Enantiomerically pure γ-lactones are widely distributed in nature and many biologically active compounds. In addition, chiral β-substituted γ-lactone chemistry plays a very important role in the synthesis of natural products. Accordingly, numerous synthetic approaches to chiral β-substituted γ-lactones have been – and still are being – developed. Chiral substituted tetrahydrofuran moiety has also been found in nature and many biologically active compounds including diazonimide and the leptonfuram series. However, to date, there have been reported very few methodologies for the synthesis of chiral substituted THF derivatives, with even fewer synthetic methodologies of chiral 3-substituted THF heterocycles. In this communication, we describe the facile synthetic strategy of chiral β-substituted γ-lactones and 3-substituted tetrahydrofurans by the reduction and oxidation of chiral β-substituted γ-lactols respectively, which are prepared by new catalytic asymmetric Friedel-Crafts alkylation of appropriate nucleophiles to a γ-hydroxy α,β-unsaturated aldehyde using an organocatalyst.

Recently, we have reported the catalytic asymmetric 1,4-addition of arylvinyl- and arylboronic acids to γ-hydroxy α,β-unsaturated aldehyde using an organocatalyst to afford β-substituted γ-lactols. Although arylboronic acids were showed good yields with high enantioselectivities, arylboronic acids were appeared with low enantioselectivities. After being taken these results, we considered the protocol to obtain the high enantioselective β-aromatic substituted γ-lactols which was the Friedel-Crafts alkylation with appropriate nucleophiles to a γ-hydroxy α,β-unsaturated aldehyde instead of the 1,4-addition of arylboronic acids (Scheme 1).

In this process, the Friedel-Crafts alkylation of N-methylindole (4a) to 4-hydroxy-but-2-enal (2) was selected as a model reaction. Diphenylprolinol silyl ether catalyst I (Figure 1) was initially examined in this reaction in CH2Cl2 at −10 °C (Table 1). However, the reaction was not proceeded to furnish the corresponding β-N-methylindole γ-lactol 5a and the starting material was almost recovered after 18 hours (entry 1).

Next, we investigated another type of organocatalyst – imidazolidinone catalyst, which have been used to the many Friedel-Crafts alkylations of α,β-unsaturated aldehydes, in this reaction. First of all, imidazolidinone catalyst II was examined in the reaction of N-methylindole (4a) to 4-hydroxy-but-2-enal (2). The reaction was completed within 6 hours with 68 yield and moderate enantioselectivity (54% ee, entry 2). Moreover, second generation imidazolidinone catalyst IV showed the increased reactivity and enantioselectivity (83% yield, 81% ee, entry 4), although the catalyst III provided the product in low yield (entry 3). After the reaction conditions were optimized (solvent system and temperature control), we found that the superior levels of enantioselectivity and yield were exhibited by catalyst VI in CH2Cl2 − i-PrOH at −40 °C (99% yield, 83% ee, entry 7).

Having established the optimal reaction conditions, we next probed the generality of this asymmetric catalytic reaction with various indoles to 4-hydroxy-but-2-enal (2) (Table 2). Variation in the N-substituent (R = Me, allyl, CH2Ph, entries 1-3) is possible without significant loss in yield or enantioselectivity (≥ 95% yield, 82 ~ 87% ee). Incorporation of electron-donating substitu-

![Scheme 1. Organocatalytic Friedel-Crafts alkylation with γ-Hydroxy α,β-Unsaturated Aldehyde.](image)

Figure 1. Chiral Amine Organocatalysts.

Table 1. Asymmetric Friedel-Crafts Alkylation of N-Methylindole with 4-Hydroxy-but-2-enal by Organocatalyst.

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>solvent</th>
<th>temp (°C)</th>
<th>time (h)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>CH2Cl2</td>
<td>−10</td>
<td>18</td>
<td>no rxn</td>
<td>−</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>CH2Cl2</td>
<td>−10</td>
<td>6</td>
<td>68</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>CH2Cl2</td>
<td>−10</td>
<td>6</td>
<td>10</td>
<td>−</td>
</tr>
<tr>
<td>4</td>
<td>IV</td>
<td>CH2Cl2</td>
<td>−10</td>
<td>3</td>
<td>83</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>IV</td>
<td>CHCl3</td>
<td>−10</td>
<td>3</td>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>IV</td>
<td>CH2Cl2− i-PrOH (90:10 v/v)</td>
<td>−10</td>
<td>12</td>
<td>92</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>IV</td>
<td>CH2Cl2− i-PrOH (90:10 v/v)</td>
<td>−40</td>
<td>24</td>
<td>99</td>
<td>83</td>
</tr>
</tbody>
</table>

Reactions were carried out in solvent (0.5 M) with 2 equiv of 4-hydroxy-but-2-enal relative to the N-methylindole in the presence of 10 mol% catalyst. Determined by HPLC analysis after oxidation.
reaction was performed in CH2Cl2 at −10 °C. N,N-dimethyl 3-methoxyxaniline gave the corresponding product in good yield (97%) and high enantioselectivity (81% ee, entry 3). When we used tryptamine and tryptophol as nucleophile in this reaction that expected to give pyrroloindoline and furanoindoline, unfortunately in all cases, poor levels of yield and enantioselectivity were observed (entries 5–7).

Finally, Scheme 2 outlines transformations of the β-substituted γ-lactol. β-substituted γ-lactone 8 and Chiral 3-substituted tetrahydrofururan 9 could be accessed in good yields by the oxidation and reduction of compound 5a respectively.

In summary, we have communicated the catalytic asymmetric Friedel-Crafts alkylation of appropriate nucleophiles to a γ-hydroxy α,β-unsaturated aldehyde using an imidazolidinone as an organocatalyst which afforded β-substituted γ-lactols in good yields and with up to 87% ee.

Acknowledgments. This work was supported by Kyonggi University Research Grant 2008.

References and Notes