K\|x^* - x_0\| \cdot \|x^* - x_1\| \\
& \leq \left(\frac{L}{2} \|x^* - x_1\| + K\|x^* - x_0\| \right) \|x^* - x_1\| \\
& \leq \left(\frac{L}{2} + K \right) \delta \|x^* - x_1\| \leq \left(\frac{L}{2} + K \right) \delta^2 \leq b,
\end{align*}
\]

by the choice of \(\delta \).

In view of (17) we get

\[
e(G^{-1}(0) \cap U(x^*, \delta), T_1(x^*))
\]

\[
= e(G^{-1}(0) \cap U(x^*, \delta), G^{-1}[R_1(x^*)])
\]

\[
\leq M \left(\frac{L}{2} \|x^* - x_1\| + K\|x^* - x_0\| \right) \|x^* - x_1\|.
\]

Using (19) we obtain in turn

\[
\text{dist}(x^*, T_1(x^*)) \leq M \left[\frac{L}{2} \|x^* - x_1\| + K\|x^* - x_0\| \right] \|x^* - x_1\|
\]

\[
\leq M \left(\frac{L}{2} + K \right) \|x^* - x_1\| \max\{\|x^* - x_0\|, \|x^* - x_1\|\}.
\]

Choose \(c \) fixed and \(c > M \left(\frac{L}{2} + K \right) \). Then there exist \(\lambda \in (0, 1) \) such that \(M \left(\frac{L}{2} + K \right) \leq c(1-\lambda) \). That is

\[
\text{dist}(x^*, T_0(x^*)) \leq c(1-\lambda)\|x^* - x_1\| \max\{\|x^* - x_0\|, \|x^* - x_1\|\}.
\]

Letting \(q_0 = x^* \), \(r = r_1 = c\|x^* - x_1\| \max\{\|x^* - x_0\|, \|x^* - x_1\|\} \) condition (6) holds true.
We shall show condition (7) also holds true. By $\delta c < 1$ and $x_0, x_1 \in U(x^*, \delta)$ we have $r_1 \leq \delta \leq a$. Let $x \in U(x^*, \delta)$, then we get in turn
\[
\|R_1(x)\| \leq \|f(x^*) - f(x) - f'(x^*)(x^* - x)\| + \|f(x) - f(x_1) - f'(x_1)(x - x_1)\| + \|g(x) - g(x_1) - [x_0, x_1](x - x_1)\|
\]
\[
\leq \left(\frac{L_0 + 4L}{2} + 4K \right) \delta^2,
\]
which implies $z_1(x) \in U(0, b)$ for $x \in U(x^*, \delta)$ by the choice of δ.

Let $w, z \in U(x^*, r_1)$ then by (17)
\[
e(T_1(w) \cap U(x^*, r_1), T_1(z)) \leq e(T_1(w) \cap U(x^*, \delta), T_1(z)) \leq M\|R_1(w) - R_1(z)\| \\
\leq M\|F'(x^*) - F'(x_1))(w - z)\| + M\|g(w) - g(z) - [x_0, x_1](w - z)\| \\
\leq M\|F'(x^*) - F'(x_1))(w - z)\| + M\|([x_1, z, w](w - x_1) + [x_0, x_1, w](w - x_0))(z - w)\| \leq M\delta(L_0 + 4K)\|z - w\|.
\]

Without loss of generality we may assume
\[
\delta < \frac{\lambda}{M(L_0 + 4K)} = \delta_1,
\]
which implies condition (7). By Lemma 3 there exists a fixed point $x_2 \in U(x^*, r_1)$ for the map T_1.

That completes the proof of Proposition 5.

Proof of Theorem 4. Using induction on $k \geq 1$ and setting
\[
g_0 = x^*, \quad r_k = c\|x_k - x^*\| \max\{\|x_{k-1} - x^*\|, \|x_k - x^*\|\}
\]
we conclude by Proposition 5 that the map T_k has a fixed point x_{k+1} in $U(x^*, r_k)$. It follows that
\[
\|x_{k+1} - x^*\| \leq c\|x_k - x^*\| \max\{\|x_{k-1} - x^*\|, \|x_k - x^*\|\} \quad (k \geq 1).
\]
That completes the proof of Theorem 4.

As in [7] we consider two modifications of method (2):

Remark 6. (a) If (2) is replaced by
\[
o \in f(x_n) + g(x_n) + (f'(x_n) + [x_0, x_n])(x_{n+1} - x_n) + F(x_{n+1})
\]
then under hypotheses (A_1)–(A_6) the conclusions of Theorem 4 hold with (12) replaced by
\[
\|x_{n+1} - x^*\| \leq c\|x_n - x^*\| \max\{\|x_n - x^*\|, \|x_0 - x^*\|\}.
\]

Note that regular-false method (27) [3] is slower than method (2).

(b) If (2) is replaced by
\[
o \in f(x_n) + y(x_n) + (f'(x_n) + [x_{n+1}, x_n])(x_{n+1} - x_n)
\]
or

\[o \in f(x_n) + f'(x_n)(x_{n+1} - x_n) + g(x_{n+1}) + F(x_{n+1}) \]

then if \(c > c_0 \) is replaced by \(c > c_1 = \frac{ML}{2} \) and \((H_5)\) is dropped under hypotheses \((A_1)-(A_4)\) and \((A_6)\) the conclusions of Theorem 4 hold true with \((12)\) replaced by the faster (quadratic convergence):

\[\|x_{n+1} - x^*\| \leq c\|x_n - x^*\|^2. \]

(31)

Remark 7. In general

\[L_0 \leq L \]

holds and \(\frac{L}{L_0} \) can be arbitrarily large [2]–[4]. If equality holds in \((32)\), then our results reduce to the corresponding ones in [7]. Otherwise they constitute an improvement. Indeed denote by \(\delta^0 \) and \(\delta^1 \) used in [7] and given by

\[\delta^0 = \min \left\{ a, \frac{1}{c}, \left(\frac{2b}{4L + L + 8K} \right)^{1/2} \right\} \]

(33)

and

\[\delta^1 = \frac{\lambda}{M(L + 4K)}. \]

(34)

It follows from \((18), (26), (33)\) and \((34)\) that

\[\delta^0 \leq \delta_0 \]

(35)

and

\[\delta^1 \leq \delta_1. \]

(36)

Note also that the choice of \(\delta \) influences the choice of \(c \). In view of \((35)\) and \((36)\) we conclude that under the same computational cost (since in practice the computation of constant \(L \) requires the computation of \(L_0 \)) and hypotheses a larger convergence radius \(\delta \) and a smaller ratio \(c \) can be obtained. These observations are very important in computational mathematics [2]–[11].

References

IOANNIS K. ARGYROS
CAMERON UNIVERSITY
DEPARTMENT OF MATHEMATICAL SCIENCES
LAWTON, OK 73505, USA
E-mail address: iargyros@cameron.edu