A CHARACTERIZATION THEOREM FOR LIGHTLIKE HYPERSONSURFACES OF SEMI-RIEMANNIAN MANIFOLDS OF QUASI-CONSTANT CURVATURES

Dae Ho Jin

Abstract. In this paper, we study lightlike hypersurfaces M of semi-Riemannian manifolds \bar{M} of quasi-constant curvatures. Our main result is a characterization theorem for screen homothetic Einstein lightlike hypersurfaces of a Lorentzian manifold of quasi-constant curvature subject such that its curvature vector field ζ is tangent to \bar{M}.

1. Introduction

B.Y. Chen and K. Yano [2] introduced the notion of a Riemannian manifold of quasi-constant curvature as a Riemannian manifold (\bar{M}, \bar{g}) endowed with the curvature tensor \bar{R} satisfying the following equation:

$$\bar{g}(\bar{R}(X,Y)Z,W) = \alpha\{\bar{g}(Y,Z)\bar{g}(X,W) - \bar{g}(X,Z)\bar{g}(Y,W)\} + \beta\{\bar{g}(X,W)\theta(Y)\theta(Z) - \bar{g}(X,Z)\theta(Y)\theta(W) + \bar{g}(Y,Z)\theta(X)\theta(W) - \bar{g}(Y,W)\theta(X)\theta(Z)\},$$

for any vector fields X, Y, Z and W of \bar{M}, where α and β are smooth functions and θ is a 1-form associated with a non-vanishing smooth unit vector field ζ by

$$\theta(X) = \bar{g}(X, \zeta),$$

ζ is called the curvature vector field of \bar{M}. It is well known that if the curvature tensor \bar{R} is of the form (1.1), then \bar{M} is conformally flat. If $\beta = 0$, then \bar{M} is a space of constant curvature α.

A non-flat Riemannian manifold \bar{M} of dimension $n(>2)$ is called a quasi-Einstein manifold [1] if its Ricci tensor \bar{Ric} satisfies the condition

$$\bar{Ric}(X,Y) = a\bar{g}(X,Y) + b\phi(X)\phi(Y),$$

where a and b are smooth functions such that $b \neq 0$ and ϕ is a non-vanishing 1-form such that $\bar{g}(X,U) = \phi(X)$ for any vector field X, where U is a unit vector field

Received March 28, 2013; Accepted January 13, 2014.

2000 Mathematics Subject Classification. 53C25, 53C40, 53C50.

Key words and phrases. screen homothetic, curvature vector field, lightlike hypersurface, semi-Riemannian manifold of quasi-constant curvature.
vector field. If $b = 0$, then \bar{M} is an Einstein manifold. It is easily to see that every Riemannian manifold of quasi-constant curvature is quasi-Einstein.

The classification of Einstein lightlike hypersurfaces M in semi-Riemannian manifolds \bar{M} was studied by K.L. Duggal and D.H. Jin [5]. Their main results focused on the geometry of Einstein lightlike hypersurfaces M of a Lorentzian space form $\bar{M}(c)$ of constant curvature c, whose shape operator is conformal to the shape operator of its screen distribution by some non-zero constant φ, which is called the conformal factor. Such a M is called screen homothetic. The reason for this geometric restriction on M was due to the fact that such a class admits a canonical integrable screen distribution and a symmetric induced Ricci tensor of M. Authors proved a characterization theorem for screen homothetic Einstein lightlike hypersurfaces of a Lorentzian space form as it follow:

Theorem 1.1. Let M be a screen homothetic Einstein lightlike hypersurface of a Lorentzian space form $\bar{M}^{m+2}(c)$, $m > 2$, such that $\text{Ric} = \kappa g$. Then $c = 0$, i.e., \bar{M} is flat manifold, and M is locally a product manifold $\mathcal{C} \times M_1 \times M_2$, where \mathcal{C} is a null curve tangent to the radical distribution, and M_1 and M_2 are leaves of some integrable distributions of M such that

1. If $\kappa \neq 0$, then either M_1 or M_2 is an m-dimensional totally umbilical Einstein Riemannian space form which is isometric to a sphere or a hyperbolic space according to the sign of κ and the other is a point.
2. If $\kappa = 0$, then M_1 is an $(m - 1)$ or an m-dimensional Euclidean space and M_2 is a non-null curve or a point.

After that, D.H. Jin [6] generalized the above Duggal-Jin’s characterization theorem for screen conformal Einstein lightlike hypersurfaces of Lorentzian space forms in which the conformal factor is non-vanishing smooth function φ.

The objective of this paper is to generalize the above characterization theorem for screen homothetic Einstein lightlike hypersurfaces of a Lorentzian manifold of quasi-constant curvature. We prove a characterization theorem for screen homothetic lightlike hypersurfaces M of a Lorentzian manifold \bar{M} of quasi-constant curvature subject such that the curvature vector field ζ of \bar{M}, defined by (1.2), is tangent to M.

2. Lightlike hypersurface

It is well-known [3] that the normal bundle TM^\perp of the lightlike hypersurfaces (M, g) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is a subbundle of the tangent bundle TM and coincides with the radical distribution $\text{Rad}(TM) = TM \cap TM^\perp$. Thus there exists a non-degenerate complementary vector bundle $S(TM)$ of $\text{Rad}(TM)$ in TM, which is called a screen distribution, such that

$$TM = \text{Rad}(TM) \oplus_{\text{orth}} S(TM),$$

(2.1)

where \oplus_{orth} denotes the orthogonal direct sum. We denote such a lightlike hypersurface by $M = (M, g, S(TM))$. Denote by $F(M)$ the algebra of smooth
functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. It is well-known [3] that, for any null section ξ of $\text{Rad}(TM)$ on a coordinate neighborhood $U \subset M$, there exists a unique null section N of a unique lightlike vector bundle $tr(TM)$ in $S(TM)^\perp$ satisfying
\[g(\xi, N) = 1, \quad g(N, N) = g(N, X) = 0, \quad \forall X \in \Gamma(S(TM)|_U). \]
Then the tangent bundle TM of \tilde{M} is decomposed as follows:
\[
TM = TM \oplus tr(TM) = \{ \text{Rad}(TM) \oplus tr(TM) \} \oplus_{\text{orth}} S(TM). \tag{2.2}
\]
We call $tr(TM)$ and N the transversal vector bundle and the null transversal vector field of M with respect to $S(TM)$ respectively.

In the sequel, we take $X, Y, Z, W \in \Gamma(TM)$, unless otherwise specified. Let ∇ be the Levi-Civita connection of M and P the projection morphism of TM on $S(TM)$ with respect to the decomposition (2.1). Then the local Gauss and Weingartan formulas for M and $S(TM)$ are given respectively by
\[
\begin{align*}
\bar{\nabla}_XY &= \nabla XY + B(X, Y)N, \tag{2.3} \\
\bar{\nabla}_XN &= -A_N X + \tau(X)N; \tag{2.4} \\
\bar{\nabla}_XPY &= \nabla^*_X PY + C(X, PY)\xi, \tag{2.5} \\
\bar{\nabla}_X\xi &= -A^*_\xi X - \tau(X)\xi, \tag{2.6}
\end{align*}
\]
where ∇ and ∇^* are the linear connections on TM and $S(TM)$ respectively, B and C are the local second fundamental forms on TM and $S(TM)$ respectively, A_N and A^*_ξ are the shape operators on TM and $S(TM)$ respectively and τ is a 1-form on TM. Since ∇ is torsion-free, ∇ is also torsion-free and B is symmetric. From the fact $B(X, Y) = g(\nabla XY, \xi)$, we know that B is independent of the choice of the screen distribution $S(TM)$ and
\[
B(X, \xi) = 0. \tag{2.7}
\]
The induced connection ∇ of M is not metric and satisfies
\[
(\nabla_X g)(Y, Z) = B(X, Y) \eta(Z) + B(X, Z) \eta(Y), \quad \eta(X) = g(\xi, X). \tag{2.8}
\]
But the induced connection ∇^* on $S(TM)$ is metric. The above two local second fundamental forms B and C are related to their shape operators by
\[
\begin{align*}
B(X, Y) &= g(A^*_\xi X, Y), \quad \bar{g}(A^*_\xi X, N) = 0, \tag{2.9} \\
C(X, PY) &= g(A_N X, PY), \quad \bar{g}(A_N X, N) = 0. \tag{2.10}
\end{align*}
\]
From (2.9), A^*_ξ is $S(TM)$-valued and self-adjoint on TM such that
\[
A^*_\xi \xi = 0. \tag{2.11}
\]
Denote by \bar{R}, R and R^* the curvature tensors of the connections ∇, ∇ and ∇^* respectively. Using the Gauss-Weingarten formulas for M and $S(TM)$, we
obtain the Gauss-Codazzi equations for M and $S(TM)$ such that
\begin{equation}
\bar{g}(\bar{R}(X,Y)Z, PW) = \bar{g}(\bar{R}(X,Y)Z, PW) = g(R(X,Y)Z, PW)
+ B(X, Z)C(Y, PW) - B(Y, Z)C(X, PW),
\end{equation}
\begin{equation}
\bar{g}(\bar{R}(X,Y)Z, \xi) = (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z)
+ B(Y, Z)\tau(X) - B(X, Z)\tau(Y),
\end{equation}
\begin{equation}
\bar{g}(\bar{R}(X,Y)Z, N) = \bar{g}(\bar{R}(X,Y)Z, N),
\end{equation}
\begin{equation}
g(\bar{R}(X,Y)\xi, N) = g(A_\xi^X A_\xi^Y) - g(A_\xi^Y A_\xi^X) - 2d\tau(X, Y),
\end{equation}
\begin{equation}
g(\bar{R}(X,Y)PZ, PW) = g(R^*(X,Y)PZ, PW)
+ C(X, PZ)B(Y, PW) - C(Y, PZ)B(X, PW),
\end{equation}
\begin{equation}
g(\bar{R}(X,Y)PZ, N) = (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ)
+ C(X, PZ)\tau(Y) - C(Y, PZ)\tau(X).
\end{equation}

The Ricci tensor \bar{Ric} of M is defined by
\[\bar{Ric}(X, Y) = \text{trace}[Z \rightarrow \bar{R}(Z, X)Y],\] for any $X, Y \in \Gamma(TM)$. Let $\dim M = m + 2$. Locally, \bar{Ric} is given by
\begin{equation}
\bar{Ric}(X, Y) = \sum_{i=1}^{m+2} \epsilon_i \bar{g}(\bar{R}(E_i, X)Y, E_i),
\end{equation}
where $\{E_1, \ldots, E_{m+2}\}$ is an orthonormal frame field of TM.

3. Screen homothetic lightlike hypersurfaces

Now we consider an induced quasi-orthonormal frame field $\{\xi; W_a\}$ on M, where $\text{Rad}(TM) = \text{Span}\{\xi\}$ and $S(TM) = \text{Span}\{W_a\}$ be the corresponding frame field on M. By using (2.18), we get
\begin{equation}
\bar{Ric}(X, Y) = \sum_{a=1}^{m} \epsilon_a \bar{g}(\bar{R}(W_a, X)Y, W_a) + \bar{g}(\bar{R}(\xi, X)Y, N)
\end{equation}
\begin{equation}
+ \bar{g}(\bar{R}(N, X)Y, \xi), \quad \forall X, Y \in \Gamma(TM),
\end{equation}
where $\epsilon_a (\equiv \pm 1)$ denotes the causal character of respective vector field W_a. Let $R^{(0,2)}$ denote the induced Ricci type tensor of type $(0, 2)$ on M given by
\begin{equation}
R^{(0,2)}(X, Y) = \text{trace}[Z \rightarrow R(Z, X)Y], \quad \forall X, Y \in \Gamma(TM).
\end{equation}

Using the induced quasi-orthonormal frame field $\{\xi; W_a\}$ on M, we obtain
\begin{equation}
R^{(0,2)}(X, Y) = \sum_{a=1}^{m} \epsilon_a g(R(W_a, X)Y, W_a) + \bar{g}(R(\xi, X)Y, N).
\end{equation}

Substituting (2.12) and (2.14) in (3.1) an using (2.9) and (2.10), we obtain
\begin{equation}
R^{(0,2)}(X, Y) = R\bar{ic}(X, Y) + B(X, Y)trA_X - g(A_X A_\xi Y)
- \bar{g}(R(\xi, Y)X, N), \quad \forall X, Y \in \Gamma(TM).
\end{equation}
This shows that $R^{(0,2)}$ is not symmetric. The tensor field $R^{(0,2)}$ is called its induced Ricci tensor [4], and denote it by Ric, if it is symmetric. If $R^{(0,2)}$ is an induced Ricci tensor Ric of M and $\text{Ric} = \kappa g$, then M is called an Einstein manifold. In this case, if $m > 1$, then we show that κ is a constant.

Using (2.15), (3.4) and the first Bianchi’s identity, we obtain

$$R^{(0,2)}(X,Y) - R^{(0,2)}(Y,X) = 2d\tau(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

From this equation, we have the following theorem:

Theorem 3.1. [3, 4] Let M be a lightlike hypersurface of a semi-Riemannian manifold M. Then the Ricci type tensor $R^{(0,2)}$ is symmetric if and only if the 1-form τ is closed, i.e., $d\tau = 0$, on any coordinate neighborhood $U \subset M$.

Remark 1. In case $d\tau = 0$, by the cohomology theory there exist a smooth function l such that $\tau = dl$. Thus we get $\tau(X) = X(l)$. If we take $\xi = \gamma \xi$, then we have $\tau(X) = \tilde{\tau}(X) + X(ln\gamma)$. Setting $\gamma = \exp(l)$ in this equation, we get $\tilde{\tau}(X) = 0$. We call the pair $\{\xi, N\}$ such that the corresponding 1-form τ vanishes the canonical null pair of M. Although $S(TM)$ is not unique and the lightlike geometry depends on its choice but it is canonically isomorphic to the factor vector bundle $S(TM)^\mathbb{R} = TM/Rad(TM)$ due to Kupeli [8]. Thus all $S(TM)$ are mutually isomorphic. In the sequel, we deal with only lightlike hypersurfaces M equipped with the canonical null pair $\{\xi, N\}$.

Let M be a lightlike hypersurface of a semi-Riemannian manifold \bar{M} of quasi-constant curvature. We may assume that the curvature vector field ζ of \bar{M} is a spacelike unit tangent vector field of M. In this case, if ζ belongs to $\text{Rad}(TM)$, then $\zeta = e\xi$, where $e = \theta(N) \neq 0$. From this fact, we have $1 = \tilde{g}(\zeta, \zeta) = e^2 g(\xi, \xi) = 0$. It is a contradiction. This enables one to choose a screen distribution $S(TM)$ which contains ζ due to (2.1). This implies that if ζ is tangent to M, then it belongs to $S(TM)$ which we assume in this paper.

Definition 1. A lightlike hypersurface M of a semi-Riemannian manifold \bar{M} is screen conformal [4, 5, 6] if the shape operators A_ν^\ast and A_ξ^\ast are related by $A_\nu = \varphi A_\xi^\ast$, or equivalently, the second fundamental forms B and C satisfy

$$C(X, PY) = \varphi B(X,Y),$$

where φ is a non-vanishing smooth function on a coordinate neighborhood U in M. If φ is a non-zero constant, then we say that M is screen homothetic.

Example 1. Let $(\mathbb{R}^7, \tilde{g}_0)$ be a 7-dimensional semi-Euclidean space of index 2 with signature $(-, -, +, +, +, +, +)$ of the canonical basis

$$\{\partial x_1, \partial x_2, \ldots, \partial x_6, \partial x_7 = \zeta\}.$$

Consider a lightlike hypersurface of \mathbb{R}^7, defined by

$$X(u_1, u_2, u_3, u_4, u_5, t) = (u_1 + u_2 + u_3, u_1, u_2, u_3, u_4, u_5, t),$$
whose radical distribution $\text{Rad}(TM)$ is spanned by
\[\xi = \partial_1 - \partial_2 + \partial_3 + \partial_4. \]
We consider a complementary vector bundle F^* of TM^\perp in $S(TM)^\perp$ and take
\[V^* = \partial_1 - \partial_2 \in \Gamma(F^*), \quad V^* \neq 0, \text{ such that } \bar{g}_0(\xi, V^*) \neq 0. \]
Then the transversal vector bundle is given by $tr(TM) = \text{Span}\{N\}$, where
\[N = \frac{1}{\bar{g}_0(\xi, V^*)} \left\{ V^* - \frac{\bar{g}_0(V^*, V^*)}{2\bar{g}_0(\xi, V^*)} \xi \right\} = \frac{1}{4}(\partial_1 - \partial_2 - \partial_3 - \partial_4). \]
It follows that the corresponding screen distribution $S(TM)$ is spanned by
\[\{W_1 = \partial_1 + \partial_2, \quad W_2 = \partial_3 - \partial_4, \quad W_3 = \partial_5, \quad W_4 = \partial_6, \quad W_5 = \partial_7 = \zeta\}. \]
Taking the covariant derivative to N along R_2, we get
\[\bar{\nabla}_X N = \frac{1}{4} \bar{\nabla}_X \xi, \quad \text{since } \bar{\nabla}_X V^* = 0. \]
Using Gauss and Weingarten formulae, we obtain
\[-A_N X + \tau(X)N = -\frac{1}{4}(A_N^* X + \tau(X)\xi). \]
Taking the scaler product with ξ and N to this, we get $\tau(X) = 0$, which gives
\[A_N X = \frac{1}{4} A_N^* X, \quad \forall X \in \Gamma(TM). \]
Thus M is a screen homothetic lightlike hypersurface of conformal factor $\varphi = \frac{1}{4}$.

Theorem 3.2. Let M be a screen conformal lightlike hypersurface of a semi-Riemannian manifold \bar{M} of quasi-constant curvature. If ζ is tangent to M, then the tensor field $R^{(0,2)}$ is an induced symmetric Ricci tensor of M.

Proof. Replacing W by N to (1.1) and using the fact $\theta(N) = 0$, we have
\[\bar{g}(\bar{R}(X,Z)N, N) = \alpha \{\eta(X)g(Y,Z) - \eta(Y)g(X,Z)\} + \beta \{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(Z). \]
Replacing Z by ξ to (3.6) and using $\theta(\xi) = 0$, we have $\bar{g}(\bar{R}(X,Y)\xi, N) = 0$. Comparing this result with (2.15) and using the fact $A_N = \varphi A_N^*$, we show that $d\tau = 0$. Thus, by Theorem 3.1, we have our assertion. □

Theorem 3.3. Let M be a screen homothetic lightlike hypersurface of a semi-Riemannian manifold M of quasi-constant curvature. If ζ is tangent to M, then the functions α and β vanish identically. Thus M is a flat manifold.

Proof. Using (1.1), (2.14) and (3.6), we have
\[\bar{g}(\bar{R}(X,Y)\xi, N) = \alpha g(X,Y) + \beta \theta(X)\theta(Y), \quad \text{for } \alpha g(X,Y) + \beta \theta(X)\theta(Y). \]
Substituting the last two equations into (3.4), we have
\[R^{(0,2)}(X,Y) = \{ma + \beta\}g(X,Y) + \beta(m-1)\theta(X)\theta(Y) \]
\[+ \quad B(X,Y)\text{tr}A_N - g(A_N X, A_N^\ast Y). \]
(3.9)

As \(d\tau = 0 \), we can take a canonical null pair such that \(\tau = 0 \) due to Remark 1. Replacing \(W \) by \(\xi \) to (1.1) and using (2.13) and the fact \(\theta(\xi) = 0 \), we have
\[(\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) = 0. \]
(3.10)

Assume that \(M \) is screen homothetic. Substituting (3.5) into (2.17) and using (3.10), we get
\[\bar{g}(R(X,Y)PZ,N) = 0. \]
From this result and the fact \(\bar{g}(R(X,Y)\xi,N) = 0 \), we show that, for all \(Z \in \Gamma(TM), \)
\[\bar{g}(R(X,Y)Z,N) = 0. \]
(3.11)

Replacing \(X \) by \(\xi \) and \(Z \) by \(X \) to this and comparing with (3.8), we have
\[\beta\theta(X)\theta(Y) = -\alpha g(X,Y), \quad \forall X, Y \in \Gamma(TM). \]
(3.11)

Taking \(X = Y = \zeta \) to (3.11), we get \(\beta = -\alpha \). Substituting (3.11) into (3.9) and using the fact \(\beta = -\alpha \), we obtain
\[\text{Ric}(X,Y) = \varphi\{B(X,Y)\text{tr}A_N^\ast - g(A_N^\ast X, A_N^\ast Y)\}. \]
(3.12)

Substituting (3.11) into (1.1) and using (2.12), (2.13) and (3.5), we have
\[R(X,Y)Z = \alpha(g(X,Z)Y - g(Y,Z)X) \]
\[+ \varphi\{B(Y,Z)A_N^\ast X - B(X,Z)A_N^\ast Y\}. \]
(3.13)

Substituting (3.13) and \(\bar{g}(R(\xi,Y)X,N) = 0 \) into (3.3), we also have
\[\text{Ric}(X,Y) = -(m-1)\alpha g(X,Y) + \varphi\{B(X,Y)\text{tr}A_N - g(A_N^\ast X, A_N^\ast Y)\}. \]
(3.14)

Comparing (3.12) and (3.14), we obtain \(\alpha = 0 \) as \(m > 1 \). As \(\beta = -\alpha \), we also have \(\beta = 0 \). Thus \(\bar{M} \) is a flat manifold. □

By the characterization theorem of Duggal-Jin [5] (Theorem 1.1 in this paper), we have the following result:

Theorem 3.4. Let \(M \) be a screen homothetic Einstein lightlike hypersurface of a Lorentzian manifold \(\bar{M}^{m+2}, m > 2 \), of quasi-constant curvature such that \(\text{Ric} = \kappa g \). If the curvature vector field \(\zeta \) of \(\bar{M} \) is tangent to \(M \), then \(\bar{M} \) is flat manifold and \(M \) is locally a product manifold \(\mathcal{C} \times M_1 \times M_2 \), where \(\mathcal{C} \) is a null curve tangent to the radical distribution, and \(M_1 \) and \(M_2 \) are leaves of some integrable distributions of \(M \) such that

1. If \(\kappa \neq 0 \), then either \(M_1 \) or \(M_2 \) is an \(m \)-dimensional totally umbilical Einstein Riemannian space form which is isometric to a sphere or a hyperbolic space according to the sign of \(\kappa \) and the other is a point.
2. If \(\kappa = 0 \), then \(M_1 \) is an \((m-1) \) or an \(m \)-dimensional Euclidean space and \(M_2 \) is a non-null curve or a point.
References

Department of Mathematics, Dongguk University, Gyeongju 780-714, Republic of Korea
E-mail address: jindh@dongguk.ac.kr