Benzyl Cation Formation from the Reaction of Benzyl Alcohol with Thianthrene Cation Radical

Hyung Min Moon and Wang Keun Lee

Department of Chemistry Education, Chonnam National University, Gwang-Ju 500-757, Korea
E-mail: wklee@chonnam.ac.kr
Received December 26, 2008, Accepted January 28, 2009

Key Words: Benzyl cation, Benzylacetamide, Thianthrene cation radical

Mechanistic studies have been reported for the reactions of thianthrene cation radical (Th\(^+\)ClO\(_4\)) with nucleophiles such as water and alcohol. The simple reaction of Th\(^+\) with water\(^1\) generated equal amounts of thianthrene (Th) and its 5-oxide (ThO) (eq 1). The analogous study of reactions of Th\(^+\) with alcohols have reported by Yueh and Shine\(^2\) in their study of the reaction of Th\(^+\) with benzyl alcohol (1), dibenzyl ether (100%), Th (52%), and ThO (48%) were obtained as products. The stoichiometry of the reaction was a molar ratio of 1.88-2.50:1.00 of Th\(^+\) to 1, with the major products are not characteristic of benzyl cations but rather dibenzyl ether and without the formation of N-benzylacetamide. With the exception of 1, all of the substituted benzyl alcohols (X-C\(_6\)H\(_5\)-CH\(_2\)OH, X = methyl, halogen) gave mixtures of the corresponding dibenzyl ether and N-benzylacetamide. Yueh and Shine suggested that dibenzyl ether was formed in an SN2 displacement of ThO, whereas the amides were formed by SN1 loss of ThO from the ROTh\(^+\) (eq 2), whereby the oxygen atom of 1 was transferred to Th\(^+\) with quantitative formation of ThO and 3.

As expected from the stoichiometry of eq 3, there are equivalent amounts of Th, ThO and 3.

\[
\begin{align*}
\text{2 Th}^+ & \quad \text{R-OH} \quad \text{Th} + \text{ROTh}^+ + \text{H}^+ \quad \text{(2)} \\
\text{Th}^+ & \quad \text{CH}_2\text{OH} \quad 1) \quad \text{MeCN} \\
\text{CH}_3\text{NHCOCCH}_3 \quad 2) \quad \text{NaHCO}_3, \text{H}_2\text{O} \\
\text{3} & \quad \text{Th} + \text{ThO} \quad \text{(3)}
\end{align*}
\]

It is evident that Th\(^+\) cannot oxidize 1 because of the lower oxidation potentials of Th (~ 1.3 V vs SCE\(^6\)) relative to alcohols (> 2 V). Alternatively, analogous to the anisylation of Th\(^+\), complexation of an 1 with Th\(^+\) must occur, and leads ultimately to an unstable alkoxysulfonium ion, from which benzyl cation is derived by S$_2$1 loss of ThO from the ROTh\(^+\) (eq 2), whereby the oxygen atom of 1 was transferred to Th\(^+\) with quantitative formation of ThO and 3.

In general, ThO is obtained as a side product from the hydrolysis of Th\(^+\) by water, either adventitiously in the solvent or added during work-up of the reaction of Th\(^+\). However, in this study, the ThO is a primary product rather than a side product. The formation of ThO as a primary product of oxygen transfer from nucleophiles, has been reported widely from the reaction of Th\(^+\) with nitrite and nitrate ions, oximes, cyclic alcohols, 2,3-dimethyl-2,3-butanediol, and azodioxide. Without doubt, 3 arose from hydration, during work-up, from a Ritter-type intermediate (C\(_6\)H\(_5\)CH\(_2\)N=+CMe), from the reaction of C\(_6\)H\(_5\)CH\(_2\) + with MeCN solvent. The chemical characteristics of the t-butylium cation from the cation radical-induced oxidative decomposition of nucleophiles has been documented extensively, but that of the benzyl cation, known to be less stable than the t-butylium cation, affords very few examples of Ritter-type product, 3.

A mechanism that fits the formation of such products involves the initial complexation of Th\(^+\) with 1 (eq 4) to produce a species more easily oxidized than Th\(^+\), where electron transfer (eq 5) produces a thianthrene dication-benzyl alcohol complex (Th-1)12 that undergoes a rate-determining bond formation with expulsion of a proton (eq 6) to produce 2. N-Benzylacetamide (3) is subsequently formed by S$_2$1 loss of ThO from 2.
In conclusion, a stable benzyl cation was obtained from the complexation of benzyl alcohol with a thianthrene cation radical under mild conditions. The postulated intermediate, the benzyl cation, has received scant attention because of very few examples of Ritter-type reaction from the cation radical reactions. The new reaction described herein further expands the characteristic benzyl cation chemistry induced by cation radicals.

Experimental Section

Reaction of benzyl alcohol (1) with Th⁺· ClO₄⁻. A general procedure was adopted. Solid Th⁺· ClO₄⁻ (315.6 mg, 1.0 mmol) was weighed into a 50-mL rounded-bottomed flask containing a magnetic bar and capped with a septum. The flask was purged with dry argon through a syringe needle, and into it was injected 15 mL of acetonitrile. The solution was stirred for 10 min, and to it was added, by syringe, a solution of benzyl alcohol (54.07 mg, 0.5 mmol) in 5 mL of acetonitrile. The dark purple color of Th⁺· ClO₄⁻ disappeared within 30 min, but the mixture was stirred overnight. Thereafter, 10 mL of water was added followed by aqueous NaHCO₃ to neutralize HClO₄ that had formed during the reaction. The solution was extracted with 3 × 30 mL portions of CH₂Cl₂. The CH₂Cl₂ solution was dried over MgSO₄ and evaporated. The residue was dissolved in 10 mL of CH₂Cl₂. Portions of this solution were used for quantitative analysis by GC and for identification of products by GC/MS (CDCl₃). The GC column used was a 15 m × 0.25 mm capillary column with CP-Sil 5CB, with naphthalene as an internal standard. Concentration factors for all products were determined with authentic materials.

Thianthrene 5-oxide (ThO) and N-benzylniacetamide (3) were prepared as described in the literature.

Acknowledgments. We thank the Korea Basic Science Institute, Gwang-Ju center for GC/MS and ¹H-NMR.

References and Notes

5. Unpublished work, N-benzylniacetamide was obtained from the reaction of benzyl phenyl ether and thianthrene cation radical.