ABSTRACT. Base hydrolysis of 7-hydroxy-2H-chromen-2-one (HC) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA) in aqueous-methanol and aqueous-acetone mixtures was studied kinetically at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. Moreover, the change in the activation energy barrier of the investigated compounds from water to water-methanol and water-acetone mixtures was estimated from the kinetic data. It is observed that the change in activation barriers is more or less the same for the hydrolysis of HC and HCA. Base hydrolysis of HC and HCA follows a rate law with $k_{obs} = k_2[OH]$. The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of OH$^-$ ion. The high negative values of entropy of activation prove the rigidity and stability of the intermediate complex. The ring opening of the intermediate complex would be the rate controlling step.

Keywords: Hydroxy-chromen-2-ones, base hydrolysis mechanism, solvent effect, activation energy barrier, kinetics

INTRODUCTION

Biological importance of chromen-2-ones

Chromen-2-ones have attracted intense interest in recent years because of their diverse pharmacological properties. Among these properties, their cytotoxic effects were most extensively examined, their broad range of effects on the tumors as shown by various in vitro and in vivo experiments and clinical studies discussed. Chromen-2-ones have important effects in plant biochemistry and physiology, acting as antioxidants, enzyme inhibitors and precursors of toxic substances. In addition, these compounds are involved in the actions of plant growth hormones, growth regulators, the control of respiration and photosynthesis. Chromen-2-one derivatives have also found applications as fluorescent dyes, anti-inflammatory agents, antineoplastic agents, immunomodulating agents, antifungals, anticoagulants, antibacterials, antimicrobials, insecticides and proliferators of HIV. HCA is widely used in estimation of enzymatic activity as fluorogenic enzyme substrates and acts as a pH indicator in the range 6.5-8.9. HCA is used as laser
dyes for the blue-green region.4,19

Rate coefficient for the reaction between organic and inorganic compounds with hydroxide ions in aqueous solutions is sensitive to the nature and molar fraction of organic solvent. The dependence of the rate constants on solvent comprising binary aqueous mixtures depends on the composition of the solvent.20,21

Our work treats the effect of medium on the kinetics of base hydrolysis of HC and HCA in aqueous-methanol and aqueous-acetone mixtures. Also the activation parameters of the mentioned reactions were calculated by least squares of Arrhenius and Eyring plots.

\begin{align*}
\text{7-hydroxy-2H-chromen-2-one (HC)} & \\
\text{7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA)} &
\end{align*}

Materials

All materials, sodium hydroxide (99.3%), sodium chloride (99.7%), sodium nitrate (99%), oxalic acid (99.7%), methanol (99.5%) and acetone (99.5%) were obtained from BDH. 7-hydroxy-2H-chromen-2-one (99.5%) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (99.5%) were obtained from Sigma. The stock solutions of NaOH (1 mol dm-3), NaCl (1 mol dm-3) and NaNO\textsubscript{3} (1 mol dm-3) were prepared by dissolving the calculated amounts of AnalaR samples in redistilled water. The water used for preparation of the solution was deionized and distilled twice. The solution of NaOH (1 mol dm-3) was standardized by volumetric (acid-base) titration with standard solution of oxalic acid (1 mol dm-3) using ph.ph as indicator.

Apparatus and Experimental Method

Kinetic measurements: Kinetics of base hydrolysis of the investigated compounds were measured by following the dependence of absorbance on time using 10 mm silica cells in the thermostatted cell compartment of JASCO model V-530 spectrophotometer. The temperature was controlled at 298 ± 0.1 K using an ultrathermostat (CRIOTERM 190) water circulator connected with the spectrophotometer. Chemical reactions were monitored in solutions held at constant ionic strength (0.5 mol dm-3) using appropriate amounts of sodium chloride in aqueous-methanol mixtures and sodium nitrate in aqueous-acetone mixtures over at least three half-lives. Pseudo first-order conditions were applied by mixing multifold greater concentration of NaOH (100 times) than that of the compound. The reaction of the two studied compounds with NaOH was followed spectrophotometrically by monitoring the decay of the absorbance intensity (A\textsubscript{t}) at several time intervals at the selected wavelength (\(\lambda_{\text{max}}\)) corresponding to the absorption. Rate constants were calculated from the dependence on time of absorbance at 365 nm and 366 nm for HC and HCA, respectively.

RESULTS AND DISCUSSION

Kinetic results and reaction mechanism

Under the influence of alkali (0.03 M), HC and HCA, like phenols, form metal salts which can correspond to one or other of the tautomeric forms resulting in bathchomic shift i.e the \(\lambda_{\text{max}}\) is shifted to 373 nm and 374 nm, respectively as the pKa values of HC and HCA are 8.3 and 7.8, respectively. It can be inferred from the following repeated spectral scans (cf. Figs. 1, 2) that the initial action

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Repeated spectral scans of the base hydrolysis of HC at 298 K.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Repeated spectral scans of the base hydrolysis of HCA at 298 K.}
\end{figure}
on HC and HCA by NaOH takes place in one stage and leads to the rate determining opening of the pyrone ring and the formation of a salt of (2Z)-3-(2,4-dihydroxyphenyl) acrylic acid and (2Z)-3-(2,4-dihydroxyphenyl)-2-pentenedioic acid, respectively22,23 as shown in the suggested reaction mechanism. For HC and with prolonging the NaOH, the cis form of the salt of 3-(2,4-dihydroxyphenyl) acrylic acid converts to stable trans form at 375 nm.24 But for HCA, the acetic acid group (bulk group) sterically hinders the rotation of the (2Z)-3-(2,4-dihydroxyphenyl)-2-pentenedioic acid to give the trans form.

The observed first-order rate constants (k_{obs}) as a function on [OH$^-$] and in the presence of different water-methanol and water-acetone ratios were calculated from the dependence of absorbance on time at λ_{max} for the investigated compounds using Microcal Origin program version 7.5 (cf. Tables 1-4) with maximum error 2%.

The observed increase in the rate constant values as the percentage of water (v/v) increases in binary solvent mixtures can be ascribed mainly to the increase in the free chromene-2-one derivative concentration due to the decrease in dispersion forces in water molecules.23,25 The high delocalization of charge in HC and HCA compounds promotes interaction with localized dispersion centers in nearby solvent molecules. This interaction is expected to increase in following order water < methanol < acetone and stabilizes the studied compounds in the same direction. Further more, the transition state is more polar than the initial state that matches with the decrease in k_{obs} values with increasing the ratios of co-organic solvent.

The observed enhancement of the rate constant values in acetone co-solvent compared with the corresponding values in methanol co-solvent would be ascribed to the destabilization of the hydrophilic OH$^-$ ions in acetone more than in methanol.23,26 Also this may be due to the steric effect which results from the size of solvent molecule allowing the OH$^-$ ions to penetrate the large acetone molecules more than the small methanol molecules.

The kinetic results conform to the pattern of equation (1)

$$\frac{d [\text{compound}]}{dt} = k_{obs} [\text{compound}]$$

Table 1. Observed first-order rate constant ($10^4 k_{obs}$, s$^{-1}$), second order rate constant ($10^3 k_2$, dm3 mol$^{-1}$ s$^{-1}$) and the change in the activation barrier ($\delta_m \Delta G^#$, kJ mol$^{-1}$) values for the base hydrolysis of HC in various ratios (v/v) of MeOH in the presence of different [OH$^-$] at 298 K and I = 0.5 mol dm$^{-3}$ (NaCl).

<table>
<thead>
<tr>
<th>[OH$^-$], mol dm$^{-3}$</th>
<th>MeOH(v/v) 0</th>
<th>MeOH(v/v) 10</th>
<th>MeOH(v/v) 20</th>
<th>MeOH(v/v) 40</th>
<th>MeOH(v/v) 50</th>
<th>MeOH(v/v) 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>19.50</td>
<td>15.00</td>
<td>12.20</td>
<td>9.30</td>
<td>7.00</td>
<td>4.70</td>
</tr>
<tr>
<td>0.25</td>
<td>25.00</td>
<td>18.30</td>
<td>15.50</td>
<td>11.40</td>
<td>8.90</td>
<td>5.80</td>
</tr>
<tr>
<td>0.30</td>
<td>28.80</td>
<td>22.51</td>
<td>18.60</td>
<td>13.10</td>
<td>10.00</td>
<td>6.90</td>
</tr>
<tr>
<td>0.35</td>
<td>34.20</td>
<td>26.90</td>
<td>22.10</td>
<td>16.00</td>
<td>12.00</td>
<td>8.30</td>
</tr>
<tr>
<td>0.40</td>
<td>39.00</td>
<td>30.50</td>
<td>24.90</td>
<td>18.40</td>
<td>13.20</td>
<td>9.30</td>
</tr>
<tr>
<td>0.45</td>
<td>44.10</td>
<td>33.80</td>
<td>28.50</td>
<td>20.20</td>
<td>15.10</td>
<td>10.80</td>
</tr>
<tr>
<td>$10^3 k_2$, dm3 mol$^{-1}$ s$^{-1}$</td>
<td>9.74</td>
<td>7.72</td>
<td>6.42</td>
<td>4.51</td>
<td>3.15</td>
<td>2.43</td>
</tr>
<tr>
<td>$\delta_m \Delta G^#$, kJ mol$^{-1}$</td>
<td>0.58</td>
<td>1.03</td>
<td>1.90</td>
<td>2.79</td>
<td>3.44</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Observed first-order rate constant ($10^4 k_{obs}$, s$^{-1}$), second order rate constant ($10^3 k_2$, dm3 mol$^{-1}$ s$^{-1}$) and the change in the activation barrier ($\delta_m \Delta G^#$, kJ mol$^{-1}$) values for the base hydrolysis of HCA in various ratios (v/v) of MeOH in the presence of different [OH$^-$] at 298 K and I = 0.5 mol dm$^{-3}$ (NaCl).

<table>
<thead>
<tr>
<th>[OH$^-$], mol dm$^{-3}$</th>
<th>MeOH(v/v) 0</th>
<th>MeOH(v/v) 10</th>
<th>MeOH(v/v) 20</th>
<th>MeOH(v/v) 40</th>
<th>MeOH(v/v) 50</th>
<th>MeOH(v/v) 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>25.00</td>
<td>20.10</td>
<td>17.50</td>
<td>13.15</td>
<td>10.10</td>
<td>7.90</td>
</tr>
<tr>
<td>0.25</td>
<td>32.00</td>
<td>24.14</td>
<td>22.10</td>
<td>17.00</td>
<td>13.20</td>
<td>9.80</td>
</tr>
<tr>
<td>0.30</td>
<td>37.90</td>
<td>29.50</td>
<td>27.00</td>
<td>19.20</td>
<td>16.10</td>
<td>12.00</td>
</tr>
<tr>
<td>0.35</td>
<td>44.00</td>
<td>34.00</td>
<td>30.00</td>
<td>23.00</td>
<td>18.10</td>
<td>13.70</td>
</tr>
<tr>
<td>0.40</td>
<td>50.10</td>
<td>39.00</td>
<td>35.00</td>
<td>25.70</td>
<td>20.40</td>
<td>15.50</td>
</tr>
<tr>
<td>0.45</td>
<td>57.90</td>
<td>44.70</td>
<td>39.30</td>
<td>29.30</td>
<td>23.30</td>
<td>18.20</td>
</tr>
<tr>
<td>$10^3 k_2$, dm3 mol$^{-1}$ s$^{-1}$</td>
<td>12.94</td>
<td>9.81</td>
<td>8.50</td>
<td>6.34</td>
<td>5.12</td>
<td>4.00</td>
</tr>
<tr>
<td>$\delta_m \Delta G^#$, kJ mol$^{-1}$</td>
<td>0.69</td>
<td>1.04</td>
<td>1.77</td>
<td>2.30</td>
<td>2.91</td>
<td></td>
</tr>
</tbody>
</table>

Journal of the Korean Chemical Society
The dependence of k_{obs} on base concentration is linear for both two compounds without significant intercept (cf. Figs. 3-6) hence the hydrolysis follows the rate law with:

$$k_{obs} = k_2[Diss]$$

in which k_2 is the second order rate constant where [Diss] represents the concentration of the dissolving species.

The dependence of k_{obs} on base concentration is linear for both two compounds without significant intercept (cf. Figs. 3-6) hence the hydrolysis follows the rate law with:

$$k_{obs} = k_2[Diss]$$

in which k_2 is the second order rate constant where [Diss] represents the concentration of the dissolving species.
The base hydrolysis reaction of HC and HCA exhibits Michaelis-Menten kinetics (cf. Fig. 7). This suggests that the reaction occurs via the formation of intermediates as shown in the suggested mechanism (cf. Schemes 1, 2). From Lineweaver-Burk plots, Michaelis-Menten constants (K_M) were calculated and found to be 0.183 and 0.19 mol dm$^{-3}$ s$^{-1}$ for HC and HCA, respectively. The large values of K_M indicate the formation of intermediates during the reaction progress.$^{27-29}$

\[Rate = \frac{-d[\text{compound}]}{dt} = \frac{k_s k_a[OH][A]_T}{k_b k_c + k_c k_d + k_b k_a[OH]} \]
\[k_{obs} = \frac{k_s k_a[OH]}{k_b k_c + k_c k_d + k_b k_a[OH]} \]

Fig. 5. Plots of the observed first order rate constant of the reaction between NaOH and HC as a function of [NaOH] in aqueous-acetone mixtures at [HC] = 1×10$^{-3}$ M, I = 0.5 M at 298 K.

Fig. 6. Plots of the observed first order rate constant of the reaction between NaOH and HCA as a function of [NaOH] in aqueous-acetone mixtures at [HCA] = 1×10$^{-3}$ M, I = 0.5 M at 298 K.

>> [compound]. This equation indicates that the second order process is dominant in the present solvent mixtures.

On applying the steady-state approximation for the concentration of the intermediates B, C and D on the suggested reaction mechanism of HC and HCA, where the total concentration of the compound: $[A] = [B] + [C] + [D]$, where $[A]$ is very small and neglectable because it reacts very fast with the base to form the intermediate B. Thus, the rate equation can be formulated as:

\[Rate = \frac{-d[\text{compound}]}{dt} = \frac{k_s k_a[OH][A]_T}{k_b k_c + k_c k_d + k_b k_a[OH]} \]
\[k_{obs} = \frac{k_s k_a[OH]}{k_b k_c + k_c k_d + k_b k_a[OH]} \]

Scheme 1. Suggested mechanism of the base hydrolysis of HC.
The change in the activation barrier $\delta_{m} \Delta G^\ddagger$ is evaluated and reported in Tables 1-4 for both HC and HCA from the ratio of rate constants of the base hydrolysis in the aqueous-solvent (k_2) to the corresponding values in the aqueous solution (k_2W) according to the following relation:

$$\delta_{m} \Delta G^\ddagger = -RT \ln \left(\frac{k_2}{k_2W} \right)$$ (5)

It is observed that the values of $\delta_{m} \Delta G^\ddagger$ increase with increase methanol or acetone content and these matches with the decreasing of k_{ob} and k_2 values as methanol or acetone content increases.

Tables 1-4 show that the observed first-order rate constant of base hydrolysis of HCA is much faster than the corresponding value for HC. This behavior could be attributed to the easier attack of OH$^-$ on the carbonium center in HCA. The presence of acetic acid group, electron withdrawn group, increases the activity of pyrone ring towards the attack of OH$^-$. It is interesting that, the different thermodynamic functions are consistent in their trends. As entropy of activation (ΔS^\ddagger) increases, i.e., changes to less negative value, thus the rate constant decreases and activation energy

Table 5. Second-order rate constant values (10^3k_2, mol$^{-1}$ dm3 s$^{-1}$) and the activation parameters for the base hydrolysis of HC and HCA in various ratios (v/v) of MeOH at different temperatures I= (0.5M)

<table>
<thead>
<tr>
<th>MeOH %</th>
<th>283</th>
<th>288</th>
<th>293</th>
<th>298</th>
<th>303</th>
<th>308</th>
<th>313</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3.68</td>
<td>4.90</td>
<td>7.31</td>
<td>9.74</td>
<td>14.60</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>10</td>
<td>2.80</td>
<td>3.84</td>
<td>5.70</td>
<td>11.43</td>
<td>15.45</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>20</td>
<td>2.41</td>
<td>3.24</td>
<td>4.81</td>
<td>9.71</td>
<td>12.90</td>
<td>19.52</td>
<td>47.13</td>
</tr>
<tr>
<td>40</td>
<td>1.62</td>
<td>2.28</td>
<td>3.29</td>
<td>4.51</td>
<td>6.81</td>
<td>9.71</td>
<td>12.90</td>
</tr>
<tr>
<td>50</td>
<td>1.25</td>
<td>1.61</td>
<td>2.56</td>
<td>3.15</td>
<td>5.10</td>
<td>6.35</td>
<td>10.26</td>
</tr>
<tr>
<td>60</td>
<td>0.85</td>
<td>1.21</td>
<td>1.68</td>
<td>2.43</td>
<td>3.37</td>
<td>2.43</td>
<td>6.81</td>
</tr>
</tbody>
</table>

HCA							
0	4.75	6.37	9.45	12.94	18.97
10	3.67	4.93	7.38	9.81	14.74	19.27
20	3.25	4.31	6.49	8.50	13.10	17.35	26.1
50	1.98	2.56	3.94	5.12	7.85	10.60	15.71
60	1.54	1.92	3.07	4.00	6.30	8.39	12.87

Maximum error is 2%
increases. This behaviour can be ascribed to enhancing stability of activated complex intermediate. Again the relatively high free energy change would assume that the slow step (RCS) is the ring opening of the established intermediate (B) and many vibrational degrees of freedom have been transformed into translations. The large frequency factor would suggest synergistic evidence for the proposal pathway. Furthermore, the positive free energy of transfer from water to methanol or acetone reported in Tables 5, 6, assumes that the transient species in hand are polar entities.

CONCLUSION

Base hydrolysis of HC and HCA follow a rate law with \(k_{obs} = k_2[OH^-]\). The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of \(OH^-\) ion. The values of rate constants \((k_{obs} and k_2)\) decrease in the following order water > acetone > methanol with increasing the methanol or acetone content. The high negative values of entropy of activation supports the proposal mechanism, i.e. the investigated reaction takes place via the formation of an intermediate complex. Moreover, these values refer to the rigidity and stability of the intermediate complex. Thus, the ring opening of the intermediate complex would be the rate controlling step.

Acknowledgements. We are grateful to Prof. Dr. Ali Mohamed Shaker for helping in discussions.
REFERENCES