Communications to the Editor

http://dx.doi.org/10.5012/bkcs.2014.35.9.2611

Communications

Pd(II)-Catalyzed C-H Amination for N-Heterocyclic Synthesis

Eun Joo Jeong and So Won Youn*

Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea. E-mail: sowony73@hanyang.ac.kr

Received April 1, 2014, Accepted May 8, 2014

Key Words : C-H amination, Palladium, Indoles, Indazoles

Owing to the prevalence of N-heterocycles in agrochemicals, pharmaceuticals, and many other biologically active compounds, the development of new synthetic protocols for the formation of N-heterocycles continues to be an active area of research. In particular, direct C-H amination without prefunctionalization of simple starting materials to the corresponding organic (pseudo)halides has emerged as a powerful, atom-economic, and environmentally benign tool for the synthesis of a wide range of N-heterocycles. Recently, our group reported a Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines for the synthesis of carbazoles (Scheme 1). Considering the skeletal similarity of their structures to those of N-Ts-2-arylanilines, we were interested in investigating whether the readily available substrates, i.e., (Z)-N-Ts-dehydroamino acid esters and N-Ts-hydrazones, could also undergo the similar Pd-catalyzed oxidative C-H amination to afford the corresponding indole-2-carboxylic acid esters and indazoles, respectively (Scheme 1). Herein we disclose the realization of this proposal.

In light of our recent success in Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines, we began our studies on the proposed oxidative C-H amination reaction using (Z)-N-Ts-dehydroamino acid ester (1a) as the test substrate (Table 1). Similar to our previous work, it was revealed that Pd(OAc)$_2$, Oxone, and acid/DMF cosolvent system were the catalyst, oxidant, and solvent of choice, respectively, for this transformation. In contrast to our previous work using PivOH, however, AcOH as a cosolvent proved superior among all the acids examined. In addition, the use of molecular sieve 4 Å and/or K$_2$CO$_3$ as an additive further improved the yield (entries 3-5). Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

With the optimized conditions in hand, we examined the effect of N-protecting groups. As expected, the acidity of NH group had a great influence on the chemical reactivity, an observation that is in line with the protecting group effect described in our previous work and other related reports. The effectiveness of sulfonyl, especially p-toluenesulfonyl (Ts), as the preferred group for this reaction was immediately apparent.

Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

In light of our recent success in Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines, we began our studies on the proposed oxidative C-H amination reaction using (Z)-N-Ts-dehydroamino acid ester (1a) as the test substrate (Table 1). Similar to our previous work, it was revealed that Pd(OAc)$_2$, Oxone, and acid/DMF cosolvent system were the catalyst, oxidant, and solvent of choice, respectively, for this transformation. In contrast to our previous work using PivOH, however, AcOH as a cosolvent proved superior among all the acids examined. In addition, the use of molecular sieve 4 Å and/or K$_2$CO$_3$ as an additive further improved the yield (entries 3-5). Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

With the optimized conditions in hand, we examined the effect of N-protecting groups. As expected, the acidity of NH group had a great influence on the chemical reactivity, an observation that is in line with the protecting group effect described in our previous work and other related reports. The effectiveness of sulfonyl, especially p-toluenesulfonyl (Ts), as the preferred group for this reaction was immediately apparent.

Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

With the optimized conditions in hand, we examined the effect of N-protecting groups. As expected, the acidity of NH group had a great influence on the chemical reactivity, an observation that is in line with the protecting group effect described in our previous work and other related reports. The effectiveness of sulfonyl, especially p-toluenesulfonyl (Ts), as the preferred group for this reaction was immediately apparent.

Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

With the optimized conditions in hand, we examined the effect of N-protecting groups. As expected, the acidity of NH group had a great influence on the chemical reactivity, an observation that is in line with the protecting group effect described in our previous work and other related reports. The effectiveness of sulfonyl, especially p-toluenesulfonyl (Ts), as the preferred group for this reaction was immediately apparent.

Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

With the optimized conditions in hand, we examined the effect of N-protecting groups. As expected, the acidity of NH group had a great influence on the chemical reactivity, an observation that is in line with the protecting group effect described in our previous work and other related reports. The effectiveness of sulfonyl, especially p-toluenesulfonyl (Ts), as the preferred group for this reaction was immediately apparent.

Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

With the optimized conditions in hand, we examined the effect of N-protecting groups. As expected, the acidity of NH group had a great influence on the chemical reactivity, an observation that is in line with the protecting group effect described in our previous work and other related reports. The effectiveness of sulfonyl, especially p-toluenesulfonyl (Ts), as the preferred group for this reaction was immediately apparent.

Subsequently, we screened other parameters (amounts of additive, catalyst, and oxidant; solvent ratio; temperature; other acid cosolvent) to find more effective reaction conditions (entries 6-14). Finally, an optimal reaction conditions was established as entry 3 in Table 1, giving 2a in 63% isolated yield.

With the optimized conditions in hand, we examined the effect of N-protecting groups. As expected, the acidity of NH group had a great influence on the chemical reactivity, an observation that is in line with the protecting group effect described in our previous work and other related reports. The effectiveness of sulfonyl, especially p-toluenesulfonyl (Ts), as the preferred group for this reaction was immediately apparent.
driving substituents were well tolerated. m-Substituted substrates showed remarkable regioselectivity, leading to products originating from activation of the less hindered C-H bond (2c-e and 2b). Compared to other substrates, the reaction of m-MeO-substituted substrate proceeded relatively fast (2c), presumably supporting the electrophilic nature of this process. Particularly noteworthy is that halogenated substrates afforded products with the halogen substituents remaining intact, where the formation of dehalogenated products was not observed (2e, 2g, and 2j). While a clear mechanism is elusive at this juncture, interestingly, the reaction of 2-fluoro-substituted substrate gave a small amount of coumarin derivative 2j' along with the desired indole product 2j. On the other hand, enamine 3 led to a complicated mixture and no reaction occurred with phenethylamine 4, observations that are consistent with the significant influence of a substitution pattern on the chemical reactivity described in the previous related works.⁵

Subsequently, we investigated the Pd-catalyzed C-H amination using a series of benzophenone N-Ts-hydrazones 5 for the formation of indazoles 6 (Table 3). The corresponding reaction proceeded smoothly under the same reaction conditions as the earlier one. In the cases of 5b-e and (E)-5d (entries 2-4), product ratios (6A:6B) were similar to those of starting materials (Z:E), suggesting the relatively slow rate of hydrazone isomerization compared to that of cyclization ((Z)-5 → 6A, (E)-5 → 6B). In sharp contrast, when more electron-deficient aromatic ring resides proximate to the NH Ts group (e.g., (Z)-5d and 5e, entries 5-6), the isomerization of hydrazones seems to precede a cyclization.⁶ E/Z mixture 5e bearing a strong electron-withdrawing group (i.e., NO₂) afforded only 6eB resulting from the regioselective cyclization at the non-substituted benzene ring (entry 6), further evidence in support of the electrophilic nature of this process.

In summary, we have developed the Pd-catalyzed oxidative C-H amination of the readily available (Z)-N-Ts-de-hydroamino acid esters and N-Ts-hydrazones to afford a variety of indole-2-carboxylic acid esters and indazoles, respectively. Further investigations to expand the scope of this reaction are currently underway in our laboratory.

Acknowledgments. This work was supported by the research fund of Hanyang University (HY-2012-G).

References

Table 2. Substrate scope: Synthesis of indoles

Table 3. Synthesis of indazoles