Structure and Energetics of \((C_{60})_2^{2+}\) Conformers: Quantum Chemical Studies

Changhoon Lee,†,‡ Sung Soo Park,§ Wang Ro Lee,*,‡ and Kee Hag Lee†,‡

†Department of Chemistry, Nanoscale Sciences and Technology Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
‡Faculty of Liberal Education, Chonbuk National University, Jeonju, Jeonbuk 561-756, Korea
§Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA

Received December 18, 2009, Accepted January 5, 2010

The geometrical structures and energetics of positively doubly charged fullerene dimer \((C_{60})_2^{2+}\) conformers were studied using semiempirical PM3 and MNDO, Hartree-Fock (HF), and Hybrid B3LYP density functional methods. The shape of the HOMO-LUMO for the three conformers was also analyzed. The gauche conformer was the most stable of the three conformers. The anti conformer was more stable than the syn conformer.

Key Words: Ab initio quantum chemical methods, Fullerenes dimer dication, Conformer

Introduction

Fullerenes are a new allotrope of carbon with a closed polyhedral framework, which have attracted considerable interest for their unique properties. For example, Rb\(C_{60}\) exhibits superconducting properties with a transition temperature of 28 K. Another amazing example, \(C_{60}\text{(TDAD)}_{8.86}\) is an organic ferromagnet with a higher Curie temperature than any other known organic ferromagnet. In addition, polyvinyl-carbazole doped with \(C_{60}\) is an outstanding thiapyrillium dye. \(C_{70}\) can be used as a nucleus for diamond growth and many applications have been reported. The doping of fullerenes has a strong influence on the molecular and bulk properties of the new modification of carbon. The discovery of superconductivity in alkali metal doped \(C_{60}\) has attracted considerable interest in fullerene doped systems.

The electronic and atomic structures of hole-doped and electron-doped fullerenes were theoretically studied. In semiconductors, hole doping can be achieved by doping pure semiconductor materials with boron atoms. The idea of substituting atoms in the relatively large carbon cage of fullerenes with heteroatoms has intrigued scientists. After the initial proof with \(C_{60}\), Smalley et al. reported substitutions of the carbon cage with heteroatoms. Smalley et al. demonstrated the first experimental production of boron-doped fullerene (borafullerene) in the gas phase by laser vaporization. This is outstanding because “doped bucky ball” is a completely new material and is expected to have higher chemical reactivity than buckminsterfullerene. Muhr et al. generated borafullerenes by arc evaporation of doped graphite rods. In addition Zou et al. synthesized the borafullerene films by radio frequency plasma assisted vapor deposition. Borafullerene has been the subject of various calculations.

Andrei et al. used the Car-Parrinello method to determine that the B atom is threefold coordinated and most of the distortion is localized on the B-C bonds. Kurita et al. calculated the molecular structures, binding energies and electronic properties of heterofullerenes using a molecular orbital (MO) method with Harris functional and spin-restricted approximation. In the point of the isoelectronic view, it is expected that the fullerene cation will have similar properties to those of borafullerene. Therefore, it will be interesting to understand the structure and electronic properties of hole doped fullerene dimer. We previously reported the relative stability of negatively charged fullerene dimer, \((C_{60})_2^{-}\) conformers. Here we will compare them with positively charged fullerene dimer conformers, \((C_{60})_2^{2+}\).

However, as far as we know, there are no published ab initio computational calculations on a fullerene dimer dication, although there was a paper of the full potential muffin-tin orbital calculations of the anti conformer of borafullerene dimer. In addition, no attempt has been made to analyze the conformers of \((C_{60})_2^{2+}\). Therefore, it is appropriate to use quantum chemical methods that are already well established for organic molecules to analyze the conformers of \((C_{60})_2^{2+}\), which are the basic unit of new molecular arrays. \(^{13}\)C nuclear magnetic resonance (NMR) experiments on solid \(C_{60}\) showed that it is only below \(T = 260\) K that the free \(C_{60}\) rotation is hindered by the a-sphericity of the intermolecular potential, due to the discrete atomic positions. With the advanced computational power, it is now possible to understand the free spinning around the interace single C-C bond of fullerene dimers at the \(ab\) initio level. Also for molecular systems, there is still an interesting question concerning the molecule that can detach two or more electrons with both electronic stability (against electron attachment) and thermodynamic stability (against fragmentation) in the gas phase.

The aim of this study was to understand the geometrical structures, electronic structure, and energetics of the single bonded fullerene dimer dication conformers.

Calculations and Model

Different theoretical methods, semiempirical parameterized method (MNDO), \(ab\) initio Hartree-Fock and density functional methods (using 3-21G and 6-31G* basis sets), were used to optimize the structures of the fullerene dimer dication, \((C_{60})_2^{2+}\).
conformers. Here, the density functional method of Becke's three parameter hybrid method and the Lee-Yang-Parr correlation functional (B3LYP) were employed. All geometries at the local minima and transition states were fully optimized using the Gaussian 98 suite of programs. Although there were some variations between the different methods, the results of the calculations are consistent. Among them, the B3LYP results should be considered to be most reliable. Therefore, this discussion will be based mainly on the B3LYP/6-31G*/B3LYP/6-31G* results.

A semiempirical calculation was performed using a PM3 parameterized MNDO method for various XCCX dihedral angles to determine the energy barrier for the free rotation of a fullerene C-C single bond (Figure 1). Figure 1 shows the geometric structures considered in this paper. There are three distinct stable conformers with respect to rotation around a single C-C bond: two enantiomeric gauche forms with a XCCX dihedral angle of approximately 60° (right-handed helix) and -60° (left-handed helix) and an anti form with ω = 180°. The others are the highest energy syn form with ω = 0° and the 2nd highest energy eclipsed form with ω = 120°, which are the two transition states between the gauche (+) and gauche (-) and between anti and gauche (±).

Results and Discussion

Table 1 shows the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the three conformers of (C₆₀)₂ dication. It is very interesting that although the HOMO-LUMO gap of the syn conformer of (C₆₀)₂ dication is larger than the others, the energy of the syn conformer of (C₆₀)₂ dication is the highest among the three conformers, as shown in Table 1. The rotational potential surface has two minima (gau, anti) and one transition state (syn). It may be informative whether transition states and minima are all conformed numerically. Also supplementary figure for potential energy surface of Table 1 is in supporting information.

Table 2 shows the relative energies of the three conformers of (C₆₀)₂. The semiempirical and ab initio HF methods showed that the anti conformer with C₂₇₉ symmetry has the lowest energy, while the gauche conformer with C₂ symmetry of (C₆₀)₂ is the most stable in the DFT (B3LYP) method. The energy of the gauche conformer was calculated to be -0.2 kcal/mol using B3LYP method, 0.4 kcal/mol from the HF/6-31G* calculation, and 0.7 kcal/mol from the MNDO calculation when the energy of the anti conformer is taken as a reference. This suggests that in the B3LYP results, the relative energy of the gauche conformer was 0.2 kcal/mol lower than that of the anti conformer. Since the B3LYP results are considered to be most reliable in this study, it suggests that the gauche form should be the most stable structure among the fullerene dimer dication conformers.

The difference between the relative energy of the (C₆₀)₂ conformers and that of (C₆₀)₂ is quite interesting because in the case of the fullerene dimer dianion, the anti conformer is more stable than the gauche conformer, as reported elsewhere. The difference in the order of stability in the results of the fullerene dimer dication and fullerene dimer dianion was analyzed using the change in energy levels near the HOMO. Figure 2 shows the energy levels of the (C₆₀)₂ conformers (anti and gauche) and (C₆₀)₂ conformers (anti and gauche). In the case of the fullerene dimer dianion, the HOMO-3 (B₃) of the anti

<table>
<thead>
<tr>
<th>Dihedral angle(deg)</th>
<th>Energy (Hartree)</th>
<th>HOMO-LUMO Gap(eV)</th>
<th>C-C Distances (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(C₆₀)</td>
<td>3.41940</td>
<td>4.91</td>
<td>1.578</td>
</tr>
<tr>
<td>30(C₆₀)</td>
<td>3.41751</td>
<td>4.87</td>
<td>1.575</td>
</tr>
<tr>
<td>60(C₆₀)</td>
<td>3.41544</td>
<td>4.83</td>
<td>1.572</td>
</tr>
<tr>
<td>70(C₆₀)</td>
<td>3.41551</td>
<td>4.83</td>
<td>1.572</td>
</tr>
<tr>
<td>80(C₆₀)</td>
<td>3.41594</td>
<td>4.84</td>
<td>1.573</td>
</tr>
<tr>
<td>90(C₆₀)</td>
<td>3.41658</td>
<td>4.86</td>
<td>1.574</td>
</tr>
<tr>
<td>120(C₆₀)</td>
<td>3.41777</td>
<td>4.90</td>
<td>1.577</td>
</tr>
<tr>
<td>150(C₆₀)</td>
<td>3.41608</td>
<td>4.89</td>
<td>1.575</td>
</tr>
<tr>
<td>180(C₆₀)</td>
<td>3.41441</td>
<td>4.86</td>
<td>1.572</td>
</tr>
<tr>
<td>Gauche(63.47)</td>
<td>3.41542</td>
<td>4.83</td>
<td>1.572</td>
</tr>
</tbody>
</table>

Dihedral angle (° < XCCX)

<table>
<thead>
<tr>
<th>Structure (symmetry)</th>
<th>Syn(C₆₀)</th>
<th>gauche(C₆₀)</th>
<th>anti(C₆₀)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM3</td>
<td>3.4</td>
<td>-0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>MNDO</td>
<td>3.2</td>
<td>-0.1</td>
<td>1.7</td>
</tr>
<tr>
<td>HF/STO-3G</td>
<td>1.6</td>
<td>-0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>HF/3-21G</td>
<td>1.6</td>
<td>-0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>HF/6-31G*</td>
<td>1.6</td>
<td>-0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>B3LYP/STO-3G</td>
<td>1.7</td>
<td>-0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>B3LYP/3-21G</td>
<td>1.6</td>
<td>-0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>B3LYP/6-31G*</td>
<td>1.6</td>
<td>-0.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 2. Energies of the (C₆₀)₂ conformers relative to the anti conformers (kcal/mol)

*The interace C-C bond lengths (Å). The optimized dihedral angles (deg).
levels are related to the difference in the total number of electrons of the dication and dianion. This can explain why the gauche conformer is the most stable structure of the three conformers of fullerene dimer dication, but the anti conformer is the most stable of the \((C_{60})_2^{2+}\) conformers.

The HOMO and LUMO were analyzed to understand electronic structure of the \((C_{60})_2^{2+}\) conformers. Figure 3 shows the shape of B3LYP/6-31G* of the HOMO and LUMO for the three conformers of the single bonded \((C_{60})_2^{2+}\). Figure 3 shows how the LUMO of \((C_{60})_2^{2+}\) can contribute to bond formation between the cages of \((C_{60})_2\) and \((C_{60})_2^{2+}\). The electron densities of the syn conformer were doubly concentrated along the intercage bond, whereas the anti and the gauche conformers were spread to the atoms neighboring the intercage bond. The LUMO of the syn conformer has the shape of a C-C double bonded \(C_60\) dimer. Therefore, it is believed that the syn conformer is a closely related state to the C-C double bonded \(C_{60}\) dimer. Therefore, the gauche and anti conformers have analogous energetic properties.

For the \((C_{60})_2^{2+}\) conformers, the rotational potential surfaces have two minima (anti and gauche) and two transition states (syn, \(C_{60}\) and eclipsed, \(C_3\)). The pattern of this rotational potential surface is the same as that of \(n\)-butane. In addition, by calculating the rotation barrier energy of the single intercage bond, these molecules should be an equilibrium mixture between the anti and gauche conformers. In addition, these results can be understood in terms of the gauche effect on the change in energy, which is a tendency to adopt a structure with the maximum number of gauche interactions between the adjacent electron pairs and/or polar bonds. Gauche conformations about the C-C bond are also favored in \(\text{NCCH}_2\text{CH}_2\text{CN}\) and \(\text{H}_2\text{COCH}_2\text{CH}_2\text{OCH}_2\).

In conclusion, the rotational potential energy surfaces and electronic structures of \((C_{60})_2^{2+}\) were examined. The results suggest that this hole-doped fullerene dimer molecule should be an equilibrium mixture of anti and gauche conformers.

Acknowledgments. This paper was supported by Wonkwang University in 2007.

Supporting Information. Supplementary potential energy surface of Table 1 is available at the bkcs website (http://www.kcsnet.or.kr/bkcs).

References