SOME REMARKS ON NON-SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES OVER A FIELD OF ODD CHARACTERISTIC

JUNMYEONG JANG

Abstract. In this paper, we present a simple proof of Corollary 3.3 in [5] using the fact that for a K3 surface of finite height over a field of odd characteristic, the height is a multiple of the non-symplectic order. Also we prove for a non-symplectic CM K3 surface defined over a number field, the Frobenius invariant of the reduction over a finite field is determined by the congruence class of residue characteristic modulo the non-symplectic order of the K3 surface.

1. Introduction

Let \(k \) be an algebraically closed field of odd characteristic \(p \). Let \(W \) be the ring of Witt vectors of \(k \) and \(K \) be the fraction field of \(W \). Assume \(X \) is a K3 surface over \(k \). The second crystalline cohomology of \(X \), \(H^2_{\text{cris}}(X/W) \) is a free \(W \)-module of rank 22 equipped with a canonical Frobenius linear morphism

\[
F : H^2_{\text{cris}}(X/W) \to H^2_{\text{cris}}(X/W).
\]

Let \(H^2_{\text{cris}}(X/K) = H^2_{\text{cris}}(X/W) \otimes K \) be the rational crystalline cohomology. If all the Newton slopes of \(F \)-isocrystal \((H^2_{\text{cris}}(X/K), F) \) are 1, we say \(X \) is supersingular. If \(X \) is not supersingular, there exists an integer \(h \) between 1 and 10 such that the slopes of \(H^2_{\text{cris}}(X/K) \) are \(1 - 1/h, 1, 1 + 1/h \) of length \(h, 22 - h, h \) respectively. In this case, we say \(X \) is of height \(h \).

If \(X \) is of finite height \(h \), the Dieudonné module of the formal Brauer group of \(X \) is

\[
D(\widehat{Br}_X) = W[F, V]/(FV = p, F = V^{h-1}).
\]

Here \(D(\widehat{Br}_X) \) is a free \(W \)-module of rank \(h \) equipped with a Frobenius linear operator \(F \) and a Frobenius-inverse linear operator \(V \). The Dieudonné module

Received May 4, 2014; Accepted May 16, 2014.

2010 Mathematics Subject Classification. 11G25, 14J20.

Key words and phrases. K3 surface, Non-symplectic automorphism, Crystalline cohomology.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2011-0011428).
\(\mathbb{D}(\mathcal{B}_r X) \) is isomorphic to \(H^2(X, \mathcal{W} \mathcal{O}_X) \) ([1]). \(H^2_{\text{cris}}(X/W) \) has an \(F \)-crystal decomposition according to the Newton slopes

\[
H^2_{\text{cris}}(X/W) = H^2_{\text{cris}}(X/W)[1-1/h] \oplus H^2_{\text{cris}}(X/W)[1] \oplus H^2_{\text{cris}}(X/W)[1+1/h].
\]

Here

\[
H^2_{\text{cris}}(X/W)[1-1/h] = \mathbb{D}(\mathcal{B}_r X)
\]

and

\[
H^2_{\text{cris}}(X/W)[1+1/h] = \text{Hom}(H^2(X, \mathcal{W} \mathcal{O}_X), W(p^2)).
\]

By the cup product pairing, \(H^2_{\text{cris}}(X/W)[1-1/h] \) and \(H^2_{\text{cris}}(X/W)[1+1/h] \) are isotropic and dual to each other. \(H^2_{\text{cris}}(X/W)[1] \) is unimodular. The discriminant of the \(\mathbb{Z}_p \)-lattice \(H^2_{\text{cris}}(X/W)[1] \) is \((-1)^{h+1} \) ([10]). The image of the cycle map

\[
NS(X) \otimes W \hookrightarrow H^2_{\text{cris}}(X/W)
\]
sits inside \(H^2_{\text{cris}}(X/W)[1] \). Therefore the Picard number of \(X \), the rank of \(NS(X) \) is at most \(22 - 2h \). Let \(T_{\text{cris}}(X) \) be the orthogonal complement of the embedding \(NS(X) \hookrightarrow H^2_{\text{cris}}(X/W) \). We call \(T_{\text{cris}}(X) \) the crystalline transcendental lattice of \(X \). By the above observation, we can see \(H^2_{\text{cris}}(X/W)[1-1/h] \oplus H^2_{\text{cris}}(X/W)[1+1/h] \) is a direct factor of \(T_{\text{cris}}(X) \). From the exact sequence of sheaves on \(X \)

\[
0 \to W \mathcal{O}_X \overset{\psi}{\to} W \mathcal{O}_X \to \mathcal{O}_X \to 0,
\]

we have a canonical morphism

\[
H^2_{\text{cris}}(X/W)[1-1/h] = \mathbb{D}(\mathcal{B}_r X) \cong H^2(X, \mathcal{W} \mathcal{O}_X) \to H^2(X, \mathcal{O}_X).
\]

Let

\[
\chi_{\text{cris},X} : \text{Aut } X \to O(T_{\text{cris}}(X))
\]

and

\[
\rho_X : \text{Aut } X \to \text{Gl}(H^0(X, \Omega^2_{X/k}))
\]

be the representation of \(\text{Aut } X \) on the crystalline transcendental lattice and on global 2 forms. The images of \(\chi_{\text{cris},X} \) and \(\rho_X \) are finite and there is a canonical projection ([5])

\[
\text{Im } \chi_{\text{cris},X} \to \text{Im } \rho_X.
\]

If \(X \) is a supersingular K3 surface over \(k \), the rank of \(NS(X) \) is 22 ([2], [6]). The cycle map \(NS(X) \otimes W \hookrightarrow H^2_{\text{cris}}(X) \) is an embedding of \(W \)-lattices of same rank and we have

\[
NS(X) \otimes W \subset H^2_{\text{cris}}(X/W) \subset NS(X)^* \otimes W.
\]

The quotient \(H^2_{\text{cris}}(X/W)/(NS(X) \otimes W) \) is a \(\sigma \) dimensional \(k \)-space for an integer \(\sigma \) between 1 and 10. We say \(\sigma \) is the Artin-invariant of \(X \). It is known that \(NS(X) \) is completely determined by \(p \) and \(\sigma \) ([12]). We denote the Neron-Severi lattice of a supersingular K3 surface of Artin invariant \(\sigma \) over a field of
characteristic p by $\Lambda_{p,\sigma}$. For a lattice L, let $d(L)$ be the discriminant of L. The discriminant $d(\Lambda_{p,\sigma})$ is $-p^{2\sigma}$. It is also known that there is a decomposition

$$\Lambda_{p,\sigma} \otimes \mathbb{Z}_p = E_0(p) \oplus E_1.$$

Here E_0 and E_1 are unimodular \mathbb{Z}_p-lattices of rank 2σ and $22 - 2\sigma$ respectively. And $d(E_0) = (-1)^\sigma \delta$ and $d(E_1) = (-1)^{\sigma+1} \delta$, where δ is a non-square unit of \mathbb{Z}_p.

Note that a unimodular \mathbb{Z}_p-lattice is uniquely determined up to isomorphism by the rank and the discriminant, square or non-square.

We denote the characteristic polynomial over an indeterminate T of a linear endomorphism L by $\varphi(L)$. When $\alpha \in \text{Aut}X$ is an automorphism of a K3 surface of X, $\varphi(\alpha^*|H^2_{\text{cris}}(X/W))$ is a polynomial with integer coefficients ([4], 3.7.3). If X is of finite height, $\varphi(\chi_{\text{cris},X})$ is also an integral polynomial. An automorphism $\alpha \in \text{Aut}X$ is symplectic if $\rho_X(\alpha) = 1$. An automorphism $\alpha \in \text{Aut}X$ is purely non-symplectic if α is of finite order and the order of α is equal to the order of $\rho_X(\alpha)$. For $\alpha \in \text{Aut}X$, we say the order of $\rho_X(\alpha)$ is the non-symplectic order of α. Also, we call the order of $\text{Im}\rho_X$ the non-symplectic order of X. An automorphism $\alpha \in \text{Aut}X$ is tame if α is of finite order and the order of α is not divisible by p. An automorphism of finite order which is divisible by p is called a wild automorphism. It is known that if $p > 11$, there is no wild automorphism ([3]). When X is of finite height, an automorphism $\alpha \in \text{Aut}X$ is weakly tame if the order of $\chi_{\text{cris},X}(\alpha)$ is not divisible by p.

Every tame automorphism is weakly tame. Since $\chi_{\text{cris},X}(\alpha)$ is of finite order, all roots of $\varphi(\chi_{\text{cris},X}(\alpha))$ are roots of unity. Hence if a primitive n-th root of unity is an eigenvalue of $\chi_{\text{cris},X}(\alpha)$, the rank of $T_{\text{cris}}(X)$ is at least $\phi(n)$ because $\varphi(\chi_{\text{cris},X}(\alpha)) \in \mathbb{Z}[T]$. Therefore when X is of finite height and $p \geq 23$, every automorphism of X is weakly tame.

If X is of height h, α is a weakly tame automorphism of X and $\rho(\alpha) = \xi$ is of order n, then all the eigenvalues of $\alpha^*|H^2_{\text{cris}}(X/W)[1-h] \oplus H^2_{\text{cris}}(X/W)[1+h]$ are $\xi^{11}, \xi^{\pm 1}, \ldots, \xi^{\pm 11}$ up to multiplicity ([5], Theorem 2.9). By this and an argument based on the Tate conjecture for K3 surfaces ([9], [6]), we also proved the following.

Proposition ([5], Corollary 3.3) Let k be an algebraically closed filed of odd characteristic p. Let X be a K3 surface over k equipped with an automorphism $\alpha \in \text{Aut}(X)$ such that the order of $\rho_X(\alpha)$ is $N > 2$. We assume the rank of the Neron-Severi group of X is at least $22 - \phi(N)$. If $p^m \equiv -1$ modulo N for some m, X is supersingular. If $p^m \not\equiv -1$ modulo N for any m and the order of p in $(\mathbb{Z}/N\mathbb{Z})^*$ is n, X is of height n.

In the next section, we present a simple proof of the above proposition. For that, we prove the following theorem.
Theorem 2.1. Let k be an algebraically closed field of odd characteristic p. Assume X is a K3 surface over k and $N > 2$ is the non-symplectic order of X. If $p^m \not\equiv -1$ modulo N for any m, X is of finite height. In this case, if n is the order of p in $(\mathbb{Z}/N)^*$, the height of X is a multiple of n.

When X is a complex algebraic K3 surface, the transcendental lattice of X is the orthogonal complement of the embedding

$$NS(X) \hookrightarrow H^2(X,\mathbb{Z}).$$

We denote the transcendental lattice of X by $T(X)$. When $\rho(X)$ is the Picard number of X, the signature of $T(X)$ is $(2, 20 - \rho(X))$. If N is the non-symplectic order of X, the rank of $T(X)$ is a multiple of $\phi(N)$ ([7]). We say X is a non-symplectic CM K3 surface of order N if $\text{rank} T(X)$ is equal to $\phi(N)$. A non-symplectic CM K3 surface gives a CM point in a moduli Shimura variety, so it has a model over a number field ([11]). It seems like that there are only few non-symplectic CM K3 surfaces. Also it is known that there is a unique non-symplectic CM K3 surface of order N for many N. In a previous work ([5]), if X is a non-symplectic CM K3 surface of order N with $\phi(N) > 10$ and $\text{Im} \rho_X$ is generated by a purely non-symplectic automorphism, we proved that the height and the Artin invariant of a reduction of X over a field of odd characteristic p is determined by the congruence class of p modulo N. In the next section, we give a generalization of this result for an arbitrary non-symplectic CM K3 surface.

2. Results

Theorem 2.1. Let k be an algebraically closed field of odd characteristic p. Assume X is a K3 surface over k and $N > 2$ is the non-symplectic order of X. If $p^m \not\equiv -1$ modulo N for any m, X is of finite height. In this case, if n is the order of p in $(\mathbb{Z}/N)^*$, the height of X is a multiple of n.

Proof. If X is a supersingular K3 surface of Artin-invariant σ, the non-symplectic order of X divides $p^\sigma + 1$ ([8], Theorem 2.1). Hence under the assumption, X is not supersingular. Let us choose an automorphism $\alpha \in \text{Aut} X$ such that $\text{Im} \rho_X$ is generated by $\rho_X(\alpha)$. If the order of $\chi_{\text{cris}, X}(\alpha)$ is $p^r M$ for $r, M \in \mathbb{N}$ with $p \nmid M$, α^{p^r} also generates $\text{Im} \rho_X$ and is weakly tame. After replacing α by α^{p^r}, we may assume α is weakly tame. Suppose the height of X is h. If $\xi = \rho_X(\alpha)$, by ([5], Theorem 2.9), all the eigenvalues of $\alpha^* | H^2_{\text{cris}}(X/W)_{[1-1/h]}$ are $\xi^{-1}, \xi^{-1/p}, \ldots, \xi^{-1/p^{h-1}}$ up to multiplicity. On the other hand, if $\alpha^* x = \lambda x$ for some $x \in H^2_{\text{cris}}(X/W)_{[1-1/h]}$, $\alpha^*(Vx) = V(\alpha^* x) = V(\lambda x) = \lambda^{1/p} Vx$.

Therefore for any $i \in \mathbb{Z}$, ξ^{-1/p^i} is an eigenvalue of $\alpha^* | H^2_{\text{cris}}(X/W)_{[1-1/h]}$ and the rank of eigenspace for the eigenvalue ξ^{-1/p^i} is equal to the rank of
There is an embedding $X \hookrightarrow \text{Aut}(\mathcal{O}_K)$.

Proof. By Theorem 2.1, X is of finite height and the height of X is a multiple of n. By the assumption, the rank of $T_{\text{cris}}(X)$ is $\phi(N)$ is an integral polynomial of degree $\phi(n)$ and a primitive N-th root of unity is an eigenvalue of $\chi_{\text{cris},X}(\alpha)$ is the N-th cyclotomic polynomial. It follows that every eigenvalue of $\chi_{\text{cris},X}(\alpha)$ occurs only one time. Considering ([5], Theorem 2.9), the height of X is at most n. Therefore the height of X is n. □

Let X be a non-symplectic CM K3 surface of order N. We may assume X is defined over a number field F. Let us fix a smooth projective integral model X_R of X over an integer ring R with $\text{Spec} \, R \subset \text{Spec} \, \mathcal{O}_F$. For each place $v \in \text{Spec} \, R$, let p_v be the residue characteristic of v. We assume $p_v \nmid N$ and p_v is unramified in F for any $v \in \text{Spec} \, R$. We denote the reduction of X_R over the residue field $k(v)$ by X_v.

Theorem 2.3. If $p_v^m \equiv -1 \mod N$ for any $m \in \mathbb{Z}$, X_v is of finite height and the height of X_v is the order of p_v in $(\mathbb{Z}/N\mathbb{Z})^*$. If $p_v^m \equiv -1$ for some $m \in \mathbb{Z}$, X_v is supersingular. Moreover if p_v does not divide $d(\text{NS}(X))$, the Artin-invariant of X_v is the half of the order of p_v in $(\mathbb{Z}/N\mathbb{Z})^*$.

Proof. There is an embedding $\text{NS}(X) \hookrightarrow \text{NS}(X_v)$, so the rank of $\text{NS}(X_v)$ is at least $22 - \phi(N)$. Let N_v be the non-symplectic order of X_v. Then N_v is a multiple of N. If $p_v^m \equiv -1 \mod N$ for any $m \in \mathbb{Z}$, $p_v^m \equiv -1 \mod N_v$, so X_v is of finite height. Since the rank of $T(X_v)$ is at least $\phi(N_v)$, $\phi(N) = \phi(N_v)$ and $N_v = N$ or $N_v = 2N$. In any case, the order of p in $(\mathbb{Z}/N_v\mathbb{Z})^*$ is equal to the order of p in $(\mathbb{Z}/N\mathbb{Z})^*$. By Corollary 2.2, the height of X_v is the order of p_v in $(\mathbb{Z}/N\mathbb{Z})^*$. Assume the order of $\xi = \rho_X(\alpha)$ is N for some $\alpha \in \text{Aut} \, X$. Let $T_{\text{cris}}(X)$ be the orthogonal complement of the embedding $\text{NS}(X) \otimes W \hookrightarrow \text{NS}(X_v) \otimes W \hookrightarrow H^2_{\text{cris}}(X_{\text{et}}, W)$. Since $H^2_{\text{cris}}(X/W)$ is canonically isomorphic to $H^2_{\text{cris}}(X/R) \otimes W$, $\alpha^*|T_{\text{cris}}(X)$ is of finite order. If X_v is of finite height, $T_{\text{cris}}(X_v) \subset T_{\text{cris}}(X)$ and all the eigenvalues of $\alpha^*|T_{\text{cris}}(X_v)$ are distinct. If $p_v^m \equiv -1 \mod N$, $\xi^{-1/p_v^m} = \xi$ occurs as an eigenvalue of $\alpha^*|H^2_{\text{cris}}(X/W)_{[1-1/\xi]}$. But ξ is also an eigenvalue of $\alpha^*|H^2_{\text{cris}}(X/W)_{[1+1/\xi]}$ and it is a contradiction. Therefore X_v is supersingular.
If \(p \) does not divide \(d(\text{NS}(X)) \), \(\text{NS}(X) \otimes W \) is unimodular and the Artin-invariant of \(X_\nu \) is at most \(\phi(N)/2 \). Also when \(\sigma \) is the Artin-invariant of \(X_\nu \), \(N \) divides \(p^\sigma + 1 \), so \(p^\sigma \equiv -1 \) modulo \(N \). We have an isomorphism \(\text{NS}(X_\nu)^* / \text{NS}(X_\nu) = T_{\text{cris}}(X)^* / T_{\text{cris}}(X) \) compatible with the action of \(\text{Aut} X \). By ([5], theorem 2.9), if \(\sigma \) is greater than the half of the order of \(p_\nu \) in \((\mathbb{Z}/N)^*\), \(\xi \) appears more than twice in the eigenvalues of \(\alpha^*|T_{\text{cris}}(X) \). Therefore the Artin-invariant of \(X_\nu \) is the half of the order of \(p_\nu \) in \((\mathbb{Z}/N)^*\).

Remark 2.4. If a non-symplectic CM K3 surface of order \(N \), \(X \) has a reduction of height \(\phi(N)/2 \) or of Artin invariant \(\phi(N)/2 \), the Legendre symbol \(\left(\frac{d(\text{NS}(X))}{p} \right) \) is constant for all primes \(p \) in a congruence class modulo \(N \).

References

Junmyeong Jang
Department of Mathematics University of Ulsan Daehakro 93, Namgu Ulsan 680-749, Korea
E-mail address: jmjang@ulsan.ac.kr