Red Fluorescent Donor-π-Acceptor Type Materials based on Chromone Moiety for Organic Light-Emitting Diodes

Jhin-yeong Yoon, Jeong Seob Lee, Seung Soo Yoon,† and Young Kwan Kim†

Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea. †E-mail: ssyoon@skku.edu

†Department of Information Display, Hongik University, Seoul 121-791, Korea

Received January 29, 2014, Accepted February 11, 2014

Two red emitters, 2-(7-(4-(diphenylamino)styryl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 1) and 2-(7-(julolidylvinyl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 2) have been designed and synthesized for application as red-light emitters in organic light emitting diodes (OLEDs). In these red emitters, the julolidine and triphenyl moieties were introduced to the emitting core as electron donors, and the chromo-derived electron accepting groups such as 2-methyl-(4H-chromen-4-ylidene)malononitrile were connected to electron donating moieties by vinyl groups. To explore the electroluminescence properties of these materials, multilayered OLEDs using red materials (Red 1 and Red 2) as dopants in Alq3 host were fabricated. In particular, a device using Red 1 as the dopant material showed maximum luminous efficiencies and power efficiencies of 0.82 cd/A and 0.33 lm/W at 20 mA/cm². Also, a device using Red 2 as a dopant material presented the CIEx,y coordinates of (0.67, 0.32) at 7.0 V.

Key Words : Red fluorescence, Donor-π-Acceptor, Chromene derivatives, OLED

Introduction

Push-pull red emitters with electron donor-π-electron acceptor type structures have been widely studied for the applications to organic light-emitting diodes (OLEDs).1 Particularly, a variety of red fluorescent 4-(dicyanomethylene)-2-methyl-6-[p(3-dimethylamino)styryl]-4H-pyran (DCM) derivatives have been synthesized and their electroluminescent properties have been investigated.2 However, these materials remain far below the requirements for full-color organic light-emitting diodes (OLEDs) in terms of EL efficiencies due to concentration quenching by excimer and exciplex formation.3 Also, color purities of OLEDs using these materials need to be improved, because the significant portion of their emission spectra is in fact below 600 nm, and thus they cannot emit a saturated red color.4

Recently, our group has reported many red fluorescent materials based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and 2-(2-(4-(diphenylamino)styryl)-4H-chromen-4-ylidene)malononitrile (DCCPA), which have improved EL performances in comparison with DCM.5-10 These materials have the bulky substituents to prevent concentration quenching and thus lead to the improved EL efficiencies of OLEDs using these materials. Furthermore, to improve the color purities, new materials with the extended π-conjugation lengths had been developed. However, their EL performance still requires improvement.

In this paper, we describe the synthesis and electroluminescent properties of red fluorescent donor-π-acceptor type materials based on chromone moiety such as Red 1 and 2.11 In these red emitters, the julolidine and triphenyl moieties were introduced to the emitting core as electron donors, and the chromo-derived electron accepting group such as 2-methyl-(4H-chromen-4-ylidene)malononitrile were connected to electron donating moieties by vinyl groups. As described below, the OLED devices using Red 1 and 2 showed the efficient electroluminescent properties.

Experimental Section

Synthesis and Characterization 1H- and 13C-NMR were recorded on a Varian (300 or Unity Inova 300Nb or Unity Inova 500Nb) spectrometer. Low- and high-resolution mass spectra were measured using a Jeol JMS-AX505WA spectrometer in the FAB mode and a Jeol JMS-600W spectrometer in the EI mode and a JMS-T100TD (AccuTOF-TLC) in the positive ion mode. The UV-Vis absorption and photoluminescence spectra of these newly designed red dopants were measured in a 10⁻³ M solution of 1,2-dichloroethane. Fluorescent quantum yields were determined in 1,2-dichloroethane at 293 K against DCJTB = 0.78.12 The HOMO energy levels were measured with low energy photo-electron spectrometry (Riken-Keiki AC-2). The LUMO energy levels were estimated by subtracting the energy gap from the HOMO energy levels.

Synthesis of Red 1 [(2-(7-(4-(diphenylamino)styryl)-2-methyl-4H-chromen-4-ylidene)malonitrile)]. To a solution of 3 mL of tributylamine were added 0.3 g of compound 1 (1.10 mmol), 0.264 g of compound 2 (1.10 mmol), 0.014 g of Pd(OAc)₂ (0.0660 mmol) and 0.133 g of P(o-tol)₃ (0.440 mmol). The reaction mixture was refluxed under nitrogen atmosphere for 18 h. The mixture was washed with brine and extracted with dichloromethane. After the evaporation of solvent, the resulting products were purified by silica-gel column chromatography with the elution of ethyl...
acetic acid and hexane (1:15) to afford 0.409 g of the chromone intermediate (0.955 mmol, 86.8% yield). To a solution of 0.4 g of the chromone intermediate (0.931 mmol) in acetic anhydride (10 mL) was added 0.085 g of malonitrile (1.30 mmol) and then refluxed for 15 h. The solution was washed with brine and extracted with CH$_2$Cl$_2$. After solvent evaporation, silica-gel column chromatography with the elution of ethyl acetate and hexane (1:2) provided 0.183 g (0.358 mmol, 38.5%) of Red 1 as yellowish solids. 1H-NMR (300 MHz, CDCl$_3$) δ 2.11 (s, 3H), 5.30 (s, 1H), 6.80 (d, 1H, J = 16.5 Hz), 6.98 (d, 2H, J = 8.0 Hz), 7.01 (s, 1H), 7.07 (d, 2H, J = 8.50 Hz), 7.37 (s, 1H), 7.48 (d, 2H, J = 9.0 Hz), 7.50 (d, 1H, J = 8.0 Hz), 7.51 (d, 4H, J = 8.0 Hz), 7.78 (d, 2H, J = 8.50 Hz), 8.78 (d, 1H, J = 8.50 Hz); 1C-NMR (75 MHz, CDCl$_3$) δ 142.2, 138.1, 136.8, 135.1, 133.9, 132.1, 130.8, 129.6, 128.1, 126.7, 125.3, 124.2, 122.3, 121.5, 120.2, 118.9, 117.1, 116.3, 115.1, 114.2, 112.9, 31.3; Mass (EI) m/z = 477 (M$^+$); HRMS (EI) calcd for C$_{23}$H$_{19}$N$_3$O, 477.1841; found, 477.1837.

Synthesis of Red 2 [2-(7-(7-iodo-1,2-diphenyl-4H-chromen-4-ylidene)malonitrile)]. To a solution of 0.3 g of compound 3 (1.25 mmol), 71 mg of Pd(PPh$_3$)$_2$Cl$_2$ (0.062 mmol) and 0.16 g of LiCl (3.75 mmol) in 10 mL of toluene was added 0.51 g of tributylvinyltin (1.375 mmol). The reaction mixture was refluxed under nitrogen atmosphere for 16 h. After the evaporation of solvent, the resulting products were purified by silica-gel column chromatography with the elution of ethyl acetate and hexane (1:2) to afford 0.409 g of the chromene intermediate (0.955 mmol, 86.8% yield). To a solution of 0.4 g of the chromene intermediate (0.955 mmol) and then refluxed for 15 h. The solution was washed with brine and extracted with CH$_2$Cl$_2$. After solvent evaporation, silica-gel column chromatography with the elution of ethyl acetate and hexane (1:2) provided 0.183 g (0.358 mmol, 38.5%) of Red 1 as yellowish solids. 1H-NMR (300 MHz, CDCl$_3$) δ 2.11 (s, 3H), 5.30 (s, 1H), 6.80 (d, 1H, J = 16.5 Hz), 6.98 (d, 2H, J = 8.0 Hz), 7.01 (s, 1H), 7.07 (d, 2H, J = 8.50 Hz), 7.37 (s, 1H), 7.48 (t, 2H, J = 9.0 Hz), 7.50 (d, 1H, J = 8.0 Hz), 7.51 (d, 4H, J = 8.0 Hz), 7.78 (d, 2H, J = 8.50 Hz), 8.78 (d, 1H, J = 8.50 Hz); 1C-NMR (75 MHz, CDCl$_3$) δ 142.2, 138.1, 136.8, 135.1, 133.9, 132.1, 130.8, 129.6, 128.1, 126.7, 125.3, 124.2, 122.3, 121.5, 120.2, 118.9, 117.1, 116.3, 115.1, 114.2, 112.9, 31.3; Mass (EI) m/z = 477 (M$^+$); HRMS (EI) calcd for C$_{23}$H$_{19}$N$_3$O, 477.1841; found, 477.1837.

Results and Discussion

The synthetic routes for red emitters Red 1 and 2 are shown in Scheme 1. These red emitters were obtained by Heck reaction between the vinyl intermediates and the corresponding bromo intermediates, and then subsequent Knoevenagel condensation with malonitrile. These compounds were fully characterized by 1H- and 13C-NMR, FT-IR, and low- and high-resolution mass spectroscopy.

The ultraviolet-visible (UV-Vis) absorption spectra of Red 1, Red 2 and comparative material DCCPA are shown in Figure 1(a). The maximum absorption peaks of these red materials were 453, 495 and 502 nm, respectively. Figure 1(b) and 1(c) show the emission spectra of the red materials Red 1, Red 2 and DCCPA. These red emitters exhibited photoluminescence at 577 nm (Red 1), 580 nm (Red 2) and 590 nm (DCCPA) with high photoluminescence efficiency. The electro-luminescent properties of these red emitters Red 1 and 2 are shown in Tables 1 and 2, respectively. The values of the electro-luminescent parameters such as current density (J), luminance (L), luminance efficiency (LE), power efficiency (PE), and the CIE coordinates are summarized in Tables 1 and 2. These values were measured using a Keithly 2400 source measurement unit and a Chroma meter MINOLTA CS-100A. Red Fluorescent Donor-π-Acceptor Type Materials.

1(a) shows the good overlap between the emission spectra of a common fluorescent red host material Alq$_3$ and the absorption spectra of Red 1 and 2. This observation indicated that the Förster singlet energy transfer from host Alq$_3$ to red emitters Red 1 and 2 would be efficient, and thus Alq$_3$ is a suitable host in the OLEDs by using these compounds as red dopant materials. Red 1 and 2 exhibit efficient red emissions with maximum emission peaks of 632 and 684 nm, respectively, as shown in Figure 1(b). The PL quantum yields of Red 1 and 2 were 0.73 and 0.25, respectively. Red 2 showed the deeper red emission peak than Red 1. Presumably, the stronger electron donating properties of julolidine than triphenyl moiety would lead the red-shifted emission of Red 2 in comparison with Red 1. The HOMO/LUMO levels for Red 1 and 2 were -5.55/-3.37 and -5.45/-3.50, respectively. All physical properties were summarized in Table 1.

To explore the electroluminescence properties of these materials, multilayered OLED devices 1-4 were fabricated, device Structure; ITO/N,N'-diphenyl-N,N'-(1-naphthyl)-(1,1'-biphenyl)-4,4'-diamine (NPB) (50 nm)/tris(8-quinolinolato)-aluminium (Alq$_3$) : Red dopants (30 nm)/bathocuproine (BCP) (10 nm)/Alq$_3$ (40 nm)/Liq (2 nm) / Al. In devices 1-4, Red 1-2 and DCCPA were used as dopants in the Alq$_3$ host. NPB, Alq$_3$ and Liq were used as hole-transporting layer, electron-transporting layer and electron-injection layer, respectively. Also, BCP was used as a hole blocking layer to prevent hole leakage to the electron-transporting layer and thus improve the EL efficiencies.

Figure 2 presents the (a) Current density-voltage and (b) luminance-voltage characteristics of devices 1-4. The Maximum brightness of these red devices exhibited 1180, 304, 114 and 792 cd/m2 respectively, at 10.5 V. The luminous efficiencies, power efficiencies of devices 1-4 are shown in Figure 3 and also all electroluminescence data are summarized in Table 2. The luminous efficiencies of devices 1-4 were 0.82, 0.50, 0.18 and 0.77 cd/A, respectively, at 20 mA/cm2. And power efficiencies of devices 1-4 were 0.33, 0.24, 0.07 and 0.21 lm/W, respectively, at 20 mA/cm2. Notably, compared to device 4 using DCCPA as dopant, the luminous and power efficiency of device 1 using Red 1 increased by 6% and 57% at 20 mA/cm2, respectively. However, the luminous and power efficiency of device 3 using Red 2 decreased by 77% and 67% at 20 mA/cm2.

Table 1. Photophysical properties of Red 1, 2 and DCCPA

<table>
<thead>
<tr>
<th>Compound</th>
<th>UV$_{Max}$ (nm)a</th>
<th>PL$_{Max}$ (nm)a</th>
<th>FWHM</th>
<th>HOMO (eV)b</th>
<th>LUMO (eV)b</th>
<th>E_g</th>
<th>Q.Yc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red 1</td>
<td>453</td>
<td>632</td>
<td>108</td>
<td>-5.55</td>
<td>-3.37</td>
<td>2.18</td>
<td>0.63</td>
</tr>
<tr>
<td>Red 2</td>
<td>495</td>
<td>684</td>
<td>139</td>
<td>-5.45</td>
<td>-3.50</td>
<td>1.95</td>
<td>0.15</td>
</tr>
<tr>
<td>DCCPA</td>
<td>502</td>
<td>650</td>
<td>105</td>
<td>-5.60</td>
<td>-3.45</td>
<td>2.15</td>
<td>0.54</td>
</tr>
</tbody>
</table>

aMaximum absorption or emission wavelength in 1,2-dichloroethane (ca. 1 x 10$^{-3}$ M). bObtained from AC-2 and UV-vis absorption measurements. cUsing DCJTB as a standard; $\lambda_{ex} = 500$ nm ($\Phi = 0.78$ in 1,2-dichloroethene).

Table 2. EL performance characteristic of devices 1-4

<table>
<thead>
<tr>
<th>Devices</th>
<th>Dopant (doping %)</th>
<th>La (cd/m2)</th>
<th>LE$_{f}^{b,c}$ (cd/A)</th>
<th>PE$_{f}^{b,c}$ (lm/W)</th>
<th>Eld (nm)</th>
<th>CIEd (x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red 1 (2)</td>
<td>1180</td>
<td>0.82/1.25</td>
<td>0.33/0.80</td>
<td>603</td>
<td>(0.59, 0.40)</td>
</tr>
<tr>
<td>2</td>
<td>Red 1 (5)</td>
<td>304</td>
<td>0.50/0.58</td>
<td>0.24/0.55</td>
<td>616</td>
<td>(0.61, 0.38)</td>
</tr>
<tr>
<td>3</td>
<td>Red 2 (2)</td>
<td>114</td>
<td>0.18/0.84</td>
<td>0.07/0.44</td>
<td>679</td>
<td>(0.67, 0.32)</td>
</tr>
<tr>
<td>4</td>
<td>DCCPA (2)</td>
<td>792</td>
<td>0.77/0.81</td>
<td>0.21/0.30</td>
<td>624</td>
<td>(0.64, 0.36)</td>
</tr>
</tbody>
</table>

aMaximum luminance at 10.5 V. bValue measured at 20 mA/cm2. cMaximum values. dValue measured at 7.0 V.
respectively, in comparison with device 4. The EL efficiencies are increased by the order of devices 1 > 4 > 3, which is compatible with the order of quantum efficiencies of dopants Red 1, DCCPA and Red 2 in the corresponding devices, as shown in Table 1. These observations imply that the quantum efficiencies of the emitting materials play an important role in the EL efficiencies of devices.

In devices 1 and 2, using Red 1 as a dopant at different doping concentrations, the increase in doping concentration reduced EL efficiencies. For example, device 1 with 2% doping concentration of Red 1 showed the luminous efficiency of 0.82 cd/A and the power efficiency 0.33 lm/W at 20 mA/cm², respectively. On the other hand, device 2 with 5% doping concentration of Red 1 exhibited the luminous efficiency of 0.50 cd/A and the power efficiency 0.24 lm/W at 20 mA/cm², respectively. The luminous and power efficiencies of device 2 were decreased by 39% and 27% at 20 mA/cm², respectively, in comparison to those of device 1.

Presumably, concentration quenching at the high doping concentration of Red 1 lead to reduced device EL efficiencies. Interestingly, this hypothesis was verified through the EL spectra of devices 1 and 2. EL spectrum of device 2 with the high doping concentration of Red 1 showed the red-shift by 13 nm in comparison with that of device 1. This observation implies that Red 1 formed excimers at high doping concentration, which lead the reduced EL efficiencies.

The electroluminescent emission spectra of devices 1-4 are shown in Figure 4. The EL spectrum of device exhibited red emissions with the maximum emission peaks of 603, 615, 679 and 624 nm, respectively. This trend is in good agreement with the result of the PL spectra of Red 1, 2 and DCCPA. In particular, compared to device 4 using DCCPA, device 3 using Red 2 showed the deeper red emission with a Commission Internationale de l’Eclairage (CIE,) coordinates of (0.67, 0.32), it was close to the standard red CIE coordi-
nates (0.67, 0.33) of the national television systems committee (NTSC). Thus, this study clearly demonstrated the excellent properties of donor-π-acceptor type red materials based on chromene moiety for application in red-emitting materials in OLEDs.

Conclusions

We have synthesized two novel red dopants for applications in organic light emitting diode (OLEDs), by introducing a triphenylamine and julolidine segment as an electron donor, and chromene moiety as an electron acceptor in donor-π-acceptor type emitting core. It has demonstrated that a device using **Red 1** as a dopant showed a bright red emission with maximum luminance of 0.82 cd/A and power efficiency of 0.33 lm/W at 20 mA/cm², which are much higher than a device using **DCCPA**. In particular, a device using **Red 2** as a dopant showed deep red emission with the CIE coordinates of (x = 0.67, y = 0.32) at 7.0 V, which is close to the standard red CIE coordinates of national television systems committee (x = 0.67, y = 0.33).

Acknowledgments. This research was supported by Basic Science Research Program through the NRF funded by the Ministry of Education, Science and Technology (2013008105).

References and Notes