Synthesis of Thermally Stable Mesoporous Alumina by using Bayberry Tannin as Template in Aqueous System

Jing Liu,† Fuming Huang,‡+ Xuepin Liao,*,‡† and Bi Shi†,§

†Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, P.R. China
‡Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P.R. China
§National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
*
†,‡,§ Received March 25, 2013, Accepted June 11, 2013

Mesoporous alumina was synthesized using bayberry tannin (BT) as template. This novel synthesis strategy was based on a precipitation method associated with aluminum nitrate as the source of aluminum in an aqueous system. N2 adsorption/desorption, XRD, SEM and TEM were used to characterize the as-prepared mesoporous alumina. The results showed that the mesoporous alumina possessed crystalline pore wall, high specific surface area, narrow pore distribution and excellent thermal stability. Moreover, the surface area and pore size of the mesoporous alumina can be tuned by changing the experimental parameters. Further, the mesoporous alumina was investigated as the support of palladium catalyst (Pd-Al2O3) for the hydrogenation of propenyl, styrene and linoleic acid. For comparison, the reference catalyst (Pd-Al2O3) prepared without barberry tannin was also employed for the catalytic hydrogenation. The experimental results showed that Pd-Al2O3 exhibited the superior catalytic performance than Pd-Al2O3 for all the investigated substrates, especially for the hydrogenation of linoleic acid with larger molecular.

Key Words: Mesoporous alumina, Bayberry tannin, Template, Thermal stability, Catalyst support

Introduction

Porous aluminas, owing to their thermal, chemical and mechanical stability and low cost, are extensively used in catalysis, adsorption, and separation.1-3 In general, the control of pore geometry and size is crucial to adjust their performance in these applications, especially in the case of which rely on size or shape selectivity.4,4 However, the traditional aluminas are commonly prepared through precipitation method and thermal treatment of aluminum oxide-hydroxide precursors.3 These traditional porous aluminas usually have the disadvantages of low surface area and uncontrolled textural porosity, and often suffer from the problem of deactivation by pore plugging due to coke formation in microspores.9 With the advent of mesoporous materials, the synthesis of mesoporous alumina with high surface area and narrow pore size distribution is promising for application enhancement of porous alumina.

Based on the surfactant templating synthetic strategy of mesoporous silicas, a wide range of synthesis procedures have now been documented for the preparation of mesoporous aluminas by utilizing cationic, anionic and non-ionic surfactant as the structural directing agents and/or templates. Lee et al. prepared mesoporous alumina using aluminum tri-sec-butoxide and CTAB (cetyl trimethyl ammonium bromide) in 1-butanol, and its pore size could be tuned by changing the amount of additive water and hydrothermal temperature.9 Shih et al. reported that mesoporous alumina was synthesized by using aluminum sec-butoxide and tartaric acid in ethyl alcohol, and the mesoporous solid had narrow pore size which could be tailored by varying the concentration of the organic template of tartaric acid.10 Yan et al. used Pluronic P123 and aluminium iso-propoxide in ethanol solvent to prepare mesoporous alumina, and its pore size could be adjusted by changing the type of acids and the chain length of block copolymers.11 Even though many approaches for the preparation of mesoporous alumina with controllable pore size have been developed, but these methods usually employ the expensive and toxic aluminum alkoxides as the source of alumina in various organic solvents, which encounter the economical and environmental problems from the point view of practical application. For these reasons, it appears greatly attractive to synthesize mesoporous alumina by using inorganic aluminum salt as alumina source and water as solvent. However, the synthesis of thermally stable mesoporous alumina in aqueous media often represents a much more complex problem due to the susceptibility for hydrolysis as well as to the collapse of mesostructure upon removal of the template during calcination.7,12 Therefore, it is still a challenge to obtain mesoporous alumina with high surface area, uniform and tunable pore size, and high thermal stability via a convenient and economic approach.

Plant tannins, a kind of natural polymer, are widely distributed in plant bark, leaf and fruit. Tannins have some surfactant-like characteristics and can be assembled into
micelles in aqueous media. The molecular structure of tannins consists of many adjacent phenolic hydroxyls, and it has been proved that tannins have the ability to chelate with many metal ions by the formation of five-membered chelated rings. So, it can be expected that in aqueous solution containing inorganic aluminum salt and tannins, the micellated tannins would act as the structure-directing agent for the assembly of inorganic phase by chelating with Al species at hybrid interfaces. Moreover, the chelation reaction might provide the desired acting force to guide the formation of mesosstructure during the self-assembly process of the organic and inorganic phase. To demonstrate this strategy, at the present investigation, bayberry tannin (Fig. 1) was used as the structure-directing agent and aluminium nitrate as source of alumina in aqueous media to synthesis mesoporous alumina. Furthermore, the as-prepared mesoporous alumina supported palladium catalyst was prepared by impregnation method, and its catalytic performance in the hydrogenation was also investigated.

Experimental

Reagents. Al(NO$_3$)$_3$·9H$_2$O, palladium chloride (PdCl$_2$), propenol, styrene, linoic acid, methanol and other chemicals were all analytic reagents and used without further purification. Bayberry tannin was obtained from the barks of *myrica esculenta* by extraction with an acetone/water solution (1:1, v/v) and then spray-dried. The tannin content of the extract was determined to be 76.3% according to the Hide Powder Method.

Synthesis Procedure. A typical synthetic procedure is as follows: 47 mL of 0.8 mol/L Al(NO$_3$)$_3$ solution was mixed with 150 mL of BT solution (3 wt %) under vigorous stirring. The pH of the mixture was adjusted to 5.5 using ammonia aqueous solution (5 wt %). After 1 h stirring, the resulting suspension was transferred into a Teflon-lined stainless steel autoclave. The autoclave was heated to 150 °C (5 °C/min) and kept in isothermal condition for 48 h under N$_2$ atmosphere. After cooling down to room temperature naturally, the intermediate product, denoted as BT-Al, was collected after filtration, washed with distilled water and dried at 60 °C for 24 h. Finally, this intermediate product was ground to powder and calcinated at 600 °C for 6 h under air atmosphere to remove bayberry tannin, and the final product of mesoporous alumina (M-Al$_2$O$_3$) was obtained. The mesoporous aluminas with different pore sizes were prepared by adjusting the mass ratio of BT/Al(NO$_3$)$_3$, BT concentration, the pH value of reaction and hydrothermal temperature (see Tables 1-4). Thermal stability test of the as-prepared mesoporous alumina was performed by recalcinating it for 2 h at 800 and 900 °C, respectively. And the corresponding samples after recalcination were denoted as M-Al$_2$O$_3$-800 and M-Al$_2$O$_3$-900, respectively. For comparison, the reference alumina (R-Al$_2$O$_3$) was prepared using the similar method but without the use of bayberry tannin.

Catalyst Preparation. Supported palladium catalyst was prepared by impregnation method. 1 g of M-Al$_2$O$_3$ was mixed with 10.0 mL of 1.0 mg/mL PdCl$_2$ solution under constant stirring at 25 °C for 24 h. The impregnated sample was collected after centrifugation, dried in ambient air at 60 °C for 24 h, then further reduced under 2.0 MPa H$_2$ at 200 °C for 2 h, and the final product, denoted as Pd-Al$_2$O$_3$, was obtained. For comparison, the Pd-Al$_2$O$_3$ catalyst was prepared by using R-Al$_2$O$_3$ as support.

Characterization. The specific surface area and pore structure of samples were analyzed by N$_2$ adsorption/desorption using Surface Area and Porosity Analyzer of Micrometrics Tristar 3000. The powder X-ray diffraction patterns of samples were recorded by an X’Pert PRO MPD diffractometer (PW3040/60) with Cu-Κα radiation. The morphology of samples was observed by Scanning Electron Microscopy on JSM-5900LV and Transmission Electron Microscopy on FEI-Tecnai G2.

Hydrogenation Reaction. All catalytic hydrogenation reactions were carried out in a Teflon-lined stainless steel autoclave (150 mL). Typically, the hydrogenation reactions of propenol and styrene were performed at 30 °C and 1 MPa H$_2$ using methanol (20 mL) as solvent. The hydrogenation reaction of linoic acid was performed at 80 °C and 2 MPa H$_2$ using the deoxygenated decane (50 mL) as solvent. The concentration of the reactants and products were analyzed by gas chromatograph (Shimadzu, CG-2010). The activity of the catalyst was evaluated according to the initial hydrogenation rate (mol/Pd mol h) value determined by the initial slope of the curve of product yield vs. time.

Results and Discussion

Characterization of Mesoporous Alumina (M-Al$_2$O$_3$).

Textural Characterization. Figure 2 shows the nitrogen adsorption/desorption isotherms of representative sample (M-Al$_2$O$_3$), obtained when the mass ratio of BT/Al(NO$_3$)$_3$ was 0.32:1, pH was 5.5 and hydrothermal temperature was 150 °C. It can be observed that the adsorption/desorption isotherms of M-Al$_2$O$_3$ exhibit typical type IV curves, which is the characteristic of mesoporous material, and the H2-shaped hysteresis loop in the isotherms suggests the presence of “ink-bottle” type pores in M-Al$_2$O$_3$. In addition,
the physisorption measurement also reveals that M-Al$_2$O$_3$ had the relatively high BET surface area (281.3 m2/g) and the narrow pore size distribution (shown in the inset of Fig. 2). In contrast, the low BET surface area (129.6 m2/g) and the broad pore distribution were obtained for the reference sample of R-Al$_2$O$_3$ prepared without bayberry tannin (see Table 1 and Fig. 6). Therefore, the presence of bayberry tannin in the precursors of alumina is critical for the formation of the mesoporous structure with relatively high surface area and narrow pore size distribution.

XRD Patterns. In order to investigate the phase transformation during calcination, the crystal structure analysis of BT-Al and M-Al$_2$O$_3$ were performed by the wide angle XRD. As shown in Figure 3, the as-synthesized composite of BT-Al before calcination appears the diffraction patterns corresponding to boehmite (JCPDS Card 21-1307), while the calcined product of M-Al$_2$O$_3$ exhibits diffraction lines ascribing to γ-Al$_2$O$_3$ (JCPDS Card No. 10-0425), indicating the crystalline pore wall in M-Al$_2$O$_3$. For the application of alumina as catalyst support, this crystalline alumina synthesized by BT-templating method has definite superiority over the amorphous aluminas.7,20 This is because those amorphous aluminas usually lack of the desired surface characteristic of a transition alumina phase and have limited hydrolytic stability. For instance, they quickly lose their mesostructure frameworks when suspended in water even at ambient temperature.21

The mesoporous character of M-Al$_2$O$_3$ was further verified by low angle XRD analysis. As shown in Figure 4, the diffraction pattern of M-Al$_2$O$_3$ emerges one low angle peak of 2θ around 1$^\circ$ corresponding to a d-spacing of 82 Å, which is related to the presence of mesoporous structure with the uniform pore size rather than the long-range ordered pore arrangement.$^{22-24}$ Accordingly, based on the analysis of the low angle XRD and the nitrogen adsorption/desorption isotherms, it can be verified that the mesostructure of M-Al$_2$O$_3$ was effectively preserved during the removal of bayberry tannin by calcination. As we know that the molecular backbone of bayberry tannin mainly consists of rigid aromatic rings, and thus, one can reason that this desirable structure played a crucial role for preserving the mesostructure of M-Al$_2$O$_3$ during calcination process, which can act as scaffold for the supporting of building blocks and provide the BT micelles with ability to resist the collapse of mesostructure.

SEM and TEM Characterization. The morphology of the alumina samples was observed by SEM and TEM. As shown in the Figure 5(a), the SEM image of M-Al$_2$O$_3$ prepared by BT-templating method appears relatively small nanoparticles. On the other hand, the SEM image of R-Al$_2$O$_3$ prepared without templating (Fig. 5(b)) exhibits the aggregates of larger nanorod. Figure 5(c) is the TEM image of M-Al$_2$O$_3$. For the application of alumina as catalyst support, this crystalline alumina synthesized by BT-templating method has definite superiority over the amorphous aluminas.7,20 This is because those amorphous aluminas usually lack of the desired surface characteristic of a transition alumina phase and have limited hydrolytic stability. For instance, they quickly lose their mesostructure frameworks when suspended in water even at ambient temperature.21

The mesoporous character of M-Al$_2$O$_3$ was further verified by low angle XRD analysis. As shown in Figure 4, the diffraction pattern of M-Al$_2$O$_3$ emerges one low angle peak of 2θ around 1$^\circ$ corresponding to a d-spacing of 82 Å, which is related to the presence of mesoporous structure with the uniform pore size rather than the long-range ordered pore arrangement.$^{22-24}$ Accordingly, based on the analysis of the low angle XRD and the nitrogen adsorption/desorption isotherms, it can be verified that the mesostructure of M-Al$_2$O$_3$ was effectively preserved during the removal of bayberry tannin by calcination. As we know that the molecular backbone of bayberry tannin mainly consists of rigid aromatic rings, and thus, one can reason that this desirable structure played a crucial role for preserving the mesostructure of M-Al$_2$O$_3$ during calcination process, which can act as scaffold for the supporting of building blocks and provide the BT micelles with ability to resist the collapse of mesostructure.

![Figure 2](image1.png)
Figure 2. Nitrogen adsorption/desorption isotherms of M-Al$_2$O$_3$. Inset: pore size distribution of M-Al$_2$O$_3$.

![Figure 3](image2.png)
Figure 3. Wide angle XRD of BT-Al (a) and M-Al$_2$O$_3$ (b).

![Figure 4](image3.png)
Figure 4. Low angle XRD patterns of M-Al$_2$O$_3$.

![Figure 5](image4.png)
Figure 5. SEM images of R-Al$_2$O$_3$ (a) and M-Al$_2$O$_3$ (b).
with broad pore distribution.

It was documented that the hydrolysis rate of aluminum ions in aqueous media is ultra-fast, which leads to the formation of lamellar hydrated hydroxides even at the presence of surfactant.25 However, the presence of bayberry tannin can greatly reduce this hydrolysis rate and inhibit the growth of lamellar hydrated hydroxide, as bayberry tannin has ability to chelate with alumina ion. In this way, the BT-Al\(^{3+}\) complex can be formed in the mixture of inorganic aluminum salt and bayberry tannin. Then, when NH\(_3\)·H\(_2\)O was added, the hydrolysis of alumina ions was gradually preceded, and the slow hydrolysis process would be beneficial for the self-assembly process of aluminum hydroxide. That means the aluminum hydroxide clusters could be well-organized with the directing of BT micelles, which allows for the formation of mesoporous alumina with uniform pores. As a consequence, compared with R-Al\(_2\)O\(_3\) prepared without templating, M-Al\(_2\)O\(_3\) prepared with BT-templating appears to be built-up of tinier nanoplatelets with uniform pores.

The Effect of Experimental Parameters on the Structure of M-Al\(_2\)O\(_3\). The mass ratio of BT/Al(NO\(_3\))\(_3\), BT concentration, the pH value of reaction and hydrothermal temperature would greatly influence the existing state of BT micelles, and the condensation and assembly process of aluminum species. Therefore, it is reasoned that the textual structure of mesoporous alumina can be adjusted by changing these experimental parameters.

Effect of the Mass Ratio of BT/Al(NO\(_3\))\(_3\). As indicated in Table 1, the specific surface area and pore volume of samples increase with increasing mass ratio of BT/Al(NO\(_3\))\(_3\), which implying the newly-built pores were generated by the removal of bayberry tannins. On the other hand, the pore volume of M-Al\(_2\)O\(_3\)-X (X=1-4) is not linearly increased with the increase of mass ratio of BT/Al(NO\(_3\))\(_3\), which proves that bayberry tannins were present in the form of micelles in aqueous solution.24 Further, it is noticed that in Figure 6 the pore size distribution of M-Al\(_2\)O\(_3\)-1 and M-Al\(_2\)O\(_3\)-2 prepared

Table 1. Properties of mesoporous alumina synthesized with different BT/Al(NO\(_3\))\(_3\) mass ratio

<table>
<thead>
<tr>
<th>Sample</th>
<th>BT/Al(NO(_3))(_3) mass ratio</th>
<th>BT concentration (%)</th>
<th>pH</th>
<th>T (°C)</th>
<th>BET surface area (m(^2)/g)</th>
<th>Total pore volume (cm(^3)/g)</th>
<th>BJH pore diameter (nm)</th>
<th>Pore distribution (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-Al(_2)O(_3)</td>
<td>0</td>
<td>0</td>
<td>5.5</td>
<td>150</td>
<td>129.6</td>
<td>0.61</td>
<td>15.4</td>
<td>2.1-45.5</td>
</tr>
<tr>
<td>M-Al(_2)O(_3)-1</td>
<td>0.032:1</td>
<td>3%</td>
<td>5.5</td>
<td>150</td>
<td>154.4</td>
<td>0.57</td>
<td>24.1</td>
<td>4.8-31.6</td>
</tr>
<tr>
<td>M-Al(_2)O(_3)-2</td>
<td>0.064:1</td>
<td>3%</td>
<td>5.5</td>
<td>150</td>
<td>175.5</td>
<td>0.61</td>
<td>10.3</td>
<td>2.5-22.4</td>
</tr>
<tr>
<td>M-Al(_2)O(_3)-3</td>
<td>0.32:1</td>
<td>3%</td>
<td>5.5</td>
<td>150</td>
<td>281.3</td>
<td>0.78</td>
<td>7.8</td>
<td>2.8-12.4</td>
</tr>
<tr>
<td>M-Al(_2)O(_3)-4</td>
<td>0.48:1</td>
<td>3%</td>
<td>5.5</td>
<td>150</td>
<td>287.5</td>
<td>0.80</td>
<td>7.7</td>
<td>2.5-12.5</td>
</tr>
</tbody>
</table>
Effect of BT Concentration. As shown in Table 2, M-Al$_2$O$_3$-5 prepared with 1% BT concentration shows low specific surface area and pore volume, and broad pore size distribution, while M-Al$_2$O$_3$-6, M-Al$_2$O$_3$-7 and M-Al$_2$O$_3$-8 prepared with the BT concentration of 3% or above show relatively high specific surface area and pore volume, and narrow pore distribution. These phenomena are because that generally, for the obtained mesoporous material with good performance, the surfactant should be sufficiently higher than its critical micelle concentration (CMC). It was reported that the CMC of larch tannin is 0.184%. Accordingly, the CMC of bayberry tannin should be around 0.184% considering its similar molecular structure with larch tannin. At low BT concentration of 1%, bayberry tannins in aqueous solution form aggregates with different sizes, and thus the micelles are easy to dissociate and form aggregates with different sizes due to the enhanced water-solubility and the electrostatic repulsion, which further leads to the decrease of the specific surface area and the broad pore size distribution in M-Al$_2$O$_3$-11.

Effect of Synthesis Temperature. As can be seen from Table 4, the specific surface area and the pore size of mesoporous alumina increase with increasing synthesis temperature in the range of 25-150 °C. And it is worth pointing out that the specific surface area and the pore volume of mesoporous alumina are very low at 25 °C, suggesting the assembly process was not completed. However, when temperature is further raised to 200 °C, the specific surface area conversely decreases, and the pore size distribution becomes broad. These phenomena would be caused by the hydrated aluminum hydroxide clusters directing by the BT aggregates are uneven and pile up randomly, which leads to the broad pore distribution of M-Al$_2$O$_3$-5. However, when the BT concentration is sufficiently higher than the CMC of bayberry tannin, the stable BT micelles with uniform size can be formed in the aqueous solution. As a consequence, the mesoporous aluminas with high surface area and narrow pore distribution were obtained, as shown for M-Al$_2$O$_3$-6, M-Al$_2$O$_3$-7 and M-Al$_2$O$_3$-8.

Figure 6. Pore size distribution of mesoporous alumina synthesized with different BT/Al(NO$_3$)$_3$ mass ratio.

with the BT/Al(NO$_3$)$_3$ mass ratio of 0.032:1 and 0.064:1, respectively, are very broad, while the narrow pore size distribution was observed in M-Al$_2$O$_3$-3 and M-Al$_2$O$_3$-4 prepared with the BT/Al(NO$_3$)$_3$ mass ratio of 0.32:1 and 0.48:1, respectively. These observations indicate that a sufficient amount of bayberry tannin was critical for the formation of the mesoporous alumina with relatively narrow pore distribution.

Table 2. Properties of mesoporous alumina synthesized with different BT concentration

<table>
<thead>
<tr>
<th>Sample</th>
<th>BT/Al(NO$_3$)$_3$ mass ratio</th>
<th>BT concentration (%)</th>
<th>pH</th>
<th>T (°C)</th>
<th>BET surface area (m2/g)</th>
<th>Total pore volume (cm3/g)</th>
<th>BJH pore diameter (nm)</th>
<th>Pore distribution (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Al$_2$O$_3$-5</td>
<td>0.32:1</td>
<td>1%</td>
<td>5.5</td>
<td>150</td>
<td>215.1</td>
<td>0.67</td>
<td>9.3</td>
<td>2.0-31.5</td>
</tr>
<tr>
<td>M-Al$_2$O$_3$-6</td>
<td>0.32:1</td>
<td>3%</td>
<td>5.5</td>
<td>150</td>
<td>281.3</td>
<td>0.78</td>
<td>7.8</td>
<td>2.8-12.4</td>
</tr>
<tr>
<td>M-Al$_2$O$_3$-7</td>
<td>0.32:1</td>
<td>5%</td>
<td>5.5</td>
<td>150</td>
<td>279.8</td>
<td>0.72</td>
<td>6.8</td>
<td>2.0-13.2</td>
</tr>
<tr>
<td>M-Al$_2$O$_3$-8</td>
<td>0.32:1</td>
<td>7%</td>
<td>5.5</td>
<td>150</td>
<td>283.1</td>
<td>0.73</td>
<td>6.7</td>
<td>2.0-13.3</td>
</tr>
</tbody>
</table>

Table 3. Properties of mesoporous alumina synthesized at different pH value

<table>
<thead>
<tr>
<th>Sample</th>
<th>BT/Al(NO$_3$)$_3$ mass ratio</th>
<th>BT concentration (%)</th>
<th>pH</th>
<th>T (°C)</th>
<th>BET surface area (m2/g)</th>
<th>Total pore volume (cm3/g)</th>
<th>BJH pore diameter (nm)</th>
<th>Pore distribution (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Al$_2$O$_3$-9</td>
<td>0.32:1</td>
<td>3%</td>
<td>4.5</td>
<td>150</td>
<td>245.1</td>
<td>0.51</td>
<td>5.9</td>
<td>2.0-12.8</td>
</tr>
<tr>
<td>M-Al$_2$O$_3$-10</td>
<td>0.32:1</td>
<td>3%</td>
<td>5.5</td>
<td>150</td>
<td>281.3</td>
<td>0.78</td>
<td>7.8</td>
<td>2.8-12.4</td>
</tr>
<tr>
<td>M-Al$_2$O$_3$-11</td>
<td>0.32:1</td>
<td>3%</td>
<td>7</td>
<td>150</td>
<td>277.1</td>
<td>0.85</td>
<td>9.5</td>
<td>2.0-31.6</td>
</tr>
</tbody>
</table>
increasingly thermodynamical instability of the BT micelles at high temperature.

Investigation of Thermal Stability. The thermal stability of mesoporous γ-alumina has been studied by examining the stability of its physical properties after recalcination at higher temperature. Figure 7 shows the N\textsubscript{2} adsorption/desorption isotherms of M-Al\textsubscript{2}O\textsubscript{3} (●), M-Al\textsubscript{2}O\textsubscript{3}-800 (○) and M-Al\textsubscript{2}O\textsubscript{3}-900 (■). Inset: pore size distributions of the corresponding samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BT/Al(NO\textsubscript{3})\textsubscript{3} mass ratio</th>
<th>BT concentration (%)</th>
<th>pH</th>
<th>T (°C)</th>
<th>BET surface area (m2/g)</th>
<th>Total pore volume (cm3/g)</th>
<th>BJH pore diameter (nm)</th>
<th>Pore distribution (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-Al\textsubscript{2}O\textsubscript{3}-12</td>
<td>0.32:1</td>
<td>3%</td>
<td>5.5</td>
<td>25</td>
<td>158.5</td>
<td>0.19</td>
<td>4.6</td>
<td>2.0-5.0</td>
</tr>
<tr>
<td>M-Al\textsubscript{2}O\textsubscript{3}-13</td>
<td>0.32:1</td>
<td>3%</td>
<td>5.5</td>
<td>100</td>
<td>193.3</td>
<td>0.46</td>
<td>7.6</td>
<td>2.3-10.2</td>
</tr>
<tr>
<td>M-Al\textsubscript{2}O\textsubscript{3}-14</td>
<td>0.32:1</td>
<td>3%</td>
<td>5.5</td>
<td>150</td>
<td>281.3</td>
<td>0.78</td>
<td>7.8</td>
<td>2.8-12.4</td>
</tr>
<tr>
<td>M-Al\textsubscript{2}O\textsubscript{3}-15</td>
<td>0.32:1</td>
<td>3%</td>
<td>5.5</td>
<td>200</td>
<td>233.8</td>
<td>0.73</td>
<td>9.1</td>
<td>2.8-28.8</td>
</tr>
</tbody>
</table>

Table 5. Properties of M-Al\textsubscript{2}O\textsubscript{3} heat treated at different temperatures

\begin{tabular}{|c|c|c|c|c|c|} \hline Temperature (°C) & BET surface area (m2/g) & Total pore volume (cm3/g) & BJH pore diameter (nm) & Pore distribution (nm) \\ \hline 600 & 281.3 & 0.78 & 7.8 & 2.8-12.4 \\ 800a & 210.3 & 0.67 & 9.4 & 2.8-22.3 \\ 900b & 165.2 & 0.58 & 10.7 & 2.8-28.2 \\ \hline \end{tabular}

\footnotesize{aM-Al\textsubscript{2}O\textsubscript{3} was treated by recalcinations at 800 °C for 2 h. bM-Al\textsubscript{2}O\textsubscript{3} was treated by recalcinations at 900 °C for 2 h.}

Figure 8. TEM micrographs of Pd-Al\textsubscript{2}O\textsubscript{3}γ (a) and Pd-Al\textsubscript{2}O\textsubscript{3} (b).

Catalytic Hydrogenation. The mesoporous γ-alumina synthesized by the BT-templating method was examined as catalyst support in the hydrogenation of propenyl, styrene, and linoleic acid. Table 6 shows the catalytic reaction results of palladium supported on M-Al\textsubscript{2}O\textsubscript{3}-4 (Pd-Al\textsubscript{2}O\textsubscript{3}*). In comparison, on the reference alumina (Pd-Al\textsubscript{2}O\textsubscript{3}). TEM images show that the average sizes of Pd particles are 7.2 nm and 7.5 nm on Pd-Al\textsubscript{2}O\textsubscript{3}* (Fig. 8(a)) and Pd-Al\textsubscript{2}O\textsubscript{3} (Fig. 8(b)), respectively, indicating similar Pd dispersion on the two supports. As shown in Table 6, for all substrates, Pd-Al\textsubscript{2}O\textsubscript{3}γ was found to be more active than Pd-Al\textsubscript{2}O\textsubscript{3}, which can be attributed to their difference in textual structure. Moreover, the catalytic activity advantage of Pd-Al\textsubscript{2}O\textsubscript{3}* over Pd-Al\textsubscript{2}O\textsubscript{3} for the hydrogenation of those three reactants increased in the following order: propenyl < styrene < linoleic acid, which is in the same order of molecular size. These facts indicate that the advantage of Pd-Al\textsubscript{2}O\textsubscript{3}* is more obvious for the catalytic reaction of large molecular substrate. In case of the hydrogenation of linoleic acid, it was observed that 85.7% of the product was stearic acid at 90%
Table 6. Activities of supported palladium catalysts in hydrogenation of propenyla, styreneb and linoleic acidb

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Initial hydrogenation rate (mol mol h-1)</th>
<th>TOF advantagec (%)</th>
<th>Selectivity at 90% conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pd-Al\textsubscript{2}O\textsubscript{5} a</td>
<td>Pd-Al\textsubscript{2}O\textsubscript{3}</td>
<td></td>
</tr>
<tr>
<td>propenyl</td>
<td>15156</td>
<td>10679</td>
<td>141.9</td>
</tr>
<tr>
<td>styrene</td>
<td>11316</td>
<td>7390</td>
<td>153.1</td>
</tr>
<tr>
<td>linoleic acid</td>
<td>1626</td>
<td>815</td>
<td>199.5</td>
</tr>
</tbody>
</table>

aCatalyst/substrate, 2.5 µmol/10 mmol; solvent, 20.0 mL methanol; temperature, 30 °C; H\textsubscript{2} pressure, 1.0 MPa; Stirring rate, 1200 rpm. bCatalyst/substrate, 8.46 µmol/1.78 mmol; solvent, 50.0 mL decane; temperature, 80 °C; H\textsubscript{2} pressure, 2.0 MPa; Stirring rate, 1200 rpm. cThe selectivity to propanol. dTOF advantage = (Initial hydrogenation rate of Pd-Al\textsubscript{2}O\textsubscript{5})*/Initial hydrogenation rate of Pd-Al\textsubscript{2}O\textsubscript{3} – 100%

It was reported that the Pd catalysts on supports with the pore diameter between 7 and 8 nm have high activity and selectivity for steric acid in the hydrogenation of linoleic acid29 and sunflower oil.29 The pore size effect of mesoporous aluminas, together with their controllable uniform pore structures, large surface areas and high thermal stability, provides their potential applications in shape-selective catalysis.

Conclusion

This work presented a facile precipitation method to fabricate mesoporous \(\gamma\)-alumina by using barberry tannin as template in aqueous system. The existence of bayberry tannin effectively retarded the ultra-fast hydrolysis of aluminium ions in aqueous solution. Moreover, barberry tannin acted as the structure-directing agent to guide the formation of mesostructure by their chelating interaction with aluminum hydroxide clusters. The mesoporous \(\gamma\)-alumina had high specific surface area, narrow pore size distribution and high thermal stability. Most importantly, the textural parameters of mesoporous alumina were easily to be modulated. In the hydrogenation reaction, the BT-templating mesoporous \(\gamma\)-alumina as catalyst support exhibited excellent performance, suggesting great potential applications in shape-selective catalysis.

Acknowledgments. We acknowledge the financial supports provided by the National Natural Science Foundation of China (21176161) and National High Technology R&D Program (2011AA06A108). And the publication cost of this paper was supported by the Korean Chemical Society.

References