Protonation and Energetical Investigations of Calix[4]-cyclen-benzo-crown-6 and Its Complexes with Zinc and Copper

Thanaporn Boonchoo, Buncha Pulpoka, and Vithaya Ruangpornvisuti

Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Received February 13, 2004

Protonation constants of calix[4]-cyclen-benzo-crown-6, L in 1×10^{-2} M Bu$_4$NCF$_3$SO$_3$ in 40% CH$_2$Cl$_2$/CH$_3$OH at 25 ºC determined by potentiometric titration are log $K_1 = 10.91$, log $K_2 = 10.30$, log $K_3 = 6.24$ and log $K_4 = 2.55$. Stability constants for the receptor L complexes with Cu(II) and Zn(II) in 1×10^{-2} M Bu$_4$NCF$_3$SO$_3$ in 40% CH$_2$Cl$_2$/CH$_3$OH at 25 ºC were determined by UV-VIS spectrometric titration. Stability constants of the CuL and ZnL complexes as logβ are 4.37 and 3.45, respectively. Stabilization energies for protonations of receptor L, derived from ab initio Hartree-Fock method with 6-31G basis set, are $\Delta E_1 = -290.1$, $\Delta E_2 = -205.0$, $\Delta E_3 = -124.9$ and $\Delta E_4 = -26.9$ kcal/mol and complexation energy of ZnL complex is -370.3 kcal/mol.

Key Words: Cyclen, Calixarene, Complexation, Protonation

Introduction

Since the last decade, calixarenes have received more attention from supramolecular chemists for their intriguing structures and versatile complexation ability.1-4 Particularly, p-tert-butylcalix[4]arenes have widely attracted many researchers as very useful building blocks for preparing receptors for cations, anions and neutral molecules. Chemical modifications at the lower rim of p-tert-butylcalix[4]arene by alkylation of the phenolic groups with ester,5 amide,6 ketone,7 carboxylic acid,8 hydroxamic,9 pyridine,10 pyrdyl and bipyridyl, alkyl thioether11 and phosphinite12 functioning pendant groups have been described and their metal complexing properties such as binding ability, ionophoric behaviors and complexation stability have been investigated. Arnaud-Neu et al. have reported the study of acid-base characteristics of calixarene carboxylates,13 calixarene-crown-614 and alkyl calixaryl ester and ketones15 and their complexation properties towards alkali, alkaline earth metal ions by potentiometric titrations. The calixarene carboxylates were also examined for their complexation with lanthanide metals.16 The potentiometric titration technique was demonstrated to give accurate equilibrium constants for each metal complexes and can thus determine the selectivity of each calix[4]arene derivatives towards metal ions. Selective recognition of a receptor to metal ions depends on the ring size and number of donor atoms in the receptor, the cyclen (aza and oxo) derivative of calix[4]arene as receptor L (shown in Figure 1) is, therefore, of interest for investigation of its complexation with metal cations and protonation.

Experimental Section

Potentiometric Measurements: The protonation constants of the receptor L were determined by means of potentiometric titrations. Concentrations of free hydrogen ion [H$^+$] in the solution were measured by a combined electrode (Mettler DG 113-SC) connected to an automatic titrator (Mettler DL 25) at 25 ºC. The electrode was calibrated at pH = 2.0 with a standard solution of 1.00×10^{-2} M HClO$_4$ by adjusting the Nernstian slope based on the isopotential point of pH 8.30 = 0.0 mV. According to the junction potentials of the electrode, the pH of the solution can be corrected by using the following formula.13

*Corresponding Author. Tel: +66-2218-7644; Fax: +66-2254-1309; e-mail: vithaya.r@chula.ac.th

Figure 1. Structure of calix[4]-cyclen-benzo-crown-6.
\[\text{pH}_{\text{corrected}} = \text{pH}_{\text{observed}} + a + b [H^+]_{\text{observed}} \]

The constants \(a\) and \(b\) were determined from the pH measurements of the solutions of 1.00 \(\times\) 10^{-3} M HClO4 and 1.00 \(\times\) 10^{-2} M Bu4NCF3SO3 prepared in 40% CH2Cl2/CH3OH. All potentiometric titrations were carried out at 25 °C with deviation of ± 0.1 °C, regulated by an external Heto DT-2 thermostat. The titrations were performed under argon atmosphere. Typically, 10 mL of the ligand solution was titrated with the Bu4NOH solution in a temperature-controlled beaker. The ligand concentration was varied from 9.00 \(\times\) 10^{-4} M to 9.70 \(\times\) 10^{-2} M. At least 40 points of each potentiometric titration were used in computations for the equilibrium constants. Protonation constants of the receptor \(L\) were refined using the SUPERQUAD17 program.

The 1,3-alternate calix[4]-cyclo-benzo-crown-6, receptor \(L\) was synthesized according to the reported procedure.18 The solution of the electrolyte was obtained by dissolution of a weighed quantity of Bu4NCF3SO3 (Fluka) in 40% CH2Cl2/CH3OH. The ionic strength was kept at 1.00 \(\times\) 10^{-2} M for all experiments. The solution of receptors \(L\) (1.00 \(\times\) 10^{-3} M) and their corresponding titrant base, Bu4NOH (1.00 \(\times\) 10^{-2} M) were prepared in 40% CH2Cl2/CH3OH, 1.00 \(\times\) 10^{-2} M Bu4NCF3SO3. A standard solution of HClO4 (ca. 1.00 \(\times\) 10^{-2} M) in the background solution was used to adjust the pH of the working solution.

UV-VIS Spectrometric Measurements: The solutions of calix[4]-cyclo-benzo-crown-6 were prepared by dissolving the weighted quantities of Bu4NCF3SO3 in 40% CH2Cl2/CH3OH. The solutions of transition metal ions Cu2+ and Zn2+ were prepared by dissolution of the weighted quantities of Cu(CF3SO3)\textsubscript{2} and Zn(CF3SO3)\textsubscript{2} in 1.00 \(\times\) 10^{-2} M Bu4NCF3SO3 in 40% CH2Cl2/CH3OH, respectively. As working solution, 3.00 cm3 of receptor \(L\) in 1.00 \(\times\) 10^{-2} M Bu4NCF3SO3 in 40% CH2Cl2/CH3OH solution was placed in UV-VIS titrating cell (cuvet size ca. 4 cm3). UV-VIS spectrometric titrations were recorded against the supporting electrolyte. The titrations were performed at 25 °C. Metal ion solution 0.05 cm3 was added for each titration step using a micro syringe of size 4 cm3. At least ten titration steps were performed and UV-VIS absorbances of titrating solutions were recorded within the range of 200 to 400 nm. Absorbance data recollected from the whole range of UV-VIS spectra stepping by 10 to 20 nm were used in evaluation process for determination of stability constant of complex using the SIRKO program.19

Ab initio Calculations Section

Most stable structure of receptor \(L\) and its zinc complex were carried out by geometry optimization using semiempirical AM1 method.20 The single-point energies of the optimized geometries of receptor \(L\) computed by ab initio calculations with HF/6-31G21-23 methods were obtained. The complexation energy of ZnL were derived from the HF/6-31G energies of its related species. All calculations were performed with Gaussian 03 program.24

Results and Discussion

Protonation constants of the calix[4]-cyclo-benzo-crown-6, receptor \(L\) in 1.00 \(\times\) 10^{-2} M Bu4NCF3SO3 in 40% CH2Cl2/CH3OH at 25 °C are shown in Table 1. First and second protonation constants expressed as log \(K_1\) and log \(K_2\) are approximately same magnitude (10.91 and 10.30, respectively) but obviously different from third and fourth protonation constants (log \(K_3\) and log \(K_4\)). The first two and second two protonation constants correspond to the protonations according to the two secondary-amine and two tertiary-amine nitrogen atoms of the receptor \(L\), respectively. Distribution curves species of the receptor \(L\) in 40% CH2Cl2/CH3OH at 25 °C, \(C_l = 9.10 \times 10^{-3}\) M are shown in Figure 2. The species distribution curves show that the \(LH_4^{4+}\) species is steeply decreased from around 30% mol at pH 2.6 to less than 5% at pH higher than 4.0. Over 70% of the \(LH_3^{3+}\) species exists within the pH range of 3.1 to 5.8. The \(LH_3^{3+}\) species appears at pH 8.3 (~97%). The \(LH^+\) species exists within the pH range of 8.3 to ~11. The maximum population of \(LH^+\) species appears at pH 10.6 (~50%). The free ligand species, \(L\) exists at pH higher than ~9.5 and its highest population is steeply increased at higher pH. The present species of \(L\) in 1.00 \(\times\) 10^{-2} M Bu4NCF3SO3 in 40% CH2Cl2/CH3OH depend on pH of solution as shown in Table 2. Stability constants of the complex \(L\) with Cu(II) and Zn(II) were calculated using semiempirical AM1 method.20 The single-point energies of the optimized geometries of receptor \(L\) computed by ab initio calculations with HF/6-31G21-23 methods were obtained. The complexation energy of ZnL were derived from the HF/6-31G energies of its related species. All calculations were performed with Gaussian 03 program.24

![Figure 2](image-url)
Investigations of Calix[4]-cyclen-benzo-crown-6 in 1.00 × 10^{-2} M Bu4NCF3SO3 in 40% CH2Cl2/CH3OH at 25 ºC, in terms of log b are shown in Table 3. The receptor L seems to form strong complex with Cu^{2+} rather than Zn^{2+} ions.

Protonation energies of the calix[4]-cyclen-benzo-crown-6, L and stabilization energy of its zinc complex derived from the HF/6-31G method are listed in Table 4. The protonation energies of receptor L have been investigated with respect to their relation to the corresponding protonation constants as shown in Figure 3. The protonation energy, \(\Delta E \), is closely related to the reaction enthalpy \(\Delta H (\Delta E = \Delta H - P \Delta V) \). As volume changes in the system can be expected to very small, the protonation energy of the system will nearly equal to the reaction enthalpy. The logarithm of the equilibrium constant is partly dependent on the enthalpy (\(\Delta H = \Delta G + T \Delta S \) and \(\Delta G = -2.302 RT \log K \)). The relation between the protonation energies and their corresponding log K could be linear, therefore, if \(\Delta S \) and solvation contribution to \(\Delta H \) were constant for all protonation processes. A tendency towards such a linear correlation between computed protonation energies and corresponding log K of this system cannot be recognized as shown in Figure 3. This result is probably caused by the differences in \(\Delta S \) and also from the calculation without hydration model.

Structure of the calix[4]-cyclen-benzo-crown-6 and its zinc complex obtained with the AM1 optimization method are shown in Figure 4. As four donor nitrogen atoms of receptor L coordinate to a zinc ion, distorted tetrahedral geometry of the ZnL complex is presented as shown in Figure 4(b). This complex geometry agrees with tetrahedral geometry of [Zn(NH3)4]^{2+}.

Conclusions

The protonation constants of calix[4]-cyclen-benzo-crown-6 in 1 × 10^{-2} M Bu4NCF3SO3 in 40% CH2Cl2/CH3OH at 25 ºC determined by potentiometric method are log K1 = 10.91, log K2 = 10.30, log K3 = 6.24 and log K4 = 2.55. The stability constants of the CuL and ZnL complexes, determined by UV-VIS spectrometric titration, as log \(\beta \) are 4.37 and 3.45, respectively. The stabilization energies for protonation of receptor L, derived from HF/6-31G energies, are \(\Delta E_1 = -290.1 \), \(\Delta E_2 = -205.0 \), \(\Delta E_3 = -124.9 \) and \(\Delta E_4 = -26.9 \) kcal/mol and complexation energy of ZnL complex is -370.3 kcal/mol.

Acknowledgments. This work was partly supported by the graduate school, Chulalongkorn University. We gratefully acknowledges the financial support from Rachadapisek Sompoch Endowment Fund, Chulalongkorn University and

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Protonation energies (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta E_1) : L + H⁺ (\rightarrow) LH⁺</td>
<td>-290.1</td>
</tr>
<tr>
<td>(\Delta E_2) : LH⁺ + H⁺ (\rightarrow) LH₂⁺</td>
<td>-205.0</td>
</tr>
<tr>
<td>(\Delta E_3) : LH₂⁺ + H⁺ (\rightarrow) LH₃⁺</td>
<td>-124.9</td>
</tr>
<tr>
<td>(\Delta E_4) : LH₃⁺ + H⁺ (\rightarrow) LH₄⁺</td>
<td>-26.9</td>
</tr>
<tr>
<td>(\Delta E_{complex}) : L + Zn²⁺ (\rightarrow) ZnL²⁺</td>
<td>-370.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complexes</th>
<th>log (\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuL²⁺</td>
<td>4.37 ± 0.005</td>
</tr>
<tr>
<td>ZnL²⁺</td>
<td>3.45 ± 0.005</td>
</tr>
</tbody>
</table>

Figure 3. Correlation between protonation energies of the receptor L and their corresponding log K.
thank the Commission on Higher Education, Ministry of Education for financial support to T.B. We also thank Ms. M. Jamkratoke for her help on synthesis of the receptor L.

References