VECTOR F-COMPLEMENTARITY PROBLEMS WITH g-DEMI-PSEUDOMONOTONE MAPPINGS IN BANACH SPACES

BYUNG-SOO LEE, M. FIRDOSH KHAN, AND SALAHUDDIN

Abstract. In this paper, a class of g-demi-pseudomonotone mappings is introduced and the solvability of a class of generalized vector F-complementarity problems with the mappings in Banach spaces is considered.

1. Introduction and Preliminaries

In the past years, many important generalizations of monotonicity such as quasi monotonicity, pseudo-monotonicity, dense-pseudomonotonicity and semi-monotonicity have been introduced to study the various classes of variational inequalities and complementarity problems [7, 9, 11-14].

On the other hand, Fang and Huang [4] also considered the vector F-complementarity problems with demi-pseudomonotone single-valued mappings, which are vector demicontinuous in the first variable and pseudomonotone in the second variable.

In this paper, we consider the generalized vector F-complementarity problems which generalize the vector F-complementarity problems considered by Fang and Huang, by adding a continuous convex mapping g as finding $u \in K$
such that
\[\langle A(u, u), g(u) \rangle + F(g(u)) \neq 0 \]
\[\langle A(u, u), g(v) \rangle + F(g(v)) \neq 0, \text{ for } v \in K, \]
where \(A : K \times K \to L(X, Y) \), \(F : K \to Y \) and \(g : K \to K \) are mappings for a subset \(K \) of a reflexive Banach space \(X \), an ordered Banach space \((Y, \preceq)\) and a collection \(L(X, Y) \) of continuous linear mappings from \(X \) into \(Y \).

Definition 1.1. Let \((Y, C)\) be an ordered Banach space, where \(C \) is a pointed (i.e., \(C \cap \{-C\} = \{0\}\)) closed convex cone with a nonempty interior \(\text{int} C \).

With \(C \) we define the order relations \(\geq, \preceq, < \) and \(\not< \) as follows;
\[x \geq y \iff x - y \in C, \]
\[x \preceq y \iff x - y \not\in C, \]
\[x < y \iff y - x \in \text{int} C, \]
\[x \not< y \iff y - x \not\in \text{int} C \text{ for } x, y \in Y. \]

Definition 1.2. A mapping \(T : K \to L(X, Y) \) is said to be hemicontinuous if for any fixed \(x, y \in K \), the mapping \(t \to \langle T(x + t(y - x)), y - x \rangle \) is continuous at \(0^+ \).

Definition 1.3. Let \(g : K \to K \) be a single-valued mapping, \(T : K \to L(X, Y) \) and \(F : K \to Y \) two nonlinear mappings. \(T \) is said to be \(g \)-pseudo-monotone with respect to \(F \) if for \(x, y \in K \),
\[(T(x), g(y) - g(x)) + F(g(y)) - F(g(x)) \not\leq 0 \]
implies \((T(y), g(y) - g(x)) + F(g(y)) - F(g(x)) \geq 0 \).

Definition 1.4. A mapping \(G : K \subset X \to 2^X \) is said to be a KKM mapping if for any finite set \(\{x_1, x_2, \ldots, x_n\} \subset K \), \(\text{Co}\{x_1, x_2, \ldots, x_n\} \subset \bigcup_{i=1}^{n} G(x_i) \), where \(2^X \) denotes the family of all nonempty subsets of \(X \).

Definition 1.5. A mapping \(f : K \to Y \) is said to be convex if \(f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \) for \(x, y \in K \) and \(t \in [0, 1] \).

F-KKM Theorem ([3]). Let \(M \) be a nonempty subset of a Hausdorff topological vector space \(E \) and \(G : M \to 2^E \) be a KKM mapping. If \(G(x) \) is closed in \(E \) for every \(x \in M \) and compact for some \(x \in M \) then
\[\bigcap_{x \in M} G(x) \neq \emptyset. \]

Lemma 1.1. ([1]) Let \((Y, \preceq)\) be an ordered Banach space induced by a pointed closed convex cone \(C \) with nonempty \(\text{int} C \). For \(a, b, c \in Y \), the following unifications hold:
\[c \not< a \text{ and } a \geq b \implies b \not< c, \]
\[c \not< a \text{ and } a \leq b \implies b \not< c. \]
2. Main results

First we consider the equivalence of Stampacchia-type of g-pseudomonotone vector variational inequalities and Minty-type of g-pseudomonotone vector variational inequalities, and then the existences of solutions to them mentioned.

Next we consider the existences of solutions to the more generalized vector F-complementarity problems with g-demi-pseudomonotone mappings.

In this paper, K is a bounded closed and convex subset of a real reflexive Banach space, (Y, \leq) an ordered Banach space induced by a pointed closed convex cone C with $\text{int} C \neq \emptyset$ and $L(X,Y)$ the space of all the continuous linear mappings from X into Y.

Theorem 2.1. Let $T : K \to L(X,Y)$ be a hemicontinuous mapping, $g : K \to K$ and $F : K \to Y$ two convex mappings. Suppose that T is g-pseudomonotone with respect to F. Then for any given point $x_0 \in K$, the following are equivalent

(i) $\langle T(x_0), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \leq 0$ for $x \in K$;
(ii) $\langle T(x), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \geq 0$ for $x \in K$.

Proof. We only prove that (ii) implies (i), the converse is obvious by Definition 1.3.

Suppose that (ii) holds. For any given $x \in K$ and $t \in (0,1)$, let $x_t = x_0 + t(x - x_0)$ then it follows from the convexities of g and F that

\[
t(\langle T(x_0 + t(x - x_0)), g(x) - g(x_0) \rangle + t(F(g(x)) - F(g(x_0))) \\
\geq \langle T(x_0 + t(x - x_0)), t(g(x) - g(x_0)) \rangle + F(g(tx + (1 - t)x_0)) - F(g(x_0)) \\
\geq 0.
\]

Hence

\[
\langle T(x_0 + t(x - x_0)), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \geq 0.
\]

Since T is hemicontinuous and C is closed, letting $t \to 0^+$ in the above inequality, we have

\[
\langle T(x_0), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \geq 0.
\]

Hence

\[
\langle T(x_0), g(x) - g(x_0) \rangle + F(g(x)) - F(g(x_0)) \leq 0 \text{ for } x \in K.
\]

Theorem 2.2. Let $g : K \to K$, $F : K \to Y$ be continuous convex mappings and $T : K \to L(X,Y)$ a hemicontinuous mapping.

If T is g-pseudomonotone with respect to F, then there exists $x \in K$ such that

\[
\langle T(x), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \neq 0 \text{ for } y \in K.
\]

Proof. Define two set-valued mappings $G_1, G_2 : K \to 2^K$ as follows:

\[
G_1(z) = \{ x \in K : \langle T(x), g(z) - g(x) \rangle + F(g(z)) - F(g(x)) \neq 0 \}
\]

and

\[
G_2(z) = \{ x \in K : \langle T(x), g(x) - g(z) \rangle + F(g(x)) - F(g(z)) \neq 0 \}
\]

Then G_1 and G_2 are demiconotone mappings.
and
\[G_2(z) = \{ x \in K : (T(z), g(z) - g(x)) + F(g(z)) - F(g(x)) \geq 0 \}. \]

Then \(G_1 \) is a KKM mapping. In fact, if it is not, then there exist \(\{ x_1, \ldots, x_n \} \subset K, x = \sum_{i=1}^{n} t_i x_i \) with \(t_i > 0 \) and \(\sum_{i=1}^{n} t_i = 1 \) such that \(x \not\in \bigcup_{i=1}^{n} G_1(x_i) \). It follows that
\[
(T(x), g(x_i) - g(x)) + F(g(x_i)) - F(g(x)) < 0, \quad i = 1, \ldots, n.
\]

By the convexities of \(F \) and \(g \), we have
\[
0 = \langle T(x), g(x) - g(x) \rangle + F(g(x)) - F(g(x)) \\
\leq \sum_{i=1}^{n} t_i \langle T(x), g(x_i) - g(x) \rangle + \sum_{i=1}^{n} t_i F(g(x_i)) - F(g(x)) \\
= \sum_{i=1}^{n} t_i \left[(T(x), g(x_i) - g(x)) + F(g(x_i)) - F(g(x)) \right] \\
< 0.
\]

Hence \(0 \in \text{int} C \), which derives a contradiction. Thus \(G_1 \) is a KKM mapping.

On the other hand, since \(T \) is \(g \)-pseudomonotone with respect to \(F \), \(G_1(z) \subset G_2(z) \) for \(z \in K \) and so \(G_2 \) is also a KKM mapping. Also since \(K \) is bounded closed and convex, \(K \) is weakly compact. Furthermore, it is easy to check that \(G_2(z) \subset K \) is closed and convex because \(F \) and \(g \) are continuous and convex. Hence \(G_2(z) \) is weakly compact for each \(z \in K \). It follows from F-KKM Theorem and Theorem 2.1 that
\[
\bigcap_{z \in K} G_1(z) = \bigcap_{z \in K} G_2(z) \neq \emptyset.
\]

Thus there exists \(x \in K \) such that
\[
\langle T(x), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \not< 0 \quad \text{for } y \in K.
\]
\[
\square
\]

Definition 2.1. Let \(g : K \to K \) be a single-valued mapping, \(A : K \times K \to L(X,Y) \) and \(F : K \to Y \) two nonlinear mappings. \(A \) is said to be \(g \)-demi-pseudomonotone with respect to \(F \) if the following two conditions hold:

\((a) \) for each fixed \(u \in K \), \(A(u, \cdot) \) is \(g \)-pseudomonotone with respect to \(F \).

That is,
\[
\langle A(u, x), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \not< 0
\]

implies
\[
\langle A(u, y), g(y) - g(x) \rangle + F(g(y)) - F(g(x)) \geq 0 \quad \text{for } x, y \in K.
\]
(b) for each fixed \(v \in K \), \(A(v, \cdot) \) is vector demicontinuous, that is, for any net \(\{ u_\alpha \} \subset K \) and \(w \in X \), \(\{ u_\alpha \} \) converges to \(u_0 \) in the weak topology of \(X \) implies that \(\langle A(u_\alpha, v), w \rangle \) converges to \(\langle A(u_0, v), w \rangle \) in the norm topology of \(Y \).

Definition 2.2. A mapping \(F : K \to Y \) is said to be completely continuous if for any net \(\{ u_\alpha \} \subset K \), \(\{ u_\alpha \} \) converges to \(u_0 \) in the weak topology implies that \(F(u_\alpha) \) converges to \(F(u_0) \) in the norm topology.

Theorem 2.3. Let \(K \subset X \) be a nonempty bounded closed and convex set, \(F : K \to Y \) a completely continuous and convex mapping and \(g : K \to K \) a continuous and convex mapping. Suppose that

\[
\langle A(u, u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \quad \text{for } v \in K.
\]

Proof. Let \(D \subset X \) be a finite-dimensional subspace with \(K_D = D \cap K \neq \emptyset \). For each \(w \in K \), consider the following problem:

Find \(u_0 \in K_D \) such that

\[
\langle A(w, u_0), g(v) - g(u_0) \rangle + F(g(v)) - F(g(u_0)) \neq 0 \quad \text{for } v \in K_D. \tag{2.1}
\]

Since \(K_D \subset D \) is bounded closed and convex, \(A(w, \cdot) \) is continuous on \(K_D \) and \(g \)-demi-pseudomonotone with respect to \(F \) for each fixed \(w \in K \), from Theorem 2.2, we know that problem (2.1) has a solution \(u_0 \in K_D \).

Now we define a set-valued mapping \(T : K_D \to 2^{K_D} \) as follows:

\[
T(w) = \{ u \in K_D : \langle A(w, u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \quad \text{for } v \in K_D \},
\]

for \(w \in K_D \).

By Theorem 2.1, for each fixed \(w \in K_D \),

\[
\{ u \in K_D : \langle A(w, v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \quad \text{for } v \in K_D \}
\]

\[
= \{ u \in K_D : \langle A(w, v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \geq 0 \quad \text{for } v \in K_D \}.
\]

Since \(F \) is completely continuous and convex, it follows that \(T : K_D \to 2^{K_D} \) has nonempty bounded closed and convex values. We also know that \(T \) is upper semicontinuous by the vector demicontinuity of \(A(\cdot, u) \). By using the Glicksberg fixed point theorem [6], \(T \) has a fixed point \(w_0 \in K_D \), i.e.,

\[
\langle A(w_0, w_0), g(v) - g(w_0) \rangle + F(g(v)) - F(g(w_0)) \neq 0 \quad \text{for } v \in K_D. \tag{2.2}
\]

Let \(D = \{ D \subset X : D \) is a finite-dimensional subspace with \(D \cap K \neq \emptyset \} \) and \(W_D = \{ u \in K : \langle A(u, v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \geq 0 \quad \text{for } v \in K_D \} \) for \(D \in D \).
By (2.2) and Theorem 2.1, we know that \(W_D \) is nonempty and bounded. Then the weak closure \(cl(W_D) \) of \(W_D \) is weakly compact in \(D \).

For any \(D_i \in \mathcal{D}, i = 1, 2, \ldots, n \), we know that \(W_{\bigcup D_i} \subset \bigcap W_{D_i} \). So \(\{ cl(W_D) : D \in \mathcal{D} \} \) has the finite intersection property. It follows that

\[
\bigcap_{D \in \mathcal{D}} cl(W_D) \neq \emptyset.
\]

Let \(u \in \bigcap_{D \in \mathcal{D}} cl(W_D) \). We claim that

\[
\langle A(u, u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \quad \text{for } v \in K.
\]

Indeed, for each \(v \in K \), let \(D \in \mathcal{D} \) be such that \(v \in K_D \) and \(u \in K_D \). Since \(W_D \) is weakly closed there exists a net \(\{ u_\alpha \} \subset W_D \) such that \(\{ u_\alpha \} \) converges to \(u \) with respect to the weak topology of \(X \). It follows that

\[
\langle A(u_\alpha, v), g(v) - g(u_\alpha) \rangle + F(g(v)) - F(g(u_\alpha)) \geq 0.
\]

It follows that

\[
\langle A(u, v), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \quad \text{for } v \in K,
\]

by the vector demicontinuity of \(A(\cdot, v) \) and the continuities of \(F \) and \(g \). By Theorem 2.1, we know

\[
\langle A(u, u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0 \quad \text{for } v \in K.
\]

\[\square\]

Theorem 2.4. Suppose that \(K \) is a nonempty closed convex cone and all the conditions of Theorem 2.3 hold. Furthermore, if \(g(0) = 0 \) and \(F(0) = 0 \), then there exists \(u \in K \) such that

\[
\langle A(u, u), g(u) \rangle + F(g(u)) \neq 0 \quad \text{and} \quad \langle A(u, u), g(v) \rangle + F(g(v)) \neq 0 \quad \text{for } v \in K.
\]

Proof. By Theorem 2.3, there exists \(u \in K \) such that

\[
\langle A(u, u), g(v) - g(u) \rangle + F(g(v)) - F(g(u)) \neq 0, \quad \text{for } v \in K. \tag{2.3}
\]

Since \(g(0) = 0 \) and \(F(0) = 0 \), we have

\[
\langle A(u, u), g(u) \rangle + F(g(u)) \neq 0.
\]

On the other hand, any \(w \in K \), substituting \(v = u + w \) into (2.3), we have

\[
\langle A(u, u), g(u + w) - g(u) \rangle + F(g(u + w)) - F(g(u)) \neq 0.
\]

Since \(g \) and \(F \) are convex,

\[
g(u + w) \leq g(u) + g(w)
\]

and

\[
F(g(u + w)) \leq F(g(u) + g(w)) \leq F(g(u)) + F(g(w))
\]

It follows Lemma 1.1, that

\[
\langle A(u, u), g(w) \rangle + F(g(w)) \neq 0 \quad \text{for } w \in K.
\]

\[\square\]
Remark 2.1. By putting $g = I$, the identity in Theorems 2.1, 2.2, 2.3 and 2.4, we obtain the corresponding results in Fang and Huang [4].

References

Byung-Soo Lee
Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail address: belee0ks.ac.kr

M. Firdosh Khan
S.S. School (Boys) Aligarh Muslim University
Aligarh-202002, India
E-mail address: khan_mfk@yahoo.com

Salahuddin
Department of Mathematics
Aligarh Muslim University
Aligarh-202002, India
E-mail address: salahuddin12@mailcity.com