Selective Vapor-Phase Deposition of Conductive Poly(3,4-ethylenedioxythiophene) Thin Films on Patterned FeCl₃ Formed by Microcontact Printing

Department of Chemistry, Hanyang University, Seoul 133-791, Korea. †E-mail: smm@hanyang.ac.kr
‡School of Advanced Materials Engineering, Kookmin University, Seoul 136-702, Korea

We demonstrate a selective vapor-phase deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin films on patterned FeCl₃. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with FeCl₃ catalytic layers at 325 K. The selective deposition of the PEDOT thin films using vapor-phase polymerization was accomplished with patterned FeCl₃ layers as templates. Microcontact printing was done to prepare patterned FeCl₃ on polyethylene terephthalate (PET) substrates. The selective vapor-phase deposition is based on the fact that the PEDOT thin films are selectively deposited only on the regions exposing FeCl₃ of the PET substrates, because the EDOT monomer can be polymerized only in the presence of oxidants, such as FeCl₃, Fe(CIO₄)₂, and iron(II) salts of organic acids/ inorganic acids containing organic radicals.

Key Words: Vapor-phase polymerization, Micro-contact printing, Poly(3,4-ethylenedioxythiophene), Selective deposition

Introduction

π-Conjugated organic polymers having heterocyclic structures have good electrical conductivity, excellent transmittance in the visible frequency, and high chemical stability. Typical applications include optoelectronic devices, batteries, smart windows, sensors, and electronic circuit elements. Among the several conducting polymers, polypyrrole and polythiophene have received much attention in recent years. They may be a good candidate for optoelectronic devices because of their high conductivity, good transparency, excellent stability, and film-forming properties. The thin films of the conducting polymers have been shown to be useful as flexible organic and electronic devices. In general, they can be synthesized by either an oxidative chemical or electrochemical polymerization of monomer in liquid phase. In practice, however, it is not possible to use the wet methods to prepare the conducting polymers for the construction of flexible electronic circuitry because of their poor solubility and difficulties in retaining their electronic or optical properties. Recently, several groups have developed vapor-phase polymerization methods for generating their thin films with desired properties and functionalities. We developed a new growth method of thin films of poly(3,4-ethylenedioxythiophene) (PEDOT), as the polythiophene derivatives, by using vapor-phase polymerization. The PEDOT thin films were grown on various substrates by using the vapor-phase polymerization of ethylenedioxythiophene (EDOT) with FeCl₃ catalytic layers. They have high conductivity of 10 S/cm and excellent light transmittance of 95% at 25 nm in thickness.

Simple and reliable methods for the patterning of the conducting polymers are required, since there have been significant demands in the construction of flexible organic and electronic devices with micrometer sizes. A number of patterning techniques with the conducting polymers have devised, including photolithography, template assisted synthesis, scanning electrochemical microolithography, electrochemical dip-pen lithography, and soft lithography. Among existing patterning methods, soft lithography is the most efficient method to fabricate new types of structures and devices on planar, curved or flexible substrates at low cost. Soft lithography includes a number of non-photolithographic techniques that use a patterned elastomer (primarily polydimethylsiloxane, PDMS), as a stamp, mold, or mask, to transfer the pattern to substrates. Microcontact printing, in particular, is the most versatile and cost-effective method that can routinely form patterned self-assembled monolayers (SAMs). The SAMs (2-3 nm thick) are thin organic films which form spontaneously on solid surfaces. They can be used either as resists in selective etching or as templates in selective deposition to form patterned thin films. Microcontact printing is low in capital cost and can generate patterns on nonplanar surfaces with a wide variety of materials. This method seems to be a general method for forming patterns of a variety of materials, such as colloids, acids, metal, polymers, and biological molecules, on surfaces of solid substrates through contact pattern transfer. There has been a growing interest in forming a patterned thin film by site-selective deposition on a patterned template made by microcontact printing, as a simple low-cost fabrication process. Since the EDOT monomers can be polymerized in vapor phase only on the FeCl₃ catalytic layer of the substrates, it offers an ideal method for selective deposition of the conducting polymer on patterned FeCl₃.

Here we report a patterning method of PEDOT thin films using microcontact printing of FeCl₃, followed by selective vapor-phase polymerization of EDOT. Our approach consists

...
of two key steps, as shown in Figure 1. First, the patterned FeCl₃ catalytic layer was formed on polyethylene terephthalate (PET) substrate by using microcontact printing. Second, the PEDOT thin films were selectively deposited onto the FeCl₃-patterned PET by vapor-phase polymerization.

Experimental Section

Materials. Ethylenedioxythiophene (Bytron M of Bayer AG), FeCl₃·6H₂O (Aldrich, 98%), methanol (Aldrich, 98%), and hexane (Aldrich; anhydrous, 99%) were used as received. Polydimethylsiloxane (Sylgard 184) was ordered from Dow Corning. Deionized water was purified with a Millipore Milli-Q plus system, distilled over KMnO₄, and then passed through the Millipore Simplicity system. Polyethylene terephthalate (PET) substrate (Mylar, 5 mil) were rinsed with water and methanol, extracted in refluxing hexane for 2 h, and then dried at reduced pressure.

Preparation of Patterned FeCl₃. Patterned FeCl₃ films on the PET substrates were made by using microcontact printing. Masters were fabricated by using conventional photolithography to pattern resists on silicon wafers. The masters we used for fabrication of stamps were silicon wafers with line patterned resists. The stamps were fabricated by casting polydimethylsiloxane (PDMS) on the masters. After curing, the PDMS stamps were peeled away from the masters. The PDMS stamps were inked with a 5 wt % FeCl₃ solution and were placed in contact on the PET substrate for 30 s. When the stamps were made using these masters, the raised lines of the masters corresponded to the recessed spaces of the stamps. Figure 2 shows AFM topographic and current images in cross section of patterned FeCl₃ fabricated using the masters having 2.3 μm parallel lines with 3.6 μm spaces. Faint FeCl₃ patterns with a mean height of about 7 Å were visible on the PET substrate.

Preparation of PEDOT Thin Films. The FeCl₃-patterned PET substrates were exposed to an EODT vapor for 20 min in a reaction chamber at 325 K under 1 atm. Following the polymerization, the grown PEDOT films were washed with methanol several times to remove unreacted oxidant, EODT monomer, and byproducts (e.g. FeCl₂), and dried in air at 343 K for 3 min. The conductivity of the PEDOT thin films was measured by standard four-point probe technique (Mitsubishi Chemical, Loresta-GP). The optical properties of the PEDOT thin films were measured by UV-Visible spectrometer (Perkin-Elmer, Lambda 25). Conducting-AFM was performed by Si cantilevers with a spring constant of 11.5 Nm⁻¹, coated with Pt. (NSG10, NT-MDT, Russia). In C-AFM measurement, bias of 3 volts and contact force of 5.6 nN was applied. Simultaneously, both topographic and current images were obtained in air.

Results and Discussion

Iron(III) salts can be conveniently used as dopant ions for π-conjugated organic polymers having heterocyclic structures such as PEDOT. The EODT monomer can be polymerized in the presence of oxidants such as FeCl₃. Patterned FeCl₃ films on the PET substrate were made by using microcontact printing. The masters we used for fabrication of stamps were silicon wafers with line patterned resists. The stamps were fabricated by casting polydimethylsiloxane (PDMS) on the masters. After curing, the PDMS stamps were peeled away from the masters. The PDMS stamps were inked with a 5 wt % FeCl₃ solution and were placed in contact on the PET substrate for 30 s. When the stamps were made using these masters, the raised lines of the masters corresponded to the recessed spaces of the stamps. Figure 2 shows AFM topographic image and line profile in cross section of patterned FeCl₃ fabricated using the masters having 2.3 μm parallel lines with 3.6 μm spaces. Faint FeCl₃ patterns with a mean height of about 7 Å were visible on the PET substrate.

The PEDOT thin films were selectively deposited onto the FeCl₃-patterned PET substrate by vapor-phase polymerization using EODT monomer. The selective vapor-phase polymerization of EODT was done at 325 K for 20 min.
Selective Vapor-Phase Deposition of Conductive Polymer

Figure 2 illustrates AFM image and line profile in cross section of micropatterned PEDOT thin films, which were selectively deposited onto the FeCl$_3$-patterned PET substrate. The patterns of the PEDOT thin films were defined and directed by the patterned FeCl$_3$ generated with microcontact printing. The PEDOT thin films were selectively deposited only on the regions covered with FeCl$_3$ films of the PET substrate because the regions exposing PET did not have any oxidant to polymerize EDOT monomers. It is clearly showed that the patterned PEDOT thin films retain the dimensions of the master patterns without noticeable line spreading. Additionally, the thickness of the patterned PEDOT thin film is about 25 nm.

XP survey and high-resolution spectra for the PET substrate following microcontact printing of FeCl$_3$ are shown in Figures 3(b) and 4. The presence of the patterned FeCl$_3$ film is indicated by a large increase in the iron and chlorin peak intensities, and a decrease in the carbon and oxygen peak intensities. The high-resolution spectrum of the Fe(2p) region shows characteristic shake-up peaks and a Fe(2p$_{3/2}$) peak at 711.1 eV, which is assigned to Fe(III). As shown in Figure 4, the Cl(2p) peaks are the same as those of the FeCl$_3$. The peak area ratio for the iron and chlorin, corrected by the elemental sensitivity factors, is 1 : 3. The XPS data show that patterned FeCl$_3$ films were made on the PET substrate by using microcontact printing.

Figure 3. XP survey spectra of (a) the PET substrate, (b) the patterned FeCl$_3$ film, and (c) the patterned PEDOT thin film.

The XP spectra for the FeCl$_3$-patterned PET substrate following vapor-phase polymerization of EDOT, shown in Figures 3(c) and 4, indicate a large increase in the carbon and oxygen peak intensities and a complete loss of the iron and chlorin peaks. The S(2p) peak at 164.3 eV is the same as that of the thiophene, indicating that the surface species generated from the vapor-phase polymerization of EDOT on the FeCl$_3$-patterned PET is a polythiophene derivative.

Figure 4. XR high-resolution spectra of the PET substrate, the patterned FeCl$_3$ film, and the patterned PEDOT thin film.

These observations suggest that the polythiophene thin film is formed on the FeCl$_3$-patterned PET substrate by using vapor-phase polymerization of EDOT.

Figures 5(a) and 5(b) show AFM topography with in-plane current map in the patterned PEDOT thin films on
thin films on FeCl$_3$-patterned PET substrates formed by microcontact printing. The PEDOT thin film is selectively deposited only on the regions exposing the FeCl$_3$ of the PET substrates because the EDOT monomer can be polymerized in the presence of FeCl$_3$. The vapor-phase polymerization offers an ideal method for selective deposition of conducting polymers on patterned catalytic films because it is very sensitive to surface conditions of the substrates.

Acknowledgment. This work was was supported by the SRC/ERC program of MOST/KOSEF (grant R11-2005-048-00000-0) and a Center for Nanoscale Mechatronics & Manufacturing of the 21st Century Frontier Research Programs from MOST.

References

Selective Vapor-Phase Deposition of Conductive Polymer
