Photocatalytic Activities of Hydrothermally Synthesized \(\text{Zn}_2\text{SnO}_4 \)

Myung-Jin Kim, Seong-Hun Park, and Young-Duk Huh

Department of Chemistry, Dankook University, Institute of Nanosensor and Biotechnology, Gyeonggi-Do 448-701, Korea
E-mail: ydthuh@dankook.ac.kr (Y.-D. Huh)

Department of Chemistry, University of Seoul, Seoul 130-743, Korea

Received January 10, 2011, Accepted March 22, 2011

Key Words: \(\text{Zn}_2\text{SnO}_4 \), Hydrothermal synthesis, Photocatalytic activities

Zinc stannate (\(\text{Zn}_2\text{SnO}_4 \)) is a transparent conducting oxide with high electron mobility, high electrical conductivity and low visible absorption, and is used widely as gas sensors, electrode materials, and photoluminescence materials.\(^ {1-3} \) \(\text{Zn}_2\text{SnO}_4 \) has also attracted considerable interest for its high photocatalytic activity. The decomposition reactions of benzene and water-soluble dyes using \(\text{Zn}_2\text{SnO}_4 \) as a photocatalyst were reported.\(^ {4,7} \) \(\text{Zn}_2\text{SnO}_4 \) is normally synthesized by solid state reactions with \(\text{ZnO} \) and \(\text{SnO}_2 \) at high temperatures.\(^ {8,9} \) The high temperature calcination of coprecipitated \(\text{Zn} \) and \(\text{Sn} \) hydroxides with the alkali from an aqueous solution were also used to prepare \(\text{Zn}_2\text{SnO}_4 \).\(^ {10} \) Recently, the hydrothermal synthesis of \(\text{Zn}_2\text{SnO}_4 \) was reported.\(^ {11-13} \) Hydrothermal methods have advantages over the solid state reactions and high temperature calcinations methods, such as a lower reaction temperature and simpler method for producing nano-sized particles. Therefore, hydrothermal methods should be used to prepare \(\text{Zn}_2\text{SnO}_4 \) nanoparticles to improve the photocatalytic activity. However, relatively little is known regarding the relationship between the photocatalytic activity and synthetic conditions of hydrothermal methods of \(\text{Zn}_2\text{SnO}_4 \).

This paper reports the photocatalytic activity of \(\text{Zn}_2\text{SnO}_4 \) nanoparticles prepared by a simple hydrothermal method from \(\text{Zn}(\text{CH}_3\text{COO})_2 \) and \(\text{SnCl}_4 \) with different amounts of \(\text{NH}_3\text{OH} \) to control the pH from 8 to 11. The photocatalytic activity of \(\text{Zn}_2\text{SnO}_4 \) nanoparticles prepared by hydrothermal synthesis from \(\text{Zn}(\text{CH}_3\text{COO})_2 \) and \(\text{SnCl}_4 \) with different types of hydroxylation agents at pH 9 was also examined.

Figure 1 shows XRD patterns of the as-prepared samples obtained by hydrothermal methods from \(\text{Zn}(\text{CH}_3\text{COO})_2 \) and \(\text{SnCl}_4 \) in the presence of different amounts of \(\text{NH}_3\text{OH} \) to control the pH from 8 to 11. At pH 8 and 9, aggregated forms of \(\text{Zn}_2\text{SnO}_4 \) nanoparticles were observed, as shown in Figures 2(a) and 2(b). However, micron-sized, cubic-shaped \(\text{ZnSn(OH)}_6 \) products were observed at pH 11, as shown in Figure 2(d). This suggests that \(\text{ZnSn(OH)}_6 \) has a characteristic cubic-shaped morphology. On the other hand, \(\text{Zn}_2\text{SnO}_4 \) nanoparticles do not have a unique morphology. The coexistence of \(\text{Zn}_2\text{SnO}_4 \) and \(\text{ZnSn(OH)}_6 \) was observed at pH 10. Figure 2(c) shows \(\text{Zn}_2\text{SnO}_4 \) nanoparticles attached to the outer surface of the micron-sized cubic \(\text{ZnSn(OH)}_6 \) crystals. Figure 3 shows high-resolution TEM (HRTEM) image of the \(\text{Zn}_2\text{SnO}_4 \) nanoparticles obtained at pH 9. The size of the individual nanoparticle was approximately 10 nm. The observed lattice spacing of 0.49 nm corresponded to the (111) plane of cubic \(\text{Zn}_2\text{SnO}_4 \) crystals. The fast Fourier transform (FFT) pattern corresponds to the lattice fringe, as shown in the inset of Figure 3.

To examine the photocatalytic activity of \(\text{Zn}_2\text{SnO}_4 \) and \(\text{ZnSn(OH)}_6 \) products obtained by hydrothermal methods, Rh6G was chosen as the pollutant model molecule. The photodegradation of Rh6G under UV lamp irradiation after the addition of \(\text{Zn}_2\text{SnO}_4 \) and \(\text{ZnSn(OH)}_6 \) as photocatalysts was evaluated. Figure 4(a) shows the temporal evolution of the UV-vis spectra of Rh6G in the absence of a catalyst. The absorption peaks of Rh6G decreased slightly with the irradiation time. The concentrations of Rh6G species were calculated simply from the maximum absorption intensities at 527 nm using the Beer-Lambert law. The photodegradation...
efficiency was only 2.2% for 90 min, which demonstrated that the photodegradation of Rh6G was extremely low in the absence of a catalyst. Figures 4(b), 4(c), 4(d) and 4(e) show the temporal evolution of the UV-vis spectra of Rh6G in the absence of a catalyst. We will plan to prepare the ZnSn(OH)$_6$ product obtained by a hydrothermal method at pH 9 using NH$_4$OH. The BET surface area of ZnSn(OH)$_6$, prepared at pH 9 when rate constants are normalized to surface area. This suggests that ZnSn(OH)$_6$ with larger BET surface area can be an excellent photocatalyst. We will plan to prepare the ZnSn(OH)$_6$ with larger BET surface area to enhance the photocatalytic activity of ZnSn(OH)$_6$ later.

Most of photodegradation reactions of dyes obey first-order reaction kinetics.14,15 The reaction rate constant can be obtained simply from the integrated form of first-order reaction kinetics according to equation (1).

$$\ln\left(\frac{C}{C_0}\right) = -kt$$

where C_0 is the initial concentration, C is the concentration of Rh6G after a set UV irradiation time. Figure 5 shows the first-order reaction kinetic plots of the photodegradation of Rh6G in the absence of a catalyst and in the presence of the as-prepared samples prepared at four different pH values. As shown in Figure 5, straight lines were observed. This suggests that the photodegradation of Rh6G obeys first-order reaction kinetics. The rate constant for the photodegradation of Rh6G in the presence of Zn$_2$SnO$_4$ and ZnSn(OH)$_6$ products prepared at pH 8, 9, 10 and 11 were 2.0×10^{-2}, 2.0×10^{-2}, 2.5×10^{-2}, 1.4×10^{-2}, and 3.8×10^{-3} min$^{-1}$, respectively. Therefore, the photocatalytic activity of Zn$_2$SnO$_4$ is better than that of ZnSn(OH)$_6$. The BET surface areas of Zn$_2$SnO$_4$ and ZnSn(OH)$_6$ prepared at pH 8, 9, 10 and 11 were 82.5, 94.8, 15.4, and 13.5 m2/g, respectively. The photocatalytic activity of Zn$_2$SnO$_4$ depends strongly on the BET surface areas of Zn$_2$SnO$_4$. The rate constant for the photodegradation of Rh6G in the presence of TiO$_2$ powder was 3.1×10^{-2} min$^{-1}$. Based on the rate constant of photodegradation of Rh6G, the photocatalytic activity of Zn$_2$SnO$_4$ prepared at pH 9 using NH$_4$OH is approximately 81% that of the TiO$_2$ powder. ZnSn(OH)$_6$ with BET surface areas of 48 m2/g was used as a photocatalyst for the decomposition reactions of benzene.16 Even though overall photocatalytic activity of Zn$_2$SnO$_4$ is superior to that of ZnSn(OH)$_6$, in this work, the photocatalytic activity of ZnSn(OH)$_6$ prepared at pH 11 was slightly better than that of Zn$_2$SnO$_4$ prepared at pH 9 when rate constants are normalized to surface area. This suggest that ZnSn(OH)$_6$ with larger BET surface area can be an excellent photocatalyst.

NaOH, NH$_3$OH, DMEDA, and TMEDA were used as a ligand and hydroxylating agent to examine the effect of the ligand on photocatalytic activity of Zn$_2$SnO$_4$ obtained using hydrothermal methods at pH 9. XRD patterns of four products matched the reported data for single Zn$_2$SnO$_4$ crystals (JCPDS 24-1470, a = 0.8657 nm) without impurities. Figure 6(a), 6(b), 6(c) and 6(d) show the UV-vis spectral changes in Rh6G in the presence of the four Zn$_2$SnO$_4$ products prepared using NaOH, NH$_3$OH, DMEDA, and TMEDA, respectively. The photocatalytic efficiencies of Rh6G in the presence of Zn$_2$SnO$_4$ prepared using NaOH, NH$_3$OH, DMEDA, and TMEDA were 74.4%, 90.5%, 95.5%, and 84.2% for 90 min, respectively. The rate constant for the photodegradation of Rh6G in the presence of Zn$_2$SnO$_4$ prepared using NaOH, NH$_3$OH, DMEDA, and TMEDA was 1.5×10^{-2}, 2.5×10^{-2}, 3.2×10^{-2} and 2.0×10^{-2} min$^{-1}$, respectively. The BET surface areas of Zn$_2$SnO$_4$...
products prepared at pH 9 using NaOH, NH₄OH, DMEDA, and TMEDA were 57.2, 94.8, 86.6, and 61.9 m²/g, respectively. Therefore, the photocatalytic activities of Zn₂SnO₄ products prepared at pH 9 using the different hydroxylation agents were in the following order: DMEDA > NH₄OH > TMEDA > NaOH. The photocatalytic activity of Zn₂SnO₄ prepared at pH 9 using DMEDA was approximately 103% that of the well-known TiO₂ photocatalyst.

In conclusion, Zn₂SnO₄ and ZnSn(OH)₆ were synthesized using a hydrothermal reaction from Zn(CH₃COO)₂ and SnCl₄ with different amounts of NH₄OH. A single phase of Zn₂SnO₄ and ZnSn(OH)₆ were formed at pH 8, 9, and pH 11, respectively. At pH 10, Zn₂SnO₄ and ZnSn(OH)₆ coexisted. The photocatalytic activity of Zn₂SnO₄ prepared at pH 9 was better than that of ZnSn(OH)₆ prepared at pH 11 by factor of 6.6. The photocatalytic activity of Zn₂SnO₄ nanoparticles prepared using the different hydroxylation agents were in the following order: DMEDA > NH₄OH > TMEDA > NaOH. The photocatalytic activity of Zn₂SnO₄ prepared at pH 9 using DMEDA was almost equal to that of the well-known TiO₂ photocatalyst.

Experimental Section

Zn(CH₃COO)₂ (98%, Aldrich), SnCl₄ (98%, Aldrich), NaOH (97%, Aldrich), NH₄OH (28%, Aldrich), N,N-dimethyl ethylenediamine (DMEDA, 95%, Aldrich), N,N,N',N'-tetramethyl ethylenediamine (TMEDA, 99%, TCI), Rhodamine 6G (Rh6G, 99%, Aldrich), and TiO₂ powder (Degussa, P-25) were used.
as received. In a typical experiment, 20 mL of a 0.10 M Zn(CH₃COO)₂ solution was added to 20 mL of a 0.05 M SnCl₄ solution. Different amounts of a NH₄OH solution was added to the mixed solution to obtain the various pH values (pH 8, 9, 10, and 11). A 60 mL sample of the final solution was transferred to a 100 mL Teflon-lined autoclave and heated to 140 °C for 16 h. The product was filtered, washed several times with ethanol and water, and dried at 80 °C for 12 h.

The photocatalytic activity of the ZnSnO₄ and ZnSn(OH)₄ samples was evaluated by the photodegradation of Rh6G under a 12 W UV lamp (λ = 254 nm). In a typical procedure, 10 mg ZnSnO₄ (or ZnSn(OH)₄) powder was added to 100 mL of 1.04 × 10⁻⁵ M Rh6G aqueous solutions in a 100 mL round bottom flask. The suspensions were then irradiated under a UV lamp at a 3 cm separation distance in dark condition. Every 15 minutes during the photodegradation process, 3 mL of the Rh6G solution was sampled and separated by centrifugation. The concentrations of the supernatants were monitored using a UV-vis spectrophotometer. To compare the photocatalytic activity of TiO₂ with that of ZnSnO₄, 10 mg of TiO₂ was used with the other conditions kept the same as those used for the photodegradation of Rh6G by adding ZnSnO₄.

The structures of the ZnSnO₄ and ZnSn(OH)₄ products were characterized by powder X-ray diffraction (XRD, PANalytical, Xpert-pro MPD) using Cu Kα radiation. The morphology of the products was observed by scanning electron microscopy (SEM, Hitachi S-4300) and transmission electron microscopy (TEM, JEOL JEM-3010). The Brunauer-Emmett-Teller (BET) surface areas of the sample were calculated from the N₂ adsorption/desorption isotherms determined at liquid nitrogen temperature using an automatic analyzer (Micrometric, Tristar 3202). Prior to adsorption, the samples were outgassed for 8 h under a vacuum at 120 °C.

Acknowledgments. This study was supported by Basic Science Research Program through National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010-0007492).

References