ON ITERATIVE APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH APPLICATIONS

JONG KYU KIM, XIAOLONG QIN, AND WON HEE LIM

ABSTRACT. In this paper, the problem of iterative approximation of common fixed points of asymptotically nonexpansive is investigated in the framework of Banach spaces. Weak convergence theorems are established. A necessary and sufficient condition for strong convergence is also discussed. As an application of main results, a variational inequality is investigated.

1. Introduction

Recently, iterative algorithms for computing common fixed points of nonlinear mappings has been considered by many authors ([1]–[6]).

From the method of generating iterative sequences, we can divide iterative algorithms into explicit algorithms and implicit algorithms. Recently, both explicit Mann-type iterative algorithms and implicit Mann-type iterative algorithms have been extensively studied for approximating common fixed points of nonlinear mappings ([7]–[16]).

In this paper, we consider the problem of approximating common fixed points of asymptotically nonexpansive mappings based on a general implicit iterative algorithm which includes an explicit iterative process as a special case. As an application of main results, a variational inequality is investigated in a uniformly convex and \(q \)-uniformly smooth Banach space.

2. Preliminaries

Let \(E \) be a real Banach space and \(E^* \) the dual space of \(E \). Let \(J_q \), where \(q > 1 \), denote the generalized duality mapping from \(E \) into \(2^{E^*} \) give by

\[
J_q(x) = \{ f^* \in E^*: \langle x, f^* \rangle = \|x\|^q, \|f^*\| = \|x\|^{q-1} \}, \quad \forall x \in E,
\]

Received October 9, 2012; Accepted November 20, 2012.

2000 Mathematics Subject Classification. 47H09, 47J05, 47J2.

Key words and phrases. asymptotically nonexpansive mapping; fixed point; iterative process; nonexpansive mapping; variational inequality.

The first author was supported by Kyungnam University research fund, 2012.

©2009 The Youngnam Mathematical Society
where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. In particular, J_2 is called the normalized duality mapping which is usually denoted by J. It is well known (see, for example, [17]) that $J_2(x) = \|x\|^{q-2} J(x)$ if $x \neq 0$.

Let $U_E = \{x \in E : \|x\| = 1\}$. A Banach space E is said to be strictly convex if for all $x, y \in E$ which are linearly independent, $\|x + y\| < \|x\| + \|y\|$. This condition is equivalent to the following:

$$
\|x\| = \|y\| = 1, \quad \text{and} \quad x \neq y \implies \frac{\|x + y\|}{2} < 1.
$$

E is said to be uniformly convex if for any two sequences $\{x_n\}$ and $\{y_n\}$ in E such that $\|x_n\| = \|y_n\| = 1$ and $\lim_{n \to \infty} \|x_n + y_n\| = 2$, then $\lim_{n \to \infty} \|x_n - y_n\| = 0$ holds. It is known that a uniformly convex Banach space is reflexive and strictly convex.

A Banach space E is said to be smooth if the limit

$$
\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}
$$

exists for all $x, y \in U_E$. It is said to be uniformly smooth if the limit is attained uniformly for all $x, y \in U_E$.

The modulus of smoothness of E is the function $\rho_E : [0, \infty) \to [0, \infty)$ defined by

$$
\rho_E(\tau) = \sup \left\{ \frac{1}{2}(\|x + y\| + \|x - y\|) - 1 : \|x\| \leq 1, \|y\| \leq \tau \right\}, \quad \forall \tau \geq 0.
$$

The Banach space E is uniformly smooth if and only if $\lim_{\tau \to \infty} \frac{\rho_E(\tau)}{\tau} = 0$.

A Banach space E is said to be q-uniformly smooth if there exists a constant $c > 0$ such that $\rho_E(\tau) \leq c\tau^q$. It is shown in [17] that there is no Banach space which is q-uniformly smooth with $q > 2$. Hilbert spaces, L^p (or l^p) spaces and Sobolev space W^p_1, where $p \geq 2$, are 2-uniformly smooth. Typical examples of both uniformly convex and uniformly smooth Banach spaces are L^p, where $p > 1$. More precisely, L^p is $\min\{p, 2\}$-uniformly smooth for every $p > 1$.

E is said to satisfy Opial’s condition (see [18]) if, for each sequence $\{x_n\}$ in E, $x_n \rightharpoonup x$, where \rightharpoonup denotes weak convergence, implies that

$$
\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|. \quad \forall y \in E (y \neq x).
$$

Let C be a nonempty subset of E and $T : C \to C$ be a mapping. In this paper, the symbol $F(T)$ stands for the fixed point set of T. T is said to be nonexpansive if

$$
\|Tx - Ty\| \leq \|x - y\|, \quad \forall x, y \in C.
$$

T is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$ as $n \to \infty$ such that

$$
\|T^nx - T^ny\| \leq k_n \|x - y\|. \quad \forall x, y \in C, \forall n \geq 1.
$$

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [19] as a generalization of the class of nonexpansive mappings. They
proved that if \(C \) is a nonempty, closed, convex, and bounded subset of a real uniformly convex Banach space, then every asymptotically nonexpansive self mapping has a fixed point (see [19]).

In order to prove our main results, we still need the following lemmas.

Lemma 2.1. ([20]) Let \(C \) be a nonempty, closed, and convex subset of a uniformly convex Banach space \(E \). Let \(T : C \to C \) be an asymptotically nonexpansive mapping. Then \(I - T \) is demiclosed at zero, that is, \(x_n \to x \) and \(x_n - Tx_n \to 0 \) imply that \(x = Tx \).

Lemma 2.2. ([21]) Let \(\{a_n\}, \{b_n\} \) and \(\{c_n\} \) be nonnegative sequences satisfying the following condition:

\[
a_{n+1} \leq (1 + b_n)a_n + c_n, \quad \forall n \geq n_0,
\]

where \(n_0 \) is some nonnegative integer, \(\sum_{n=1}^{\infty} b_n < \infty \) and \(\sum_{n=1}^{\infty} c_n < \infty \). Then the limit \(\lim_{n \to \infty} a_n \) exists.

Lemma 2.3. ([15]) Let \(E \) be a uniformly convex Banach space, \(r > 0 \) a positive number and \(B_r(0) \) a closed ball of \(E \) with the center at zero. Then there exists a continuous, strictly increasing and convex function \(g : [0, \infty) \to [0, \infty) \) with \(g(0) = 0 \) such that

\[
\left\| \sum_{s=1}^{m} (\alpha_s x_s) \right\|^2 \leq \sum_{s=1}^{m} (\alpha_s \|x_s\|^2) - \alpha_i \alpha_j g(\|x_i - x_j\|), \quad \forall i, j \in \{1, 2, \ldots, r\},
\]

where \(x_1, x_2, \ldots, x_m \in B_r(0) \) and \(\alpha_1, \alpha_2, \ldots, \alpha_m \in (0, 1) \) such that \(\sum_{i=1}^{m} \alpha_i = 1 \).

3. Main results

Let \(C \) be a nonempty, closed and convex subset of a Banach space \(E \). Let \(T : C \to C \) be an asymptotically nonexpansive mapping with the sequence \(\{k_n\} \). For every \(u \in C \) and \(t_n \in (0, 1) \), define a mapping \(T_n : C \to C \) by

\[
T_n x = t_n u + (1 - t_n)T^n x, \quad \forall x \in C, \quad \forall n \geq 1,
\]

If \((1 - t_n)k_n < 1\), for every \(n \geq 1 \), then \(T_n \) is a contraction. Hence, by the Banach contraction principal, there exists a unique fixed point of \(T_n \), for every \(n \geq 1 \).

Let \(x_0 \) be chosen and \(r \geq 1 \) a positive integer. Let \(\{\alpha_n\}, \{\beta_{n,1}\}, \{\beta_{n,2}\}, \ldots, \{\beta_{n,r}\}, \{\gamma_{n,1}\}, \{\gamma_{n,2}\}, \ldots, \{\gamma_{n,r}\} \) be real sequences in \((0, 1)\) such that

\[
\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1.
\]

Let \(S_m, T_m : C \to C \) be asymptotically nonexpansive mappings, for every \(m \in \{1, 2, \ldots, r\} \).
Find x_1 by solving the following equation

$$x_1 = \alpha_1 x_0 + \sum_{m=1}^{r} \beta_{1,m} S_m x_0 + \sum_{m=1}^{r} \gamma_{1,m} T_m x_1.$$

Find x_2 by solving the following equation

$$x_2 = \alpha_2 x_1 + \sum_{m=1}^{r} \beta_{2,m} S_m^2 x_1 + \sum_{m=1}^{r} \gamma_{2,m} T_m^2 x_2.$$

\ldots

Find x_n by solving the following equation

$$x_n = \alpha_n x_{n-1} + \sum_{m=1}^{r} \beta_{n,m} S_m^n x_{n-1} + \sum_{m=1}^{r} \gamma_{n,m} T_m^n x_n.$$

\ldots

In view of the above, we have the following implicit iterative algorithm

$$x_0 \in C, \quad x_n = \alpha_n x_{n-1} + \sum_{m=1}^{r} \beta_{n,m} S_m^n x_{n-1} + \sum_{m=1}^{r} \gamma_{n,m} T_m^n x_n, \quad \forall n \geq 1. \quad (3.1)$$

If $S_m = I$, where I is the identity mapping, for every $m \in \{1, 2, \ldots, r\}$, then (3.1) is reduced the following.

$$x_0 \in C, \quad x_n = (\alpha_n + \sum_{m=1}^{r} \beta_{n,m}) x_{n-1} + \sum_{m=1}^{r} \gamma_{n,m} T_m^n x_n, \quad \forall n \geq 1. \quad (3.2)$$

If $T_m = I$, where I stands for the identity mapping, for every $m \in \{1, 2, \ldots, r\}$, then (3.1) is reduced the following.

$$x_0 \in C, \quad x_n = \frac{\alpha_n}{1 - \sum_{m=1}^{r} \gamma_{n,m}} x_{n-1} + \frac{\sum_{m=1}^{r} \beta_{n,m}}{1 - \sum_{m=1}^{r} \gamma_{n,m}} S_m^n x_{n-1}, \quad \forall n \geq 1. \quad (3.3)$$

Now, we need the following proposition for our main results.

Proposition 3.1. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E. Let $S_m, T_m : C \to C$ be asymptotically nonexpansive mappings with the sequence $\{s_{n,m}\}$ and $\{t_{n,m}\}$, for every $m \in \{1, 2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathcal{F} = \cap_{m=1}^{r} F(S_m) \cap \cap_{m=1}^{r} F(T_m)$ is nonempty. Let $t_n = \max\{t_{n,m} : 1 \leq m \leq r\}$ and $s_n = \max\{s_{n,m} : 1 \leq m \leq r\}$. Assume that $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, where $k_n = \max\{s_{n,t_n} : 1 \leq m \leq r\}$. Let $\{x_n\}_{n=0}^{\infty}$ be a sequence generated by (3.1), where $\{\alpha_n\}$, $\{\beta_{1,1}\}$, $\{\beta_{1,2}\}$, \ldots, $\{\beta_{n,r}\}$, $\{\gamma_{1,1}\}$, $\{\gamma_{1,2}\}$, \ldots, $\{\gamma_{n,r}\}$ are real number sequences in $(0, 1)$ such that $\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1$. Assume that the control sequences $\{\alpha_n\}$, $\{\beta_{1,1}\}$, $\{\beta_{1,2}\}$, \ldots, $\{\beta_{n,r}\}$, $\{\gamma_{1,1}\}$, $\{\gamma_{1,2}\}$, \ldots, $\{\gamma_{n,r}\}$ are satisfied

(a) $\lim \inf_{n \to \infty} \alpha_n \beta_{n,m} > 0$, and $\lim \inf_{n \to \infty} \alpha_n \gamma_{n,m} > 0$, $\forall m \in \{1, 2, \ldots, r\}$;

(b) $\sum_{m=1}^{r} \gamma_{n,m} t_{n} < 1.$
Then
\[
\lim_{n \to \infty} \|x_n - S_m x_n\| = \lim_{n \to \infty} \|x_n - T_m x_n\| = 0, \quad \forall m \in \{1, 2, \ldots, r\}.
\]

Proof. By the condition (b), we see that the sequence \(\{x_n\}\) generated by iterative process (3.1) is well defined. For \(p \in \mathcal{F}\), we see that
\[
\|x_n - p\| \leq \alpha_n \|x_{n-1} - p\| + \sum_{m=1}^{r} \beta_{n,m} \|S_m^n x_{n-1} - p\| + \sum_{m=1}^{r} \gamma_{n,m} \|T_m^n x_n - p\|
\]
\[
\leq (\alpha_n + \sum_{m=1}^{r} \beta_{n,m} k_n) \|x_{n-1} - p\| + \sum_{m=1}^{r} \gamma_{n,m} k_n \|x_n - p\|.
\]
In view of \(\liminf_{n \to \infty} \alpha_n \beta_{n,m} > 0\) and \(\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1\), we see that there exists some positive integer \(n_1\) and a real number \(a\), where \(a \in (0,1)\), such that
\[
\sum_{m=1}^{r} \gamma_{n,m} \leq a, \quad \forall n \geq n_1.
\]
Since \(\sum_{m=1}^{\infty} (k_n - 1) < \infty\), there exists some positive integer \(n_2\) such that \(k_n \leq 1 + \frac{1-a}{2a}\), for all \(n \geq n_2\). It follows that
\[
\sum_{m=1}^{r} \gamma_{n,m} k_n \leq b < 1, \quad \forall n \geq n_3,
\]
where \(b = a(1 + \frac{1-a}{2a})\) and \(n_3 = \max\{n_1, n_2\}\). It follows that
\[
\|x_n - p\| \leq \frac{\alpha_n + \sum_{m=1}^{r} \beta_{n,m} k_n}{1 - \sum_{m=1}^{r} \gamma_{n,m} k_n} \|x_{n-1} - p\|
\]
\[
\leq (1 + \frac{\alpha_n + \sum_{m=1}^{r} \beta_{n,m} k_n + \sum_{m=1}^{r} \gamma_{n,m} k_n - 1}{1 - \sum_{m=1}^{r} \gamma_{n,m} k_n}) \|x_{n-1} - p\| \quad (3.4)
\]
\[
\leq (1 + \frac{k_n - 1}{1 - b}) \|x_{n-1} - p\|.
\]
It follows from Lemma 2.2 that \(\lim_{n \to \infty} \|x_n - p\|\) exists. This implies that the sequence \(\{x_n\}\) is bounded.

On the other hand, we find from Lemma 2.3 that
\[
\|x_n - p\|^2 \leq \alpha_n \|x_{n-1} - p\|^2 + \sum_{m=1}^{r} \beta_{n,m} \|S_m^n x_{n-1} - p\|^2 + \sum_{m=1}^{r} \gamma_{n,m} \|T_m^n x_n - p\|^2
\]
\[
- \alpha_n \beta_{n,m} g(\|x_{n-1} - S_m^n x_{n-1}\|)
\]
\[
\leq (\alpha_n + \sum_{m=1}^{r} \beta_{n,m} k_n) \|x_{n-1} - p\|^2 + \sum_{m=1}^{r} \gamma_{n,m} k_n \|x_n - p\|^2
\]
\[
- \alpha_n \beta_{n,m} g(\|x_{n-1} - S_m^n x_{n-1}\|), \quad \forall m \in \{1, 2, \ldots, N\}.
\]
This implies that
\[
\alpha_n\beta_{n,m}g(||x_{n-1} - S^n_{m}x_{n-1}||)
\]
\[
\leq (\alpha_n k_n + \sum_{m=1}^{r} \beta_{n,m}k_n)||x_{n-1} - p||^2 + \sum_{m=1}^{r} \gamma_{n,m}k_n||x_n - p||^2
\]
\[
- k_n||x_n - p||^2 + (k_n - 1)||x_n - p||^2
\]
\[
\leq (\alpha_n k_n + \sum_{m=1}^{r} \beta_{n,m}k_n)(||x_{n-1} - p||^2 - ||x_n - p||^2)
\]
\[
+ (k_n - 1)||x_n - p||^2, \quad \forall m \in \{1, 2, \ldots, r\}.
\]
Since \(\lim_{n \to \infty} ||x_n - p||\) exists, from the condition (a) we have that
\[
\lim_{n \to \infty} g(||x_{n-1} - S^n_{m}x_{n-1}||) = 0,
\]
for every \(m \in \{1, 2, \ldots, r\}\). It follows that
\[
\lim_{n \to \infty} ||x_{n-1} - S^n_{m}x_{n-1}|| = 0, \quad \forall m \in \{1, 2, \ldots, r\}.
\] (3.5)
From the Lemma 2.3, we obtain that
\[
||x_n - p||^2 \leq \alpha_n||x_{n-1} - p||^2 + \sum_{m=1}^{r} \beta_{n,m}||S^n_{m}x_{n-1} - p||^2 + \sum_{m=1}^{r} \gamma_{n,m}||T^n_{m}x_n - p||^2
\]
\[
- \alpha_n \gamma_{n,m}g(||x_{n-1} - T^n_{m}x_n||)
\]
\[
\leq (\alpha_n + \sum_{m=1}^{r} \beta_{n,m}k_n)||x_{n-1} - p||^2 + \sum_{m=1}^{r} \gamma_{n,m}k_n||x_n - p||^2
\]
\[
- \alpha_n \gamma_{n,m}g(||x_{n-1} - T^n_{m}x_n||), \quad \forall m \in \{1, 2, \ldots, r\}.
\]
This implies that
\[
\alpha_n \gamma_{n,m}g(||x_{n-1} - T^n_{m}x_n||)
\]
\[
\leq (\alpha_n k_n + \sum_{m=1}^{r} \beta_{n,m}k_n)||x_{n-1} - p||^2 + \sum_{m=1}^{r} \gamma_{n,m}k_n||x_n - p||^2
\]
\[
- k_n||x_n - p||^2 + (k_n - 1)||x_n - p||^2
\]
\[
\leq (\alpha_n k_n + \sum_{m=1}^{r} \beta_{n,m}k_n)(||x_{n-1} - p||^2 - ||x_n - p||^2)
\]
\[
+ (k_n - 1)||x_n - p||^2, \quad \forall m \in \{1, 2, \ldots, N\}.
\]
Since \(\lim_{n \to \infty} ||x_n - p||\) exists, from the condition (a) we have that
\[
\lim_{n \to \infty} g(||x_{n-1} - T^n_{m}x_n||) = 0,
\]
for every \(m \in \{1, 2, \ldots, r\}\). It follows that
\[
\lim_{n \to \infty} ||x_{n-1} - T^n_{m}x_n|| = 0, \quad \forall m \in \{1, 2, \ldots, r\}.
\] (3.6)
Notice that
\[\|x_n - x_{n-1}\| = \sum_{m=1}^{r} \beta_{n,m} \|S_m^n x_{n-1} - x_{n-1}\| + \sum_{m=1}^{r} \gamma_{n,m} \|T_m^n x_n - x_{n-1}\|. \]

From the (3.5) and (3.6), we find that
\[\lim_{n \to \infty} \|x_{n-1} - x_n\| = 0. \] (3.7)

Notice that
\[\|x_n - T_m^n x_n\| \leq \|x_n - x_{n-1}\| + \|x_{n-1} - T_m^n x_n\|, \quad \forall m \in \{1, 2, \ldots, r\}. \]

This implies from (3.6), and (3.7) that
\[\lim_{n \to \infty} \|x_n - T_m^n x_n\| = 0, \quad \forall m \in \{1, 2, \ldots, r\}. \] (3.8)

On the other hand, we have
\[\|x_n - S_m^n x_n\| \leq \|x_n - x_{n-1}\| + \|x_{n-1} - S_m^n x_{n-1}\|
+ \|S_m^n x_{n-1} - S_m^n x_n\|, \quad \forall m \in \{1, 2, \ldots, r\}. \]

Since \(S_m\) is Lipschitz for every \(m \in \{1, 2, \ldots, r\}\), from (3.5) and (3.7) we know that
\[\lim_{n \to \infty} \|x_n - S_m^n x_n\| = 0, \quad \forall m \in \{1, 2, \ldots, r\}. \] (3.9)

Notice that
\[
\begin{align*}
\|x_n - S_m^n x_n\| & \leq \|x_n - x_{n+1}\| + \|x_{n+1} - S_m^{n+1} x_{n+1}\|
+ \|S_m^{n+1} x_{n+1} - S_m^{n+1} x_n\| + \|S_m^n x_n - S_m^n x_{n+1}\|
\leq (1 + M)\|x_n - x_{n+1}\| + \|x_{n+1} - S_m^{n+1} x_{n+1}\|
+ M\|S_m^n x_n - x_n\|, \\
\end{align*}
\]

where \(M = \sup_{n \geq 1} \{k_n\}\). It follows from (3.7) and (3.9) that
\[\lim_{n \to \infty} \|x_n - S_m^n x_n\| = 0, \quad \forall m \in \{1, 2, \ldots, r\}. \] (3.10)

On the other hand, we have
\[
\begin{align*}
\|x_n - T_m^n x_n\| & \leq \|x_n - x_{n+1}\| + \|x_{n+1} - T_m^{n+1} x_{n+1}\|
+ \|T_m^{n+1} x_{n+1} - T_m^{n+1} x_n\| + \|T_m^{n+1} x_n - T_m^n x_n\|
\leq (1 + M)\|x_n - x_{n+1}\| + \|x_{n+1} - T_m^{n+1} x_{n+1}\|
+ M\|T_m^n x_n - x_n\|. \\
\end{align*}
\]

It follows from (3.7) and (3.8) that
\[\lim_{n \to \infty} \|x_n - T_m^n x_n\| = 0, \quad \forall m \in \{1, 2, \ldots, r\}. \] (3.11)

This completes the proof. □

Now, we give the following weak convergence theorems with Opial’s condition.
Theorem 3.2. Let C be a nonempty, closed, and convex subset of a uniformly convex Banach space E which has Opial’s condition. Let $S_n, T_m : C \to C$ be asymptotically nonexpansive mapping with the sequence $\{s_{n,m}\}$ and $\{t_{n,m}\}$, for every $m \in \{1,2,\ldots,r\}$, where $r \geq 1$. Assume that $\mathcal{F} = \bigcap_{m=1}^r F(S_m) \cap \bigcap_{m=1}^r F(T_m)$ is nonempty. Let $t_n = \max\{t_{n,m} : 1 \leq m \leq r\}$ and $s_n = \max\{s_{n,m} : 1 \leq m \leq r\}$. Assume that $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, where $k_n = \max\{s_n,t_n : 1 \leq m \leq r\}$. Let $\{x_n\}$ be a sequence generated by (3.1), where $\{\alpha_n\}, \{\beta_n,1\}, \{\beta_n,2\}, \ldots, \{\beta_n,r\}, \{\gamma_n,1\}, \{\gamma_n,2\}, \ldots, \{\gamma_n,r\}$ are real number sequences in $(0,1)$ such that $\alpha_n + \sum_{m=1}^r \beta_{n,m} + \sum_{m=1}^r \gamma_{n,m} = 1$. Assume that restrictions (a) and (b) as in Proposition 3.1 are satisfied. Then $\{x_n\}$ converges weakly to some point in \mathcal{F}.

Proof. Since $\{x_n\}$ is bounded, we find that there exists a subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to a point $\tilde{x} \in C$. It follows from Lemma 2.1 and Proposition 3.1 that $\tilde{x} \in \mathcal{F}$. Assume that there exists another subsequence $\{x_{n_t}\} \subset \{x_n\}$ such that $\{x_{n_t}\}$ converges weakly to a point $\hat{x} \in C$. It follows from Lemma 2.1 that $\hat{x} \in \mathcal{F}$. If $\tilde{x} \neq \hat{x}$, then

$$\lim_{n \to \infty} \|x_n - \tilde{x}\| = \liminf_{i \to \infty} \|x_{n_i} - \hat{x}\| < \liminf_{i \to \infty} \|x_{n_j} - \hat{x}\| = \limsup_{j \to \infty} \|x_{n_j} - \hat{x}\| = \lim_{n \to \infty} \|x_n - \hat{x}\|.$$

This is a contradiction. Hence $\tilde{x} = \hat{x}$. Hence every subsequence converges to same point \tilde{x}. This completes the proof. \hfill \Box

If $r = 1$, then Theorem 3.2 is reduced to the following.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space E which has Opial’s condition. Let $S, T : C \to C$ be an asymptotically nonexpansive mappings with the sequences $\{s_n\}$ and $\{t_n\}$. Assume that $\mathcal{F} = F(S) \cap F(T)$ is nonempty. Assume that $\sum_{n=1}^{\infty} (k_n - 1) < \infty$, where $k_n = \max\{s_n,t_n : 1 \leq m \leq r\}$. Let $\{x_n\}$ be a sequence generated by the following

$$x_0 \in C, \quad x_n = \alpha_n x_{n-1} + \beta_n S^n x_{n-1} + \gamma_n T^n x_n, \quad \forall n \geq 1,$$

where $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are real number sequences in $(0,1)$ such that $\alpha_n + \beta_n + \gamma_n = 1$. Assume that the following restrictions imposed on the control sequences $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are satisfied

(a) $\liminf_{n \to \infty} \alpha_n \beta_n > 0$ and $\liminf_{n \to \infty} \alpha_n \gamma_n > 0$;

(b) $\gamma_n t_n < 1$.

Then $\{x_n\}$ converges weakly to some point in \mathcal{F}.

If $S_n = I$, then Theorem 3.2 is reduced to the following.

Corollary 3.4. Let C be a nonempty, closed, and convex subset of a uniformly convex Banach space E which has Opial’s condition. Let $T_m : C \to C$
be an asymptotically nonexpansive mapping with the sequence \(\{t_{n,m}\} \), for every \(m \in \{1, 2, \ldots, r\} \), where \(r \geq 1 \). Assume that \(\mathcal{F} = \cap_{m=1}^{r} F(T_m) \) is nonempty.

Assume that \(\sum_{n=1}^{\infty} (t_n - 1) < \infty \), where \(t_n = \max\{t_{n,m} : 1 \leq m \leq r\} \).

Let \(\{x_n\} \) be a sequence generated by (3.2), where \(\{\alpha_n\}, \{\beta_{n,1}\}, \{\beta_{n,2}\}, \ldots, \{\beta_{n,r}\}, \{\gamma_{n,1}\}, \{\gamma_{n,2}\}, \ldots, \{\gamma_{n,r}\} \) are real number sequences in \((0, 1)\) such that \(\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1 \). Assume that restrictions (a) and (b) in Proposition 3.1 are satisfied. Then \(\{x_n\} \) converges weakly to some point in \(\mathcal{F} \).

If \(T_m = 1 \), then Theorem 3.2 is reduced to the following.

Corollary 3.5. Let \(C \) be a nonempty, closed and convex subset of a uniformly convex Banach space \(E \) which has Opial’s condition. Let \(S_m : C \to C \) be an asymptotically nonexpansive mapping with the sequence \(\{s_{n,m}\} \), for every \(m \in \{1, 2, \ldots, r\} \), where \(r \geq 1 \) with \(\mathcal{F} = \cap_{m=1}^{r} F(S_m) \) is nonempty.

Assume that \(\sum_{n=1}^{\infty} (s_n - 1) < \infty \), where \(s_n = \max\{s_{n,m} : 1 \leq m \leq r\} \).

Let \(\{x_n\} \) be a sequence generated by (3.3), where \(\{\alpha_n\}, \{\beta_{n,1}\}, \{\beta_{n,2}\}, \ldots, \{\beta_{n,r}\}, \{\gamma_{n,1}\}, \{\gamma_{n,2}\}, \ldots, \{\gamma_{n,r}\} \) are real number sequences in \((0, 1)\) such that \(\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1 \). Assume that the condition (a) in Proposition 3.1 are satisfied. Then \(\{x_n\} \) converges weakly to some point in \(\mathcal{F} \).

Next, we give a necessary and sufficient condition for the strong convergence of (3.1).

Theorem 3.6. Let \(C \) be a nonempty, closed and convex subset of a uniformly convex Banach space \(E \). Let \(S_m, T_m : C \to C \) be asymptotically nonexpansive mappings with the sequences \(\{s_{n,m}\} \) and \(\{t_{n,m}\} \), for every \(m \in \{1, 2, \ldots, r\} \), where \(r \geq 1 \). Assume that \(\mathcal{F} = \cap_{m=1}^{r} F(S_m) \cap \cap_{m=1}^{r} F(T_m) \) is nonempty.

Let \(t_n = \max\{t_{n,m} : 1 \leq m \leq r\} \) and \(s_n = \max\{s_{n,m} : 1 \leq m \leq r\} \).

Assume that \(\sum_{n=1}^{\infty} (s_n - 1) < \infty \), where \(k_n = \max\{s_n, t_n : 1 \leq m \leq r\} \).

Let \(\{x_n\} \) be a sequence generated by (3.1), where \(\{\alpha_n\}, \{\beta_{n,1}\}, \{\beta_{n,2}\}, \ldots, \{\beta_{n,r}\}, \{\gamma_{n,1}\}, \{\gamma_{n,2}\}, \ldots, \{\gamma_{n,r}\} \) are real number sequences in \((0, 1)\) such that \(\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1 \). Assume that the conditions (a) and (b) in Proposition 3.1 are satisfied. Then \(\{x_n\} \) converges strongly to some point in \(\mathcal{F} \) if and only if

\[
\liminf_{n \to \infty} dist(x_n, \mathcal{F}) = 0.
\]

Proof. The necessity of the proof is obvious. We only show the sufficiency of the proof. Assume that \(\liminf_{n \to \infty} dist(x_n, \mathcal{F}) = 0 \). In view of (3.4), we know from Lemma 2.2 that \(\lim_{n \to \infty} dist(x_n, \mathcal{F}) \) exists. From the hypothesis, it follows that \(\lim_{n \to \infty} dist(x_n, \mathcal{F}) = 0 \).

Next, we show that the sequence \(\{x_n\} \) is Cauchy. For positive integers \(m, n \), where \(m > n \), we see from (3.4) that

\[
\|x_n - p\| \leq e^{h_n} \|x_{n-1} - p\|, \quad h_n = \frac{k_{n-1}}{1 - a}.
\]

This in turn implies that

\[
\|x_m - p\| \leq B \|x_n - p\|,
\]

where \(B = e^{h_n} \). It follows that

\[
\|x_n - x_m\| \leq \|x_n - p\| + \|x_m - p\| \leq (1 + B) \|x_n - p\|.
\]
Taking the infimum over all \(p \in \mathcal{F} \), we find that \(\{x_n\} \) is a Cauchy sequence in \(C \). Assume that \(\{x_n\} \) converges strongly to some \(\bar{q} \in C \). Since \(T_m \) and \(S_m \) are Lipschitz for each \(m \in \{1, 2, \ldots, N\} \), we know that \(\mathcal{F} \) is closed. This in turn implies that \(\bar{q} \in \mathcal{F} \). This completes the proof. \(\square \)

If \(S_m = I \), then Theorem 3.6 is reduced to the following.

Corollary 3.7. Let \(C \) be a nonempty, closed and convex subset of a uniformly convex Banach space \(E \). Let \(T_m : C \to C \) be an asymptotically nonexpansive mapping with the sequence \(\{t_{n,m}\} \), for every \(m \in \{1, 2, \ldots, r\} \), where \(r \geq 1 \). Assume that \(\mathcal{F} = \bigcap_{m=1}^{\infty} F(T_m) \) is nonempty. Assume that \(\sum_{n=1}^{\infty} (t_n - 1) < \infty \), where \(t_n = \max \{t_{n,m} : 1 \leq m \leq r\} \). Let \(\{x_n\} \) be a sequence generated by (3.2), where \(\{\alpha_n\}, \{\beta_{n,1}\}, \{\beta_{n,2}\}, \ldots, \{\beta_{n,r}\}, \{\gamma_{n,1}\}, \{\gamma_{n,2}\}, \ldots, \{\gamma_{n,r}\} \) are real number sequences in \((0,1) \) such that \(\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1 \). Assume that the conditions (a) and (b) in Proposition 3.1 are satisfied. Then \(\{x_n\} \) converges strongly to some point in \(\mathcal{F} \) if and only if \(\liminf_{n \to \infty} \text{dist}(x_n, \mathcal{F}) = 0 \).

If \(T_m = I \), then Theorem 3.6 is reduced to the following.

Corollary 3.8. Let \(C \) be a nonempty, closed and convex subset of a uniformly convex Banach space \(E \). Let \(S_m : C \to C \) be an asymptotically nonexpansive mapping with the sequence \(\{s_{n,m}\} \), for every \(m \in \{1, 2, \ldots, r\} \), where \(r \geq 1 \) is some positive integer. Assume that \(\sum_{n=1}^{\infty} (s_n - 1) < \infty \), where \(s_n = \max \{s_{n,m} : 1 \leq m \leq r\} \). Let \(\{x_n\} \) be a sequence generated by (3.2), where \(\{\alpha_n\}, \{\beta_{n,1}\}, \{\beta_{n,2}\}, \ldots, \{\beta_{n,r}\}, \{\gamma_{n,1}\}, \{\gamma_{n,2}\}, \ldots, \{\gamma_{n,r}\} \) are real number sequences in \((0,1) \) such that \(\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1 \). Assume that the condition (a) in Proposition 3.1 are satisfied. Then \(\{x_n\} \) converges strongly to some point in \(\mathcal{F} \) if and only if \(\liminf_{n \to \infty} \text{dist}(x_n, \mathcal{F}) = 0 \).

4. Applications

Finally, we consider the problem of approximation solutions of variational inequalities as an application of main results.

Let \(C \) be a nonempty, closed and convex subset of a smooth Banach space \(E \) and \(A : C \to E \) an operator. Find an \(x \in C \) such that

\[
\langle Ax, J(y - x) \rangle \geq 0, \quad \forall y \in C. \tag{4.1}
\]

In what follows, the symbol \(VI(C, A) \) stands for the solution set of the above inequality (4.1).

\(A \) is said to be accretive if

\[
\langle Ax - Ay, J(x - y) \rangle \geq 0, \quad \forall x, y \in C.
\]

\(A \) is said to be \(\alpha \)-inverse-strongly accretive if there exists a positive constant \(\alpha \) such that

\[
\langle Ax - Ay, J(x - y) \rangle \geq \alpha \|Ax - Ay\|^2, \quad \forall x, y \in C.
\]
Let K be a nonempty subset of C and let $Q : C \rightarrow K$ be a mapping. Q is said to be sunny if
\[Qx = Q(Qx + t(x - Qx)) \]
whenever $Qx + t(x - Qx) \in C$ for $x \in C$ and $t \geq 0$. Q is said to be retraction if $Q^2 = Q$. Q is said to be a sunny nonexpansive retraction if Q is sunny nonexpansive and a retraction onto K. A subset K of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto K.

The following results describe a characterization of sunny nonexpansive retractions on a smooth Banach space; see [22] and [23] for more details.

Let C be a nonempty subset of a smooth Banach space E. Let Q_C be a sunny nonexpansive retraction from E onto C. Then the following are equivalent:

(a) Q_C is sunny and nonexpansive;
(b) $\langle x - Qx, J(Qx - y) \rangle$, $\forall x \in C, y \in K$.

The following lemma can be found in [17] and [24].

Lemma 4.1. Let E be a q-uniformly smooth Banach space with q-uniformly smoothness constant $C_q > 0$. Then the following holds
\[\|x + y\|^q \leq \|x\|^q + q\langle y, J_y \rangle + C_q\|y\|^q, \quad \forall x, y \in E. \]

Now, we are in a position to give the main results of this section.

Theorem 4.2. Let E be a uniformly convex and q-uniformly smooth Banach space with q-uniformly smoothness constant $C_q > 0$ and C be a nonempty, closed and convex subset of E. Let Q_C be a sunny nonexpansive retraction from E onto C. Let $A_m : C \rightarrow E$ be an a_m-inverse-strongly accretive operator and $B_m : C \rightarrow E$ a b_m-inverse-strongly accretive operator, for every $m \in \{1, 2, \ldots, r\}$, where $r \geq 1$. Assume that $\mathcal{F} = \cap_{m=1}^r VI(C, A_m) \cap \cap_{m=1}^r VI(C, B_m)$ is nonempty. Let $\{x_n\}$ be a sequence generated by the following: $x_0 \in C$,
\[
x_n = \alpha_n x_{n-1} + \sum_{m=1}^{r} \beta_{n,m} Q_C(x_{n-1} - \mu_m A_m x_{n-1})
+ \sum_{m=1}^{r} \gamma_{n,m} Q_C(x_n - \nu_m B_m x_n), \quad \forall n \geq 1,
\]
where $\{\alpha_n\}, \{\beta_{n,1}\}, \{\beta_{n,2}\}, \ldots, \{\beta_{n,r}\}, \{\gamma_{n,1}\}, \{\gamma_{n,2}\}, \ldots, \{\gamma_{n,r}\}$ are real number sequences in $(0, 1)$ such that $\alpha_n + \sum_{m=1}^{r} \beta_{n,m} + \sum_{m=1}^{r} \gamma_{n,m} = 1$ and $\mu_1, \mu_2, \ldots, \mu_r, \nu_1, \nu_2, \ldots, \nu_r$ are real numbers such that $\mu_m \leq \left(\frac{\mu_m}{C_q}\right)^{\frac{1}{2}}$ and $\nu_m \leq \left(\frac{\nu_m}{C_q}\right)^{\frac{1}{2}}$, for every $m \in \{1, 2, \ldots, r\}$. Assume that the condition (a) in Proposition 3.1 are satisfied. If E has Opial’s condition, then $\{x_n\}$ converges weakly to some point in \mathcal{F}.

Proof. From Lemma 2.7 of Aoyama, Iiduka and Takahashi [24], we find, for every $m \in \{1, 2, \ldots, r\}$, that $VI(C, A_m) = F(Q_C(I - \lambda A))$ and $VI(C, A_m) =
F(QC(I − λB)) for all λ > 0. Notice that QC(I − µmA) and QC(I − νmBm) are nonexpansive. Indeed, we find from Lemma 4.1 that

\[\|Q_I(I - \mu_m A_m)x - Q_C(I - \mu_m A_m)y\|^q \]

\[\leq \|x - y\|^q - q\mu_m\langle A_mx - A_my, J_q(x - y)\rangle + C_q\mu_m^q\|A_mx - A_my\|^q \]

\[\leq \|x - y\|^q - q\mu_m\mu_m\|A_mx - A_my\|^q + C_q\mu_m^q\|A_mx - A_my\|^q \]

\[= \|x - y\|^q - (q\mu_m\mu_m - C_q\mu_m^q)\|A_mx - A_my\|^q \]

\[= \|x - y\|^q, \quad \forall x, y \in C. \]

This proves that QC(I − µmA) is nonexpansive, so is QC(I − µmB). Since nonexpansive mappings are asymptotically nonexpansive mappings with the sequence \{1\}, we can easily conclude from Theorem 3.2 the desired conclusion. This completes the proof. □

Theorem 4.3. Let E be a uniformly convex and q-uniformly smooth Banach space with q-uniformly smoothness constant Cq > 0 and C a nonempty, closed and convex subset of E. Let QC be a sunny nonexpansive retraction from E onto C. Let Am : C → E be an am-inverse-strongly accretive operator and Bm : E → E a bm-inverse-strongly accretive operator, for every m ∈ \{1, 2, ..., r\},

where \(r \geq 1 \). Assume that \(\mathcal{F} = \cap_{m=1}^{r} VI(C, A_m) \cap \cap_{m=1}^{r} VI(C, B_m) \) is nonempty and Cq ≤ λγ where \(\lambda = \min\{a, b, c\} \). Let \(\{x_n\} \) be a sequence generated by the following: \(x_0 \in C \),

\[x_n = \alpha_n x_{n-1} + \beta_n \mu_m A_m x_{n-1} + \gamma_n \mu_m B_m x_n, \quad \forall n \geq 1, \]

where \(\{\alpha_n\}, \{\beta_n, 1\}, \{\beta_n, 2\}, \ldots, \{\beta_n, r\}, \{\gamma_n, 1\}, \{\gamma_n, 2\}, \ldots, \{\gamma_n, r\} \) are real number sequences in (0, 1) such that \(\alpha_n + \sum_{m=1}^{r} \beta_n, m + \sum_{m=1}^{r} \gamma_n, m = 1 \) and \(\mu_1, \mu_2, \ldots, \mu_r, \nu_1, \nu_2, \ldots, \nu_r \) are real numbers such that \(\mu_m \leq \left(\frac{\alpha_n, m}{C_q}\right) \) and \(\nu_m \leq \left(\frac{\alpha_n, m}{C_q}\right) \), for every \(m \in \{1, 2, \ldots, r\} \). Assume that the condition (a) in Proposition 3.1 are satisfied. Then \(\{x_n\} \) converges strongly to some point in \(\mathcal{F} \) if and only if \(\lim\inf_{n \to \infty} \text{dist}(x_n, \mathcal{F}) = 0 \).

Proof. Notice that QC(I − µmA), and QC(I − νmBm) are nonexpansive. We can immediately conclude from Theorem 3.6 the desired conclusion. This completes the proof. □

References

Jong Kyu Kim
Department of Mathematics Education, Kyungnam University,
Masan 631-701, Korea
E-mail address: jongkyuk@kyungnam.ac.kr

Xiaolong Qin
School of Mathematics and Information Sciences,
North China University of Water Resources and Electric Power,
Zhengzhou 450011, China
E-mail address: eamil@bbbb.bb.bb

Won Hee Lim
Department of Mathematics, Kyungnam University,
Masan 631-701, Korea
E-mail address: worry36@kyungnam.ac.kr