LINEAR DIFFEOMORPHISMS WITH LIMIT SHADOWING

KEONHEE LEE*, MANSEOB LEE**, AND JUNMI PARK***

ABSTRACT. In this paper, we show that for a linear dynamical system \(f(x) = Ax \) of \(\mathbb{C}^n \), \(f \) has the limit shadowing property if and only if the matrix \(A \) is hyperbolic.

1. Introduction

Let \((X, d)\) be a compact metric space with the metric \(d \), and let \(f : X \rightarrow X \) be a homeomorphism. For \(\delta > 0 \), a sequence of points \(\{x_i\}_{i \in \mathbb{Z}} \) is called a \(\delta \)-pseudo orbit of \(f \) if \(d(f(x_i), x_{i+1}) < \delta \) for all \(i \in \mathbb{Z} \). We say that \(f \) has the shadowing property if for every \(\epsilon > 0 \), there is \(\delta > 0 \) such that for any \(\delta \)-pseudo orbit \(\{x_i\}_{i \in \mathbb{Z}} \), there is \(y \in X \) such that \(d(f^n(y), x_n) < \epsilon \) for all \(n \in \mathbb{Z} \). We introduce the limit shadowing property which founded in [2]. We say that \(f \) has the limit shadowing property if there exists \(\delta > 0 \) with the following property: if a sequence \(\{x_i\}_{i \in \mathbb{Z}} \) is \(\delta \)-limit pseudo orbit of \(f \) for which relations \(d(f(x_i), x_{i+1}) \rightarrow 0 \) as \(i \rightarrow +\infty \), and \(d(f^{-1}(x_{i+1}), x_i) \rightarrow 0 \) as \(i \rightarrow -\infty \) hold, then there is a point \(y \in X \) such that \(d(f^n(y), x_n) \rightarrow 0 \) as \(n \rightarrow \pm \infty \). It is easy to see that \(f \) has the limit shadowing property on \(\Lambda \) if and only if \(f^n \) has the limit shadowing property on \(\Lambda \) for \(n \in \mathbb{Z} \setminus \{0\} \). Note that the limit shadowing property is not the shadowing property. In fact, in [2], this concept is called the weak limit shadowing property and different from the notion of Pilyugin [3](see, [2] Example 3, 4).
The notion of the pseudo orbits very often appears in several branches of the modern theory of dynamical system. For instance, the pseudo-orbit tracing property (shadowing property) usually plays an important role in the stability theory (see, [3]).

Let \(A \) be a nonsingular matrix on \(\mathbb{C}^n \). We consider the dynamical system \(f(x) = Ax \) of \(\mathbb{C}^n \). We say that the matrix \(A \) is called hyperbolic if the spectrum does not intersect the circle \(\{ \lambda : |\lambda| = 1 \} \) (for more detail, see [1]).

Theorem 1.1. For a linear dynamical system \(f(x) = Ax \) of \(\mathbb{C}^n \), the following conditions are mutually equivalent:

(a) \(f \) has the limit shadowing property,
(b) the matrix \(A \) is hyperbolic.

2. Proof of Theorem 1.1

For the proof of \((a) \Rightarrow (b)\), we need the following two lemmas.

Lemma 2.1. Let \((X, d)\) be a metric space. Assume that for two dynamical systems \(f \) and \(g \) on \(X \), there exists a homeomorphism \(h \) on \(X \) such that \(f \circ h = h \circ g \). Then \(f \) has the limit shadowing property if and only if \(g \) has the limit shadowing property.

Proof. Suppose that \(f \) has the limit shadowing property. For any \(\delta > 0 \), let \(\xi = \{ x_i \}_{i \in \mathbb{Z}} \) be a \(\delta \)-limit pseudo orbit of \(f \). Then \(d(f(x_i), x_{i+1}) < \delta \), for all \(i \in \mathbb{Z} \) and \(d(f(x_i), x_{i+1}) \to 0 \) as \(i \to \pm \infty \). Since \(f \circ h = h \circ g \), we know that

\[
d(g(h^{-1}(x_i)), h^{-1}(x_{i+1})) < \delta \quad \text{for all } i \in \mathbb{Z},
\]

and \(d(g(h^{-1}(x_i)), h^{-1}(x_{i+1})) \to 0 \) as \(i \to \pm \infty \). Thus \(\{ h^{-1}(x_i) \}_{i \in \mathbb{Z}} \) is a \(\delta \)-limit pseudo orbit of \(g \). Since \(f \) has the limit shadowing property, there is a point \(y \in X \) such that \(d(f^i(y), x_i) \to 0 \) as \(i \to \pm \infty \). Then \(d(f^i(y), x_i) = d(g^i(h^{-1}(y)), h^{-1}(x_i)) \to 0 \) as \(i \to \pm \infty \). Then the point \(h^{-1}(y) \in X \) is the limit shadowing point of \(g \). Thus \(g \) has the limit shadowing property. \(\square \)

Lemma 2.2. [3] Let \(A \) be a nonhyperbolic matrix and \(\lambda \) be an eigenvalue of \(A \) with \(|\lambda| = 1 \). Then there exists a nonsingular matrix \(T \) such that \(J = T^{-1}AT \) is a Jordan form of \(A \) and the matrix \(J \) has the form

\[
\begin{pmatrix}
B & O \\
O & D
\end{pmatrix}
\]
where B is the nonsingular $m \times m$ complex matrix with the form
\[
\begin{pmatrix}
\lambda & 0 & \cdots & 0 & 0 \\
1 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & \lambda
\end{pmatrix}
\]
and D is the hyperbolic matrix.

Proof of $(a) \Rightarrow (b)$. Suppose that f has the limit shadowing property. To derive a contradiction, we may assume that the matrix A is non-hyperbolic. Then the matrix A has an eigenvalue λ with $|\lambda| = 1$. By Lemma 2.2, there is a nonsingular matrix T such that $J = T^{-1}AT$ is a Jordan form of A and the Jordan form A has an eigenvalue $\lambda = 1$, then J is a nonsingular matrix T such that $J = T^{-1}AT$ is a Jordan form of A and the Jordan form A is the nonsingular matrix T where B and D are as in Lemma 2.2. Let $g(x) = J(x) = T^{-1}AT(x)$, and let $h(x) = T(x)$ for $x \in \mathbb{C}^n$. Then $f \circ h = h \circ g$. Since f has the limit shadowing property, by Lemma 2.1, g has the limit shadowing property. Let $\delta > 0$ be the number of the definition of the limit shadowing property of g. Denote by $x^{(i)}$ the i-th component of a vector $x \in \mathbb{C}^n$. Then we construct a δ-limit pseudo orbit as follows:
\[
x^{(1)}_{i+1} = \lambda x^{(1)}_i \left(1 + \frac{\delta}{2|\lambda| |x^{(1)}_i|}\right),
\]
and $x^{(i+1)}_i = (x^{(2)}_{i+1}, x^{(3)}_{i+1}, \ldots, x^{(n)}_{i+1}) = ((Jx^{(2)}_i, (Jx^{(3)}_i, \ldots, (Jx^{(n)}_i, (Jx^{(n)}_i) = (\lambda x^{(1)}_i, x^{(1)}_{i+1}),$ we know that if $\lambda = 1$, then
\[
d(g(x_i), x_{i+1}) = |x^{(1)}_i - x^{(1)}_{i+1}| = \frac{\delta}{2|\lambda|} < \delta,
\]
for all $i \in \mathbb{Z}$ and if $i \to \pm \infty$, then $d(g(x_i), x_{i+1}) = \delta/2|\lambda| \to 0$. Thus \(\{x_i\}_{i \in \mathbb{Z}}\) is a δ-limit pseudo orbit of g. Since g has the limit shadowing property, there is a point $y \in X$ such that $d(g^n(y), x_i) \to 0$ as $i \to \pm \infty$. If $y = (0, 0, \ldots, 0)$ then
\[
d(g^{i+1}(y), x_{i+1}) = |x^{(1)}_i + x^{(1)}_i| \geq |x^{(1)}_i| > 0.
\]
This is a contradiction. If $y = (0, y^{(2)}, y^{(3)}, \ldots, y^{(n)})$, then
\[
g^{i+1}(y) = (0, (Jy)^{(2)}, (Jy)^{(3)}, \ldots, (Jy)^{(n)}).
Then, we see that if for all \(i \in \mathbb{Z} \),
\[
|((Jx_i)^{(2)}, (Jx_i)^{(3)}, \ldots, (Jx_i)^{(n)}) - ((J^i y)^{(2)}, (J^i y)^{(3)}, \ldots, (J^i y)^{(n)})| = 0,
\]
then as in the proof of the above, for \((J^i y)^{(1)} = 0 \), we get a contradiction. Thus we see that for the point \(y \in X \), the first component of \(y \), say \(y^{(1)} \), is not equal to 0. Then we consider the case \(g(y) = g(y^{(1)}, y^{(2)}, \ldots, y^{(n)}) = (y^{(1)}, (Jy)^{(2)}, (Jy)^{(3)}, \ldots, (Jy)^{(n)}) \). Thus, for all \(i \in \mathbb{Z} \),
\[
\left| x^{(1)}_i + \frac{x^{(1)}_i \delta}{2^i |x^{(1)}_i|} - y^{(1)} \right| \geq |x^{(1)}_i - y^{(1)}|.
\]

Take \(\eta > 0 \), let \(|x^{(1)}_0| = \eta \). For all \(i \in \mathbb{Z} \), we see that
\[
|x^{(1)}_i| = \eta + \delta + \frac{\delta}{2} + \frac{\delta}{2^2} + \cdots + \frac{\delta}{2^{i-1}} = \eta + 2\delta \left(1 - \frac{1}{2^i} \right).
\]
If \(x_0 = y \) then by (2.1),
\[
|x^{(1)}_i - y^{(1)}| \geq |\eta + 2\delta \left(1 - \frac{1}{2^i} \right)| - |\eta| \geq |\eta| - |2\delta \left(1 - \frac{1}{2^i} \right)| - |\eta|,
\]
for all \(i \in \mathbb{Z} \). Then by (2.2), if \(i \to \infty \), then \(|x^{(1)}_i - y^{(1)}| \to -|2\delta| \neq 0 \). This is a contradiction. Finally, we consider \(x^{(1)}_0 \neq y^{(1)} \). Since \(|x^{(1)}_0 - y^{(1)}| \neq 0 \), we can take \(\gamma > 0 \) such that \(|x^{(1)}_0 - y^{(1)}| = \gamma \). Let \(|x^{(1)}_0| = \eta > 0 \). Then by (2.2),
\[
|x^{(1)}_i - y^{(1)}| \geq |\eta + 2\delta \left(1 - \frac{1}{2^i} \right)| - |\eta| - |\gamma| \geq -|2\delta \left(1 - \frac{1}{2^i} \right)| - |\gamma|,
\]
for all \(i \in \mathbb{Z} \). Then by (2.3), if \(i \to \infty \), then \(|x^{(1)}_i - y^{(1)}| \to -|2\delta| - |\gamma| \neq 0 \). This is a contradiction. Thus if \(f \) has the limit shadowing property, then the matrix \(A \) is hyperbolic. \(\square \)

Finally, we show that \((b) \Rightarrow (a) \), that is proved by Lee [2] as follow.

Lemma 2.3. Let \(f(x) = Ax \) of \(\mathbb{C}^n \). If \(A \) is the hyperbolic matrix, then \(f \) has the limit shadowing property.

Proof. Denote by \(E_p \) the invariant subspace of \(T_p \mathbb{C}^n \) corresponding to the eigenvalues \(\lambda_i \) of \(A \) such that \(|\lambda_i| < 1 \), and by \(F_p \) the invariant subspace of \(T_p \mathbb{C}^n \) corresponding to the eigenvalues \(\lambda_i \) of \(A \) such that \(|\lambda_i| > 1 \). By [3], there exist \(C > 0 \), \(m \in \mathbb{N} \), \(0 < \lambda < 1 \), and invariant linear subspaces \(E_p \) and \(F_p \) of \(T_p \mathbb{C}^n \) for \(p \in \mathbb{C}^n \) such that

1. \(T_p \mathbb{C}^n = E_p \oplus F_p \),
2. \(|A^mk(v)| < C\lambda^k |v| \), \(v \in E_p \), \(k \geq 0 \),
(3) $|A^{-mk}(v)| < C\lambda^{-k}|v|$, $v \in F_p$, $k < 0$.

This means that the dynamical system $f^m(x) = A^m(x)$ is hyperbolic. Then by [2], f^m has the limit shadowing property, therefore, f has the limit shadowing property.

References

* Department of Mathematics
Chungnam University
Daejeon 305-764, Republic of Korea
E-mail: khlee@cnu.ac.kr

** Department of Mathematics
Mokwon University
Daejeon 302-729, Republic of Korea
E-mail: lmsds@mokwon.ac.kr

*** Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: pjmds@cnu.ac.kr