STRONG CONVERGENCE THEOREM OF COMMON ELEMENTS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

LIJUAN ZHANG AND ZHIBIN HOU

Abstract. In this paper, we introduce an iterative method for finding a common element of the set of solutions of an equilibrium problem, the set of common fixed points of an asymptotically strictly pseudocontractive mapping in a Hilbert space. We show that the iterative sequence converges strongly to a common element of the two sets.

1. Introduction

Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let f be a bifunction of $C \times C$ into \mathbb{R}, where \mathbb{R} is the set of real numbers. The equilibrium problem for $f : C \times C \rightarrow \mathbb{R}$ is to find $x \in C$ such that
\[
 f(x, y) \geq 0, \forall y \in C.
\] (1.1)
The set of solutions of (1.1) is denoted by $EP(f)$. Given a mapping $T : C \rightarrow H$, let $f(x, y) = \langle Tx, y - x \rangle$ for all $x, y \in C$. Then, $\hat{x} \in EP(f)$ if and only if $\langle T\hat{x}, y - \hat{x} \rangle \geq 0$ for all $y \in C$, i.e., \hat{x} is a solution of the variational inequality.

A mapping $T : C \rightarrow C$ is said to be asymptotically λ-strictly pseudocontractive if there exist $\lambda \in [0,1)$ and a sequence $\{k_n\}$ with $k_n \geq 1$ for all n and $\lim_{n \to \infty} k_n = 1$ and such that
\[
 \|T^n x - T^n y\|^2 \leq k_n \|x - y\|^2 + \lambda \|(I - T^n)x - (I - T^n)y\|^2
\] for all $n \geq 1$ and $x, y \in C$. This class of mappings has been studied by several authors, and it includes the important class of asymptotically nonexpansive maps ($\lambda = 0$). It is well known that if T is asymptotically strictly pseudocontractive, then T is uniformly L-Lipschitzian, i.e., $\|T^n x - T^n y\| \leq L\|x - y\|$.

Received October 21, 2009; Accepted November 10, 2010.
2000 Mathematics Subject Classification. 47H09, 47H10.
Key words and phrases. Equilibrium problem, asymptotically strictly pseudocontractive mapping, fixed point.

This work was financially supported by National Natural Science Foundation of China (No.10971045), the Natural Science Foundation of Education Department of Hebei Province (2010110).

©2010 The Youngnam Mathematical Society
see [2]. A point \(x \in C \) is a fixed point of \(T \) provided \(Tx = x \). Denoted by \(F(T) \) the set of fixed points of \(T \).

Recently, many authors studied the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium problem; for instance [3]. Inspired and motivated by these facts, we prove strong convergence theorems for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of an asymptotically strictly pseudocontractive mapping.

2. Preliminaries

Let \(H \) be a real Hilbert space with inner product \(\langle \cdot , \cdot \rangle \) and norm \(\| \cdot \| \). \(\{x_n\} \) is a sequence in \(H \), \(x_n \rightharpoonup x \) implies that \(\{x_n\} \) converges weakly to \(x \) and \(x_n \rightarrow x \) means the strong convergence. In a real Hilbert space \(H \), we have

\[
\| \lambda x + (1 - \lambda)y \| = \lambda \| x \| + (1 - \lambda)\| y \| - \lambda(1 - \lambda) \| x - y \|^2,
\]

for all \(x,y \in H \) and \(\lambda \in [0,1] \).

Such a \(P_C \) is called the metric projection of \(H \) onto \(C \). We know that \(P_C \) is nonexpansive. Further, for any \(x \in H \) and \(z \in C \), \(z = P_C x \iff \langle x - z, z - y \rangle \geq 0 \) for all \(y \in C \). We also know that for any sequence \(\{x_n\} \subset H \) with \(x_n \rightharpoonup x \), the inequality

\[
\lim \inf_{n \rightarrow \infty} \|x_n - x\| < \lim \inf_{n \rightarrow \infty} \|x_n - y\|
\]

holds for every \(y \in H \) with \(x \neq y \).

For solving the equilibrium problem for a bifunction \(f : C \times C \rightarrow \mathbb{R} \) satisfying (A1)-(A4), we assume that \(f \) satisfies the following conditions:

(A1) \(f(x,x) = 0 \) for all \(x \in C \);

(A2) \(f \) is monotone, i.e., \(f(x,y) + f(y,x) \leq 0 \) for all \(x,y \in C \);

(A3) for each \(x,y,z \in C \),

\[
\lim_{t \downarrow 0} f(tz + (1-t)x,y) \leq f(x,y);
\]

(A4) for each \(x \in C \), \(y \mapsto f(x,y) \) is convex and lower semicontinuous.

Lemma 2.1. ([4]) Let \(C \) be a nonempty closed subset of \(H \) and \(f \) be a bifunction of \(C \times C \) into \(\mathbb{R} \) satisfying (A1)-(A4). Let \(r > 0 \) and \(x \in H \). Then, there exists \(z \in C \) such that

\[
f(z,y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C.
\]

Lemma 2.2. ([5]) Assume that \(f : C \times C \rightarrow \mathbb{R} \) satisfies (A1)-(A4). For \(r > 0 \) and \(x \in H \), define a mapping \(\Phi_r : H \rightarrow C \) as follows:

\[
\Phi_r(x) = \{ z \in C : f(z,y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C \}.
\]
for all \(x \in H \). Then the following hold:

1. \(\Phi_r \) is single-valued;
2. \(\Phi_r \) is firmly nonexpansive, i.e., for any \(x, y \in H \),
 \[||\Phi_r(x) - \Phi_r(y)||^2 \leq (\Phi_r(x) - \Phi_r(y), x - y); \]
3. \(F(\Phi_r) = EP(f) \);
4. \(EP(f) \) is closed and convex.

Lemma 2.3. ([7]) Let \(E \) be a real \(q \)-uniformly smooth Banach space which is also uniformly convex. Let \(C \) be a nonempty closed convex subset of \(E \) and \(T : C \to C \) an asymptotically \(k \)-strictly pseudocontractive mapping with a nonempty fixed point set. Then \((I - T)\) is demiclosed at zero.

Lemma 2.4. ([7]) Let \(H \) be a real Hilbert space. Given a closed convex subset \(C \subset H \) and points \(x, y, z \in H \). Given also a real number \(a \in R \). The set \(D := \{ v \in C : \|y - v\|^2 \leq \|x - v\|^2 + \langle z, v \rangle + a \} \) is convex and closed.

3. Main result

Theorem 3.1. Let \(C \) be a bounded closed convex subset of a real Hilbert space \(H \). Let \(T : C \to C \) be a nonempty closed convex subset of \(E \) and \(T : C \to C \) is an asymptotically \(k \)-strict pseudocontraction mapping. Let \(f \) be a bifunction from \(C \times C \) into \(R \) satisfying (A1)-(A4). Assume that \(\{\alpha_n\} \) is a sequence in \((0, 1)\) satisfying the condition: \(0 < a + \lambda \leq \alpha_n \leq 1 - b, \forall n \geq 0 \) and for some \(a, b, \in (0, 1), \{r_n\} \subset [m, \infty) \) for some \(m > 0 \). If \(F := F(T) \cap EP(f) \neq \emptyset \), then the sequence \(\{x_n\} \) generated by

\[
\begin{cases}
x_0 \in C, \\
y_n = \alpha_n x_n + (1 - \alpha_n)T^n x_n, \\
u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - y_n \rangle \geq 0, \forall y \in C, \\
C_{n+1} = \{ z \in C_n : \|u_n - z\|^2 \leq \|x_n - z\|^2 - (1 - \alpha_n)(\alpha_n - \lambda)\|x_n - T^n x_n\|^2 + \theta_n \}, \\
x_{n+1} = P_{C_{n+1}} x_0,
\end{cases}
\]

where \(\theta_n = (1 - \alpha_n)(k_n - 1)(\text{diam} C)^2 \to 0 \) as \(n \to \infty \), converges in norm to \(Pf x_0 \).

Proof. Firstly, We observe that \(C_n \) is convex by Lemma 2.4.

Next observe that \(F \subset C_n \) for all \(n \). Indeed, for all \(p \in F \), we have

\[
\begin{align*}
\|u_n - p\|^2 &= \|p - \Phi_{r_n} y_n\|^2 \\
&\leq \|y_n - p\|^2 \\
&\leq \alpha_n \|x_n - p\|^2 + (1 - \alpha_n)\|T^n x_n - p\|^2 - \alpha_n (1 - \alpha_n)\|x_n - T^n x_n\|^2 \\
&\leq \alpha_n \|x_n - p\|^2 + (1 - \alpha_n)k_n \|x_n - p\|^2 + (1 - \alpha_n)\lambda \|x_n - T^n x_n\|^2 \\
&\leq \alpha_n \|x_n - p\|^2 + (1 - \alpha_n)k_n \|x_n - p\|^2 + (1 - \alpha_n)\lambda \|x_n - T^n x_n\|^2.
\end{align*}
\]
\[- \alpha_n (1 - \alpha_n) \|x_n - T^n x_n\|^2 \leq [1 + (1 - \alpha_n) (k_n - 1)] \|x_n - p\|^2 - (1 - \alpha_n) (\alpha_n - \lambda) \|x_n - T^n x_n\|^2 \leq \|x_n - p\|^2 - (1 - \alpha_n) (\alpha_n - \lambda) \|x_n - T^n x_n\|^2 + \theta_n.\]

So \(p \in C_{k+1} \). This implies that \(F \subset C_n \) for all \(n \).

From \(x_n = P_{C_n} x_0 \), we have \(\langle x_0 - x_n, x_n - y \rangle \geq 0 \) for all \(y \in C_n \). Using \(F \subset C_n \), we also have \(\langle x_0 - x_n, x_n - p \rangle \geq 0 \) for all \(p \in F \).

So, for \(p \in F \) we have

\[
0 \leq \langle x_0 - x_n, x_n - p \rangle = \langle x_0 - x_n, x_n - x_0 + x_0 - p \rangle \leq -\|x_0 - x_n\|^2 + \|x_0 - p\|\|x_0 - x_n\|.
\]

This implies that

\[
\|x_0 - x_n\| \leq \|x_0 - p\|.
\]

From \(x_n = P_{C_n} x_0 \) and \(x_{n+1} = P_{C_{n+1}} x_0 \in C_{n+1} \subset C_n \), we also have \(\langle x_{n+1} - x_n, x_n - x_0 \rangle \geq 0 \), from the above inequality, we have for all \(n \),

\[
0 \leq \langle x_0 - x_n, x_n - x_{n+1} \rangle = \langle x_0 - x_n, x_n - x_0 + x_0 - x_{n+1} \rangle \leq -\|x_0 - x_n\|^2 + \|x_0 - x_{n+1}\|\|x_0 - x_n\|
\]

and hence

\[
\|x_0 - x_n\| \leq \|x_0 - x_{n+1}\|.
\]

Since \(\{\|x_0 - x_n\|\} \) is bounded, \(\lim_{n \to \infty} \|x_0 - x_n\| \) exists. Next, we show that \(\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0 \). In fact that \(x_n = P_{C_n} x_0 \) and \(x_{n+1} \in C_n \) which imply that

\[
\|x_{n+1} - x_n\|^2 = \|(x_{n+1} - x_0) - (x_n - x_0)\|^2 = \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 - 2\langle x_{n+1} - x_n, x_n - x_0 \rangle \leq \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2.
\]

So we have \(\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0 \).

Since \(x_{n+1} \in C_{n+1} \subset C_n \), we have

\[
\|u_n - x_{n+1}\|^2 \leq \|x_n - x_{n+1}\|^2 - (1 - \alpha_n) (\alpha_n - \lambda) \|x_n - T^n x_n\|^2 + \theta_n \leq \|x_n - x_{n+1}\|^2 + \theta_n.
\]

So we have \(\lim_{n \to \infty} \|x_{n+1} - u_n\| = 0 \) and \(\lim_{n \to \infty} \|x_n - u_n\| = 0 \). Observe that

\[
\|y_n - x_n\|^2 = (1 - \alpha_n)^2 \|x_n - T^n x_n\|^2 \leq \|y_n - u_n\| + \|u_n - x_n\\|^2 \leq \|y_n - u_n\|^2 + 2\|y_n - u_n\|\|u_n - x_n\| + \|u_n - x_n\|^2.
\]
Since Φ_r is firmly nonexpansive, for all $p \in F$, we have
\[
\|u_n - p\|^2 = \|\Phi_{r_n}y_n - \Phi_{r_n}p\|^2 \leq \langle \Phi_{r_n}y_n - \Phi_{r_n}p, y_n - p \rangle \\
= \langle u_n - p, y_n - p \rangle = \frac{1}{2}(\|u_n - p\|^2 + \|y_n - p\|^2 - \|u_n - y_n\|^2),
\]
and hence
\[
\|u_n - y_n\|^2 \leq \|y_n - p\|^2 - \|u_n - p\|^2 \\
\leq \|x_n - p\|^2 - \|u_n - p\|^2 + \|u_n - x_n\|^2.
\]
So we have
\[
(1 - \alpha_n)^2\|x_n - T^n x_n\|^2 \\
\leq \|x_n - p\|^2 - \|u_n - p\|^2 + \|u_n - x_n\|^2 \\
+ 2\|y_n - u_n\|\|u_n - x_n\| + \|u_n - x_n\|^2.
\]
Thus
\[
b(1 - \lambda)\|x_n - T^n x_n\|^2 \\
\leq \|u_n - x_n\|\|u_n - p\| + \|x_n - p\| + \|u_n - x_n\| + \|u_n - x_n\|^2.
\]
Hence $\lim_{n \to \infty} \|x_n - T^n x_n\| = 0$, $\lim_{n \to \infty} \|x_n - y_n\| = 0$, $\lim_{n \to \infty}\|u_n - y_n\| = 0$.

Observing that
\[
\|x_n - T x_n\| \\
\leq \|x_n - x_{n+1}\| + \|x_{n+1} - T^{n+1} x_{n+1}\| + \|T^{n+1} x_{n+1} - T^{n+1} x_n\| \\
+ \|T^{n+1} x_n - T x_n\| \\
\leq \|x_n - x_{n+1}\| + \|x_{n+1} - T^{n+1} x_{n+1}\| + L\|x_{n+1} - x_n\| + L\|T^n x_n - x_n\|.
\]
Hence $\lim_{n \to \infty} \|x_n - T x_n\| = 0$.

Since $\{x_n\}$ is bounded, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \rightharpoonup \hat{x}$. By Lemma 2.3, we have that $\hat{x} \in F(T)$. From $x_{n_k} \rightharpoonup \hat{x}$, $\|u_n - y_n\| \to 0$ and $\|u_n - x_n\| \to 0$, we have $y_{n_k} \rightharpoonup \hat{x}$ and $u_{n_k} \rightharpoonup \hat{x}$. From $r_n \geq m$, we have $\lim_{n \to \infty} \|u_n - y_n\|/r_n = 0$. By $u_n = \Phi_{r_n}y_n$, we have
\[
f(u_n, y) + \frac{1}{r_n}(y - u_n, u_n - y_n) \geq 0, \forall y \in C.
\]
Replacening n by n_k, we have from (A2) that
\[
\frac{1}{r_{n_k}}(y - u_{n_k}, u_{n_k} - y_{n_k}) \geq -f(u_{n_k}, y) \geq f(y, u_{n_k}), \forall y \in C.
\]
Letting $k \to \infty$, we have from (A4) that $f(y, \hat{x}) \leq 0, \forall y \in C$. For $0 < t < 1$ and $y \in C$, define $y_t = ty + (1 - t)\hat{x}$. Since $y \in C$ and $\hat{x} \in C$, we have $y_t \in C$ and hence $f(y_t, \hat{x}) \leq 0$. So, from (A1) we have
\[
0 = f(y_t, y_t) \leq tf(y, y) + (1 - t)f(y, \hat{x}) \\
\leq tf(y, y).
\]
Dividing by t, we have

$$f(y, y) \geq 0, \forall y \in C.$$

Letting $t \downarrow 0$, from (A3) we have

$$f(\hat{x}, y) \geq 0, \forall y \in C.$$

Therefore, $\hat{x} \in EP(f)$.

Let $w = P_Fx_0$. From $x_n = P_{C_n}x_0$ and $w \in F \subset C_n$, we have

$$\|x_0 - x_n\| \leq \|x_0 - w\|.$$

Since the norm is weakly lower semicontinuous, we have

$$\|x_0 - w\| \leq \|x_0 - \hat{x}\| \leq \liminf_{k \to \infty} \|x_0 - x_{n_k}\| \leq \limsup_{k \to \infty} \|x_0 - x_{n_k}\| \leq \|x_0 - w\|.$$

This implies that $\|x_0 - w\| = \|x_0 - \hat{x}\|$ and $\|x_0 - x_{n_k}\| \to \|x_0 - w\|$. It follows that $w = \hat{x}$ and $x_{n_k} \to w$. Therefore $\{x_n\}$ converges strongly to w.

References

Lijuan Zhang
College of Mathematics and Computer
Hebei University
Baoding, 071002, P.R.China
E-mail address: zhanglj@hbu.edu.cn

Zhibin Hou
College of Mathematics and Computer
Hebei University
Baoding, 071002, P.R.China
E-mail address: houzhibin@cmc.hbu.cn