A New Synthesis of N-Methoxy-N-methylamides from S-2-Pyridyl Thiocarbamate and Grignard Reagents

Jae In Lee* and Hye Jin Jung

Department of Chemistry, Daksung Women's University, Seoul 132-714, Korea
(Received September 20, 2005)

Keywords: N-Methoxy-N-methylamides, S-2-Pyridyl thiocarbamate, Substitution, Chelate

The N-methoxy-N-methylamides (Weinreb amides) have been widely utilized as effective acylating agents since they react with Grignard or organolithium reagents to produce ketones without side products. Among the various methods for the preparation of N-methoxy-N-methylamides, the condensation of carboxylic acids and N,O-dimethylhydroxylamine hydrochloride (MeONH₂MeCl) using coupling reagents is the most common. The treatment of carboxylic acids and MeONH₂MeCl with coupling reagents such as Ph₃P/CBr₄, CDI, HOBt/DCC, 2-halo-1-methylpyridinium iodide, BOP-Ph₃P, HBTU, and 2-chloro-4,6-dimethoxy[1,3,5]triazine (CDMT) in the presence of base affords the corresponding activated esters, which are transformed into the corresponding N-methoxy-N-methylamides by subsequent addition of MeONH₂MeCl and base. Although these methods are the most convenient and especially useful for the preparation of N-methoxy-N-methylamides of N-protected α-amino acids without any racemization, some of them require the use of an excess of base and coupling reagents such as CDI, BOP-Ph₃P, HBTU, and CDMT are expensive. The treatment of carboxylic acids with pivaloyl chloride, alkyl chloroformate (R=Me, Et, i-Bu), and phosphonate reagents also affords the anhydride, mixed anhydride, and phosphonic anhydride intermediates, respectively, in the presence of base, which are transformed into the corresponding N-methoxy-N-methylamides by nucleophilic substitution with MeONH₂MeCl. However, the removal of isobutyl alcohol is often tedious and phosphonate reagents are generally expensive.

It has been recently reported that N-methoxy-N-methylamides are prepared by the reaction of carboxylic acids and methanesulfonyl chloride following by the addition of MeONH₂MeCl. This procedure via acyl mesylate intermediates is especially useful for the preparation of sterically hindered N-methoxy-N-methylamides. Alternatively N-methoxy-N-methylamides are also prepared from carboxylic acid derivatives such as acid chlorides, esters, lactones, and oxazolidinone carboxamides using MeONH₂MeCl/pyridine, MeONMeM (M=Li, MgCl), MeAlClMeONH₂MeCl, and MeAl(NO)Me₃, respectively, but these reactions proceed in two steps from carboxylic acids and furthermore require the use of an excess of the reagent in case of tran-
However, there are no reports on the preparation of N-methoxy-N-methylamides from Grignard reagents in one step. As part of our continuing studies for the preparation of N-methoxy-N-methylamides, we wish to report that N-methoxy-N-methylamides can be newly prepared by the reaction of S-2-pyridyl thiocarbamate and Grignard reagents under mild conditions.

EXPERIMENTAL

Preparation of S-2-pyridyl thiocarbamate (1)

To a solution of S,S-di(2-pyridyl)dithiocarbamate (1.24 g, 5.0 mmol) in dichloromethane (20 mL) was added N,N-dimethylhydroxylamine hydrochloride (487.8 mg, 5.0 mmol) and triethylamine (697 µL, 5.0 mmol) at -10 °C. After being stirred for 1 h, the mixture was poured into brine (40 mL) and extracted with dichloromethane (3×25 mL). The combined organic phases were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography using 30% EtOAc/n-hexane as an eluant to give 4g (351.4 mg, 90%) as a colorless liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J=8.7 Hz, 2H), 6.90 (d, J=8.7 Hz, 2H), 3.83 (s, 3H), 3.56 (s, 3H), 3.35 (s, 3H); FT-IR (film) 3055, 2966, 2935, 1637 (C=O), 1607, 1374, 1254, 1029, 842 cm⁻¹; Ms m/z 195 (M⁺, 1), 136 (10), 135 (p-CH₃-C₆H₄CO⁻, 100), 92 (12), 77 (14).

N-Methoxy-N-methylnonamide (4a): ¹H NMR (300 MHz, CDCl₃) δ 3.68 (s, 3H), 3.18 (s, 3H), 2.41 (t, J=7.6 Hz, 2H), 1.56-1.68 (m, 2H), 1.19-1.38 (m, 10H), 0.88 (t, J=6.7 Hz, 3H); FT-IR (film) 2928, 2855, 1668 (C=O), 1465, 1385, 1179, 1121 cm⁻¹; Ms m/z (%) 141 [CH₂CH₂CO⁺, 100].

N-Methoxy-N-methylcyclohexanecarboxamide (4b): ¹H NMR (300 MHz, CDCl₃) δ 3.70 (s, 3H), 2.64-2.72 (m, 1H), 1.73-1.81 (m, 5H), 1.46-1.50 (m, 2H), 1.25-1.28 (m, 3H); FT-IR (film) 2931, 2855, 1658 (C=O), 1449, 1177, 1116, 994 cm⁻¹; Ms m/z (%) 171 (M⁺, 2), 111 (G9), 83 (c-C₆H₄N⁺, 100), 55 (44).

N-Methoxy-N-methylphenylpropiolamide (4c): M.p. 37 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.64 (m, 2H), 7.34-7.44 (m, 3H), 3.85 (s, 3H), 3.30 (s, 3H); FT-IR (KBr) 3063, 2974, 2936, 2219, 1642 (C=O), 1382, 1101, 759, 690 cm⁻¹; Ms m/z (%) 189 (M⁺, 2), 130 (14), 129 (C₆H₅CO⁺, 100), 101 (6), 75 (10).

N-Methoxy-N-methylbenzamide (4d): ¹H NMR (300 MHz, CDCl₃) δ 7.65-7.69 (m, 2H), 7.39-7.45 (m, 3H), 3.55 (s, 3H), 3.36 (s, 3H); FT-IR (film) 3060, 2971, 2936, 1644 (C=O), 1380, 1214, 788, 707 cm⁻¹; Ms m/z (%) 165 (M⁺, 2), 106 (8), 105 (C₆H₄CO⁺, 100), 77 (50).

N-Methoxy-N-methyl-o-methylbenzamide (4e): ¹H NMR (300 MHz, CDCl₃) δ 7.17-7.32 (m, 4H), 7.53 (s, 3H), 3.30 (s, 3H); FT-IR (film) 3063, 2970, 2935, 1650 (C=O), 1380, 1063, 773 cm⁻¹; Ms m/z (%) 179 (M⁺, 2), 120 (10), 119 (o-C₆H₄-CH₃CO⁺, 100), 91 (53), 65 (14).

N-Methoxy-N-methyl-p-methylbenzamide (4f): ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, J=8.0 Hz, 2H), 7.19 (d, J=8.0 Hz, 2H), 3.55 (s, 3H), 3.34 (s, 3H), 2.38 (s, 3H); FT-IR (film) 3029, 2967, 2934.
A New Synthesis of N-Methoxy-N-methylamides from S-2-Pyridyl Thiocarbamate and Grignard Reagents

1643 (C=O), 1613, 1377, 1181, 830 cm⁻¹; Ms m/z (%) 179 (M⁺, 2), 120 (10), 119 (p-CH₃-C₆H₄-CO⁺, 100), 91 (44).

N-Methoxy-N-methyl-p-chlorobenzamide (4h)
¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J=6.8 Hz, 2H), 7.27 (d, J=6.8 Hz, 2H), 3.53 (s, 3H), 3.35 (s, 3H); FT-IR (film) 3067, 2971, 2935, 1646 (C=O), 1594, 1380, 1091, 840 cm⁻¹; Ms m/z (%) 199 (M⁺, 2), 141 (34), 139 (p-Cl-C₆H₄-CO⁺, 100), 113 (11), 111 (34), 75 (16).

N-Methoxy-N-methyl-α-naphthalamide (4i): M.p. 38 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.86-7.91 (m, 3H), 7.46-7.56 (m, 4H), 3.52 (s, 3H), 3.42 (s, 3H); FT-IR (KBr) 3056, 2971, 2934, 1650 (C=O), 1592, 1374, 1102, 800, 778 cm⁻¹; Ms m/z (%) 215 (M⁺, 8), 156 (13), 155 (C₆H₄-CO⁺, 100), 128 (9), 127 (70).

N-Methoxy-N-methyl-2-thiophene carboxamide (4j): ¹H NMR (300 MHz, CDCl₃) δ 7.97 (dd, J=3.8 Hz, J=1.1 Hz, 1H), 7.56 (dd, J=5.0 Hz, J=1.1 Hz, 1H), 7.11 (dd, J=5.0 Hz, J=3.8 Hz, 1H), 3.78 (s, 3H), 3.38 (s, 3H); FT-IR (film) 3096, 2974, 2936, 1633 (C=O), 1423, 1383, 1208, 979, 728 cm⁻¹; Ms m/z (%) 171 (M⁺, 10), 112 (7), 111 (C₆H₄SCO⁺, 100), 83 (8).

RESULTS AND DISCUSSION

S-2-Pyridyl thiocarbamate (1) was prepared by the addition of N,N-dimethylhydroxylamine hydrochloride (3) and triethylamine to a solution of S,S-di(2-pyridyl)dithiocarbonate (2) in dichloromethane at 0 °C (Scheme 1). The reaction proceeded smoothly with the selective substitution of 2-thiopyridyl group by 3 within 1 h at 0 °C. After usual aqueous workup, the condensed residue was purified by silica gel column chromatography using 50% EtOAc/n-hexane as an eluant to give 1 in 91% yield. The reagent 1 could be stored in a refrigerator for several months without any decomposition.

The successful preparation of N-methoxy-N-methylamides (4) using 1 depends largely on the selective substitution of 2-thiopyridyl group. We anticipated that 2-thiopyridyl group capable of forming 6-membered chelate would be more reactive than N-methoxy-N-methylamino group toward Grignard reagent. Thus, the treatment of 1 with 1 equiv of p-methoxyphenylmagnesium bromide at 0 °C over a period of 10 min gave N-methoxy-N-methyl-p-methoxybenzamide (4g) in 90% yield without appreciable side products. The preferential formation of 4 is presumably due to the stability of 6-membered chelate between magnesium atom of Grignard reagent and carbonyl oxygen/nitrogen atom of 1, which dissociates to give 4 after hydrolysis.

As shown in Table 1, various N-methoxy-N-methylamides were synthesized in high yields (74-91%) by this method. The reaction proceeded smoothly for both aliphatic (4a-4c) and aromatic Grignard reagents (4d-4j). Furthermore, the kind of electron donating (4f, 4g) and electron withdrawing group (4h) in p-substituted phenylmagnesium bromide didn't influence on the selective substitution of 2-thiopyridyl group. However, the reaction of 1 with phenylethynylmagnesium bromide (4e), α-methylphenylmagnesium bromide (4e), and α-naphthylmagnesium bromide (4i) required 1.5 equiv of Grignard reagent due to the decreased nucleophi-

Scheme 1.
licity or steric effect for the high yield formation of the corresponding N-methoxy-N-methylamides.

In conclusion, the present method provides a new synthesis of N-methoxy-N-methylamides using 1 from alkyl halides in connection with (i) availability of starting material (ii) convenience of one step operation (iii) high yield of 4 and may be utilized in many synthetic applications.

Acknowledgment. We are very grateful to Duk-sung Women’s University for its financial support (2005).

REFERENCES

Table 1. Preparation of N-methoxy-N-methylamides from S-2-pyrrolid thio carbamate and Grignard reagents a

<table>
<thead>
<tr>
<th>Entry</th>
<th>RMgBr, R</th>
<th>Reaction time, h</th>
<th>Product</th>
<th>Isolated yield, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>CH3(CH3)2</td>
<td>0.3</td>
<td>CH3(CH3)2CON(Me)OMe</td>
<td>91</td>
</tr>
<tr>
<td>b</td>
<td>C6H5</td>
<td>0.5</td>
<td>C6H5CON(Me)OMe</td>
<td>84</td>
</tr>
<tr>
<td>c</td>
<td>CH3-C=CH2</td>
<td>2</td>
<td>CH3-C=CH-CON(Me)OMe</td>
<td>75</td>
</tr>
<tr>
<td>d</td>
<td>C6H5</td>
<td>0.3</td>
<td>C6H5CON(Me)OMe</td>
<td>84</td>
</tr>
<tr>
<td>e</td>
<td>α-CH3-C6H5H</td>
<td>2</td>
<td>α-CH3-C6H5CON(Me)OMe</td>
<td>74</td>
</tr>
<tr>
<td>f</td>
<td>p-C6H4-C6H5H</td>
<td>0.3</td>
<td>p-C6H4-C6H5CON(Me)OMe</td>
<td>89</td>
</tr>
<tr>
<td>g</td>
<td>p-C6H4-C6H5H</td>
<td>0.3</td>
<td>p-C6H4-C6H5CON(Me)OMe</td>
<td>90</td>
</tr>
<tr>
<td>i</td>
<td>α-Naphthyl</td>
<td>1.5</td>
<td>α-Naphthyl-CON(Me)OMe</td>
<td>82</td>
</tr>
<tr>
<td>j</td>
<td>2-Thienyl</td>
<td>1.5</td>
<td>2-Thienyl-CON(Me)OMe</td>
<td>85</td>
</tr>
</tbody>
</table>

a The Grignard reagents were added at 0 °C over 10 min. b RMgCl was used.

1.5 equiv. was used. c The reaction was carried out between 0 °C and room temperature.