Iminocoumarin-based Hg(II) Ion Probe

Hyun Jung Kim, Youngmee Kim,† Sung Jin Kim,† Sun Young Park, Su Yeon Lee, Ja Hyung Kim, Kwanghyun No,‡ and Jong Seung Kim*

Department of Chemistry, Korea University, Seoul 136-701, Korea. *E-mail: jongskim@korea.ac.kr
†Department of Chemistry and Division of Nano Sciences, Ewha Womans University, Seoul 120-750, Korea
‡Department of Chemistry, Sookmyung Womens University, Seoul 140-742, Korea. *E-mail: hyun@sookmyung.ac.kr

Received November 19, 2009, Accepted November 23, 2009

Key Words: Fluorescence, Hg2+ ion, Complexation

The design and synthesis of new chemosensors for heavy and transition metal ions (HTM) has been an important subject in the field of supramolecular chemistry due to their fundamental role in biological, environmental, and chemical processes.1 Particularly, the recognition and detection of Hg2+ are of growing interest because the Hg2+ is considered highly noxious elements.2 Many analytical methods have been applied for this purpose including atomic absorption spectrometry (AAS),3a ion selective electrodes (ISE),3b and flame photometry.3c In addition, for the detection of HTM (heavy and transition metal), colorimetric sensors have also gained interest. The colorimetric sensors have considerable advantages over other molecular sensors because they do not require the use of costly equipment such as spectrophotometers, ISE, or cyclic voltameters.3d So, to develop simple-to-use and naked-eye diagnostic tool, great efforts have been made for the design and synthesis of selective chromogenic sensors for Hg2+.

Coumarin derivatives have usually been used as fluorogenic sensors for cations or anions due to their high quantum yields.4 However, coumarin chromogenic chemosensors showing color changes upon certain ion complexation are rare.5 In this paper, we report new Hg2+-selective chromogenic coumarin derivative showing unique UV spectroscopic changes and obvious color changes along with enhanced fluorescence upon Hg2+ binding.

Scheme 1. Synthetic routes to 1 and 2.

Figure 1. Crystal structure of 2.

Figure 2. UV/Vis spectra of 1(a) and 2(b) (20.0 µM) upon addition of ClO4− salts of Li+, Na+, K+, Rb+, Cs+, Cd2+, Ag+, Pb2+, Zn2+, Sr2+, Ba2+, Ca2+, Hg2+, and Al3+ (50 equiv) in CH3CN.
Chromo-fluorogenic sensors 1 and 2 were prepared by 3-step synthetic route as indicated in Scheme 1. 7-\(N,N\)-Diethylamino-coumarin (3) was prepared by adaptation of reported procedures. Compound 4 was synthesized in 70% yield by the reaction of 3 with POCl\(_3\) in DMF. Imination of 4 with phenylhydrazine and (2,4-dinitrophenyl)hydrazine in ethanol gave 1 and 2 in 80 and 81% yields, respectively. \(^1\)H-NMR, \(^{13}\)C-NMR, FR-IR and FAB-MS spectroscopies for 1 and 2 are characterized in detail in the experimental section. Also, the solid-state structure of 2 provided a convincing evidence for its 3-D conformation.

The perchlorate salts of Li\(^+\), Na\(^+\), K\(^+\), Rb\(^+\), Cs\(^+\), Cd\(^{2+}\), Ag\(^+\), Pb\(^{2+}\), Zn\(^{2+}\), Sr\(^{2+}\), Ba\(^{2+}\), Ca\(^{2+}\), Hg\(^{2+}\), and Al\(^{3+}\) ions were used to investigate the metal ion binding properties of both 1 and 2 regarding absorption and emission changes. Figure 2 shows the UV-Vis spectral changes of 1 (20 \(\mu\)M) and 2 (20 \(\mu\)M), respectively, upon the addition of various metal ions in CH\(_3\)CN. UV/Vis band of at 450 nm bathochromically moved to 658 nm upon addition of Hg\(^{2+}\) ion while no changes with other metal cations are noted. However, spectral changes of 2 having two nitro units are substituted on the aromatic ring were not seen by any other metal ions. As shown in crystal structure in Figure 1, we assume that it is difficult for 2 to encapsulate a metal cation in regard of a geometrical disagreement where the distance between oxygen atom of C=O and nitrogen atom of C=N group of 2 is too long.

Figure 3 shows a UV/Vis spectral variation of 1 upon the gradual addition of Hg(ClO\(_4\))\(_2\). A considerable red-shift of absorption spectrum in 1 is presumably due to Hg\(^{2+}\) ion binding to carbonyl oxygen of the coumarin along with nitrogen of the C=N unit, reflecting an enhanced intramolecular charge transfer (ICT) process from \(N,N\)-diethyl unit to carbonyl oxygen group. The variation of fluorescence spectra of 1 upon addition of diverse cations were recorded in CH\(_3\)CN and are displayed in Figure 4.

The weak emission of solution 1 is presumably due to a non-radiative decay through C=N dynamic isomerization as was previously suggested, whereas the strong emission at 485 nm
in the presence of Hg$^{2+}$ may arise from the blocking of the C=N dynamic isomerization. Similar to previous examples, the complexation and fluorescent sensing mechanism of 1 with Hg$^{2+}$ is depicted in Scheme 2.

To elucidate the complexation mode of 1 with Hg$^{2+}$ ion, we synthesized 3 without the C=N unit as a reference. As expected, upon addition of Hg$^{2+}$ ion, no spectral change was noted as seen in Figure 5. It herewith should be noteworthy again that the C=N group of coumarin 1 plays a crucial role in the complexation for Hg$^{2+}$ ions. A Job plot experiment with 1 supports 1:1 complex formation of 1 for Hg$^{2+}$ (Figure 6).

An important feature of 1 is to exhibit its high selectivity towards Hg$^{2+}$ over other competitive species. UV/Vis spectral changes of 1 were investigated with addition of other miscellaneous cations including Li$,^+$, Na$,^+$, K$,^+$, Rb$,^+$, Cs$,^+$, Cd$^{2+}$, Ag$^+$, Mg$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Zn$^{2+}$, Pb$^{2+}$, Al$^{3+}$, and Al$^{3+}$ (10 equiv, respectively).

General procedure for fluorescence studies. Fluorescence spectra were recorded with a RF-5301PC spectrophotometer. Stock solutions (1.00 mM) of perchlorate salts were prepared in CH$_3$CN. Stock solutions of free 1 (0.040 mM) were prepared in CH$_3$CN. Excitations were carried out at 450 nm with all excitation slit widths is 3 nm, that of emission is 3 nm.

Job plot experiment. For the Job plot experiment, 1 (20.0 µM) in CH$_3$CN and perchlorate salts of Hg$^{2+}$ (20.0 µM) in CH$_3$CN were prepared as stock solutions. The concentrations of each CH$_3$CN solution were varied, but the total volume was fixed at 4.0 mL. After the mixture was shaken, the absorbance intensity at 450 nm was recorded.

Synthesis.

7-Diethylamino-3-(2-phenylhydrazono)methyl coumarine (1): A portion of 4 (200 mg, 1 mmol) and phenylhydrazide (97 mg, 1.1 mmol) were combined in hot absolute ethanol (20 mL). The solution was stirred at reflux conditions for 4 hours, and the precipitate was filtrated, washed with hot absolute ethanol three times, then recrystallized with CH$_3$Cl/CH$_3$OH (v/v, 1/3) to obtain orange crystal 1 (215 mg) in 80% yield. 1H NMR (CDCl$_3$, 400 MHz) δ 8.19 (1 H, ArH), 7.88 (1 H, ArH), 7.36 (1 H, ArH), 6.87 (1 H, ArH), 6.26 (1 H, ArH), 5.83 (1 H, ArH), 4.84 (1 H, ArH), 3.34 (1 H, ArH), 2.54 (1 H, ArH), 1.43 (1 H, ArH), 0.90 (1 H, ArH), 0.65 (1 H, ArH), 0.40 (1 H, ArH) (Figure 7). We found no changes of UV/Vis and fluorescence spectra of 1. Competition experiments in the presence of other miscellaneous cations were not found to interfere the Hg$^{2+}$ selectivity of 1. Therefore, compound 1 is thought to be a Hg$^{2+}$ ion sensor applicable for the industrial and the environmental field.

Experimental Section

Instruments and reagents. All fluorescence and UV-Vis absorption spectra were recorded in RF-5301PC and S-3100 spectrophotometer, respectively. NMR and mass spectra were recorded at Varian instrument (400 MHz) and JMS-700 MStation mass spectrometer, respectively. All cationic compounds such as perchlorate salts of Li$,^+$, Na$,^+$, K$,^+$, Rb$,^+$, Cs$,^+$, Cd$^{2+}$, Ag$^+$, Mg$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Zn$^{2+}$, Pb$^{2+}$, Al$^{3+}$ and Al$^{3+}$ ions were purchased from Aldrich and used as received. All solvents were analytical reagents and from Duksan Pure Chemical Co., Ltd. CH$_3$CN for spectra detection was HPLC reagent without fluorescent impurity.

Notes

References

1. (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley,