WEAK SOLUTIONS OF GRADIENT FLOW OF LANDAU-DE GENNES ENERGY

Jinhae Park*

ABSTRACT. Taking into account the flexoelectric effects, we consider a gradient flow of Landau-de Gennes energy which generalizes the Oseen-Frank energy. In this article, we discuss existence of weak solutions of the gradient flow in an appropriate function space.

1. Introduction

Molecules in Nematic Liquid Crystals are described by a traceless symmetric second order tensor

\[Q = \int_{S^2} \ell \otimes \ell f(\ell) \, d\ell \ - \frac{1}{3} I, \]

where \(f \) is a probability distribution function satisfying \(f(\ell) = f(-\ell) \) for all \(\ell \in S^2 \). Shapes of molecules are characterized by three eigenvalues of \(Q \) and the direction of a molecule is defined by the unit eigenvector whose corresponding eigenvalue has the largest magnitude. The order tensor \(Q \) is a measure of the local degree of orientational order in liquid crystals. The liquid crystal is said to be uniaxial if two eigenvalues of \(Q \) are equal, and it is biaxial when \(Q \) has three distinct eigenvalues. The tensor \(Q \) is zero in the isotropic phase. Since \(Q \) is a symmetric matrix, all eigenvalues of \(Q \) are real and expressed in term of \(Q \) as [4]

Received July 11, 2013; Accepted July 30, 2013.
2010 Mathematics Subject Classification: Primary 46T99, 34A34; Secondary 34K18, 49J99.

Key words and phrases: weak solution, Landau-de Gennes, Q-tensor.

*This study was financially supported by research fund of Chungnam National University in 2011.
\[
\begin{aligned}
\lambda_1 &= 2\sqrt{\frac{\text{tr} Q^2}{6}} \cos \alpha, \\
\lambda_2 &= 2\sqrt{\frac{\text{tr} Q^2}{6}} \left(-\frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha \right), \\
\lambda_3 &= 2\sqrt{\frac{\text{tr} Q^2}{6}} \left(-\frac{1}{2} \cos \alpha + \frac{\sqrt{3}}{2} \sin \alpha \right),
\end{aligned}
\]

where
\[
\cos(3\alpha) = -\frac{\sqrt{6\text{tr} Q^3}}{\text{tr} Q^2\sqrt{\text{tr} Q^2}}, \quad \sin(3\alpha) = \sqrt{1 - \frac{6(\text{tr} Q^3)^2}{(\text{tr} Q^2)^3}}, \quad \alpha \in \left[0, \frac{\pi}{3}\right].
\]

It follows from \(\text{tr} Q = 0\) and \(Q = Q^T\) that \(6(\text{tr} Q^3)^2 \leq (\text{tr} Q^2)^3\). Moreover, \(Q\) has two distinct eigenvalues if and only if \(6(\text{tr} Q^3)^2 = (\text{tr} Q^2)^3\). From (1.1), it can be easily seen that \(-\frac{1}{3} \leq \lambda_i \leq \frac{2}{3}\) for \(i = 1, 2, 3\). It then follows that \(\text{tr} Q^2 \leq \frac{1}{6}\).

If \(Q\) is expressed by
\[
Q = S_1 \left(m \otimes m - \frac{1}{3} I \right) + S_2 \left(n \otimes n - \frac{1}{3} I \right),
\]
where \(\{m, n, m \times n\}\) is an orthonormal basis for \(\mathbb{R}^3\) consisting of unit eigenvectors of \(Q\), then the eigenvalues are
\[
\frac{1}{3}(2S_1 - S_2), \quad -\frac{1}{3}(S_1 + S_2), \quad \frac{1}{3}(2S_2 - S_1).
\]

In the Landau-de Gennes theory, neglecting the higher derivatives and powers of \(Q\) the free energy density \(F\) for nematic liquid crystals is given by
\[
F(Q, \nabla Q) = \frac{1}{2} \left(L_1 Q_{\alpha \beta, \gamma} Q_{\alpha \beta, \gamma} + L_2 Q_{\alpha \beta, \gamma} Q_{\alpha \gamma, \gamma} + L_3 Q_{\alpha \beta, \gamma} Q_{\alpha \gamma, \beta} \right) + f_{\text{bulk}}(Q),
\]
where
\[
f_{\text{bulk}}(Q) = \frac{A}{2} \text{tr} Q^2 - \frac{B}{3} \text{tr} Q^3 + \frac{C}{4} \left(\text{tr} Q^2 \right)^2.
\]

The bulk energy \(f_{\text{bulk}}\) is a potential function for uniaxial nematic liquid crystals, meaning that \(f_{\text{bulk}}\) favors molecules to be uniaxial. In order to study biaxial liquid crystals, we need to add higher powers of \(Q\) to \(f_{\text{bulk}}\). In liquid crystals, there exists a polarization induced by a splay and bending distortion [2, 1]. Such a polarization is called flexoelectric polarization which is analogous to piezoelectric polarization in solids. The flexoelectric polarization can be written in terms of \(Q\) as
\[\mathbf{P}^f = (P_1, P_2, P_3), \]

\[P_i = \epsilon_3 Q_{ij,j} + \epsilon_4 Q_{jk,k} + \epsilon_5 Q_{ijj,k,k} + \text{higher order}. \]

Due to the appearance of the flexoelectric polarization, the following electrostatic equations (Maxwell’s equations) will be taken into account in the system

\[\nabla \cdot (\epsilon(Q) \mathbf{E}) = - \nabla \cdot \mathbf{P}^f, \quad \nabla \times \mathbf{E} = 0, \tag{1.2} \]

where \(\epsilon(Q) \) is the dielectric permittivity tensor given by

\[\epsilon(Q) = \epsilon_0 \mathbf{I} + \epsilon_1 Q + \epsilon_2 Q^2. \]

Hence the electrostatic energy is

\[f_{\text{elec}} = - \frac{1}{2} (\epsilon(Q) \mathbf{E}) \cdot \mathbf{E} - \mathbf{P}^f \cdot \mathbf{E}. \]

If we let

\[Q = \frac{3}{2} S (\mathbf{n} \otimes \mathbf{n} - \frac{1}{3} \mathbf{I}), \]

then

\[\epsilon(Q) \mathbf{E} \cdot \mathbf{E} = \left(\epsilon_0 - \frac{\epsilon_1}{2} S + \frac{\epsilon_2}{4} S^2 \right) |\mathbf{E}|^2 + \frac{3}{2} S \left(\epsilon_1 + \frac{\epsilon_2}{2} S \right) (\mathbf{n} \cdot \mathbf{E})^2, \]

\[\mathbf{P}^f = \epsilon_{11} (\nabla \cdot \mathbf{n}) \mathbf{n} + \epsilon_{33} \mathbf{n} \times \nabla \times \mathbf{n}, \]

\[\epsilon_{11} = \frac{3}{2} \epsilon_3 S + \frac{3}{4} (2 \epsilon_5 - \epsilon_4) S^2, \quad \epsilon_{33} = \frac{3}{2} \epsilon_3 S + \frac{3}{4} (2 \epsilon_4 - \epsilon_5) S^2. \]

Then the permittivity \(\epsilon_\perp \) and dielectric anisotropic constant \(\epsilon_a \) are defined by

\[\epsilon_\perp = \epsilon_0 - \frac{\epsilon_1}{2} S + \frac{\epsilon_2}{4} S^2, \quad \epsilon_a = \frac{3}{2} S \left(\epsilon_1 + \frac{\epsilon_2}{2} S \right). \]

Now, since eigenvalues of \(Q \) are in between \(-\frac{1}{3}\) and \(\frac{2}{3}\), we impose the following condition for strong ellipticity of (1.2)

\[3\epsilon_0 > \epsilon_1 \quad \text{if} \quad \epsilon_1 > 0, \quad \text{and} \quad 3\epsilon_0 > -2\epsilon_1 \quad \text{if} \quad \epsilon_1 \leq 0. \]

Since some material can have \(\epsilon_1 > 0 \) and \(S > 0 \), we have to include \(\epsilon_2 \)-term in order to satisfy solvability condition \(\epsilon_\perp > |\epsilon_a| \). For a sake of simplicity, we take \(\epsilon_4 = \epsilon_5 = 0 \) so that equations (1.2) become

\[\nabla \cdot \left[(\epsilon_0 \mathbf{I} + \epsilon_1 Q + \epsilon_2 Q^2) \nabla \varphi \right] = - \epsilon_3 \nabla \cdot (\nabla \cdot \mathbf{Q}), \tag{1.3} \]

where \(\nabla \cdot \mathbf{Q} = Q_{1ij} \mathbf{e}_x + Q_{2ij} \mathbf{e}_y + Q_{3ij} \mathbf{e}_z, \ {\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z} \) is a set of unit vectors in \(x, y, z \) axes respectively, and \(\varphi \) is an electric potential function, i.e. \(\mathbf{E} = \nabla \varphi \).
By Maxwell’s equation, the electrostatic energy functional can be written as
\[
\int_{\Omega} f_{\text{elec}} \, dx = -\frac{1}{2} \int_{\Omega} (\nabla \cdot Q) \cdot \nabla \varphi \, dx.
\]
The total energy functional \(E\) is
\[
E(Q, \varphi) = \int_{\Omega} \left\{ \frac{1}{2} L|\nabla Q|^2 + \frac{A}{2} \text{tr} \, Q^2 - \frac{B}{3} \text{tr} \, Q^3 + \frac{C}{4} (\text{tr} \, Q^2)^2 - \frac{1}{2} \varepsilon_3 (\nabla \cdot Q) \cdot \nabla \varphi \right\} \, dx.
\]
In the absence of a flow, equations for dynamic problems are
\[
\frac{\partial Q}{\partial t} = L\Delta Q - A Q + B \left(Q^2 - \frac{\text{tr} \, Q^2}{3} I \right) - C(\text{tr} \, Q^2) Q
\]
subject to
\[
\nabla \cdot \left(\varepsilon(Q) \nabla \varphi \right) = -\varepsilon_3 \nabla \cdot (\nabla \cdot Q) \quad \text{in } \Omega,
\]
and boundary conditions
\[
\frac{\partial Q(x,t)}{\partial \nu} = 0 \quad \text{on } \Gamma, \quad Q(x,t) = Q_1(x) \quad \text{on } \partial \Omega \setminus \Gamma,
\]
where \(Q_1\) is fixed.

From now on, we study existence of weak solutions of the system (1.4)-(1.5) with the boundary conditions (1.6).

2. A priori estimates

In this section, we study a priori estimates for solutions which will be used in the next section. Let us introduce
\[
W^{1,2}(\Omega, S_0) = \{ Q : \|Q\|_{L^2(\Omega)} + \|\nabla Q\|_{L^2(\Omega)} < \infty, Q : \Omega \to S_0 \},
\]
\[
H^1(\Omega) = \left\{ \psi \in H^1(\Omega) : \psi = 0 \text{ on } \Gamma, \frac{\partial \psi}{\partial \nu} = 0 \text{ on } \partial \Omega \setminus \Gamma \right\}.
\]
For any \(p > 0\), and \(t > 0\), we denote by \(L^p(0, t; V)\) the space of all functions \(Q : (0, t) \to V\) such that
\[
\int_0^t \|Q\|_V \, dt < \infty,
\]
\[
\frac{\partial Q(x,t)}{\partial \nu} = 0 \quad \text{on } \Gamma, \quad Q(x,t) = Q_1(x) \quad \text{on } \partial \Omega \setminus \Gamma,
\]
where \(Q_1\) is fixed.

From now on, we study existence of weak solutions of the system (1.4)-(1.5) with the boundary conditions (1.6).
where V is a function space equipped with its norm $|| \cdot ||_V$. We look for a weak solution of the system (1.4), (1.5), and (1.6). In other words, the problem is to find $Q \in L^2(0, T; W^{1,2}(\Omega; S_0))$ and $\varphi \in L^2(0, T; H^1(\Omega))$ satisfying

\[
\begin{aligned}
&\begin{cases}
\frac{d}{dt} \int_{\Omega} \left(\frac{\partial Q}{\partial t} + L \nabla Q + A Q - B Q^2 + C(\text{tr} Q^2) Q \right) \cdot T \right) dx = \frac{1}{2} \epsilon_3 \int_{\Omega} \nabla \varphi \cdot (\nabla \cdot T) dx, \\
\int_{\Omega} (\epsilon(Q) \nabla \varphi) \cdot \nabla \psi dx = \int_{\Gamma} (\epsilon(Q_1) \nabla \varphi_0 \cdot \nu) \psi dA - \int_{\Omega} (\nabla \cdot Q) \cdot \nabla \psi dx, \\
\varphi(x, t) = \varphi_0(x) \quad \text{on} \quad \Gamma, \\
\frac{\partial \varphi(x, t)}{\partial \nu} = 0 \quad \text{on} \quad \partial \Omega \\
\end{cases}
\end{aligned}
\]

for all $T \in W^{1,2}(\Omega; S_0)$ and $\psi \in H^1_\Gamma(\Omega)$.

Lemma 2.1. Let (Q, φ) be a solution pair of functions to (1.4), (1.5), and (1.6). Then

$Q \in L^2(0, T; W^{1,2}(\Omega; S_0)) \cap L^4(0, T; L^4(\Omega; S_0)), \quad \varphi \in L^2(0, T; H^1(\Omega))$.

Proof. Let (Q, φ) be a solution pair of functions to (1.4), (1.5), and (1.6). Multiplying each equation in (1.4) by Q_{ij} and integrating by parts followed by summing up, we obtain

\[
\frac{d}{dt} \int_{\Omega} |Q|^2 dx + \int_{\Omega} (L |\nabla Q|^2 + A \text{tr} Q^2 - B \text{tr} Q^3 + C(\text{tr} Q^2)^2) dx = \frac{1}{2} \epsilon_1 \int_{\Omega} \nabla \varphi \cdot (\nabla \cdot Q) dx.
\]

(2.2)

Similarly, multiplying (1.5) by φ and integrating by parts yield

\[
\int_{\Omega} (\epsilon(Q) \nabla \varphi) \cdot \nabla \varphi dx = -\epsilon_3 \int_{\Omega} (\nabla \cdot Q) \cdot \nabla \varphi dx.
\]

(2.3)

Combining (2.2) with (2.3) we obtain

\[
\frac{d}{dt} \int_{\Omega} |Q|^2 dx + \int_{\Omega} \left(L |\nabla Q|^2 + C(\text{tr} Q^2)^2 + \frac{1}{2} (\epsilon(Q) \nabla \varphi) \cdot \nabla \varphi \right) dx = \int_{\Omega} (\text{tr} Q^3) dx.
\]

(2.4)

By Hölder inequality, choose $\eta > 0$ such that $C - B \eta^2 > 0$ and

\[
\int_{\Omega} \text{tr} Q^3 dx \leq \int_{\Omega} \left\{ \frac{1}{\eta^2} \text{tr} Q^2 + \eta^2(\text{tr} Q^2)^2 \right\} dx.
\]

(2.5)
It follows from (2.4) and (2.5) that
\[
\frac{d}{dt} \int_\Omega |Q|^2 \, dx + \int_\Omega \left(L\nabla Q \cdot \nabla \varphi \right) \, dx \leq \mathcal{M}||Q||_{L^2} + D, \tag{2.6}
\]
where \(\tilde{C} = C - \frac{1}{\eta^2} \), and \(\mathcal{M} = -A + \frac{B}{\eta^2} \). Hence we get
\[
\frac{d}{dt} ||Q||_{L^2}^2 \leq \mathcal{M}||Q||_{L^2}^2 + D,
\]
and Grownwall’s inequality leads us to have
\[
||Q(t)||_{L^2}^2 \leq ||Q(0)||_{L^2}^2 e^{\mathcal{M}T} + \frac{D}{\mathcal{M}} \left(e^{\mathcal{M}T} - 1 \right). \tag{2.7}
\]
This implies that
\[
\sup_{0 \leq t \leq T} ||Q(t)||_{L^2}^2 \leq ||Q(0)||_{L^2}^2 e^{\mathcal{M}T} + \frac{D}{\mathcal{M}} \left(e^{\mathcal{M}T} - 1 \right),
\]
and integrating (2.6) with respect to \(t \) yields
\[
\int_0^T \int_\Omega \left(L\nabla Q \cdot \nabla \varphi \right) \, dx \, dt < \infty.
\]
Since \((\epsilon(Q)\nabla \varphi) \cdot \nabla \varphi \geq \lambda ||\nabla \varphi||^2 \) for some \(\lambda > 0 \), by Poincare inequality we have
\[
Q \in L^2(0, T; W^{1,2}(\Omega; S_0)) \cap L^4(0, T; L^4(\Omega; S_0)), \varphi \in L^2(0, T; H^1(\Omega)).
\]

\[\square\]

3. Existence of weak solution

Theorem 3.1. For any given \(T > 0, Q_0 \in L^2(\Omega; S_0) \), there exists a solution pair \((Q, \varphi) \) to (2.1) such that \(Q \in L^2(0, T; W^{1,2}(\Omega; S_0)) \) and \(\varphi \in L^2(0, T; H^1(\Omega)) \). Moreover, if \(Q_0 \in W^{1,2}(\Omega; S_0) \), then
\[
Q \in C(0, T; W^{1,2}(\Omega; S_0)) \cap L^4(0, T; L^4(\Omega; S_0)), \frac{\partial Q}{\partial t} \in L^2(0, T; L^2(\Omega; S_0)).
\]

Proof. We use the Galerkin Method \([6]\) to obtain a weak solution \((Q, \varphi) \) to (2.1). We first approximate \(W^{1,2}(\Omega; S_0) \) and \(H^1(\Omega) \) by increasing sequences of finite dimensional subspaces \(X^m \subset W^{1,2}(\Omega, S_0), \) and \(Y^m \subset H^1(\Omega) \) such that
\[
\cup_{m=1}^\infty X^m = W^{1,2}(\Omega, S_0), \cup_{m=1}^\infty Y^m = H^1(\Omega).
\]
For each $m \in \mathbb{N}$, let \(\{x_i\}_{i=1}^m \) and \(\{y_i\}_{i=1}^m \) be orthonormal bases for \(X^m \) and \(Y^m \), respectively. We first seek a solution pair \((Q^m, \varphi^m)\) in \(X^m \times Y^m \) in the form
\[
Q^m(x, t) = \sum_{i=1}^m p_i(t)x_i(x), \quad \varphi^m(x, t) = \sum_{i=1}^m q_i(t)y_i(x).
\]
Substituting \((Q^m, \varphi^m)\) for \((Q, \varphi)\) in (2.1), and taking \(T = x_j, \psi = y_k \), we obtain a system of nonlinear ordinary differential equations for \(\{p_i(t), q_i(t)\}_{i=1}^m \). It follows from the standard theory of ODEs that the new system has a unique solution on some interval \([0, t_m] \subset [0, T]\). By lemma 2.1, we know that
\[
\sup_{0 \leq t \leq T} \{||Q^m(t)||_{L^2}, ||\varphi^m(t)||_{L^2}\} < \infty.
\]

We extend \(Q^m, \varphi^m \) to the interval \([0, T]\) by the standard continuation method [3, 6]. Apply Lemma 2.1 again to show that \(\{Q^m\}_{m \in \mathbb{N}} \) is bounded in \(L^2(0, T; W^{1,2}(\Omega; S_0)) \cap L^4(0, T; L^4(\Omega; S_0)) \), and \(\{\varphi^m\}_{m \in \mathbb{N}} \) is bounded in \(L^2(0, T; H^1(\Omega)) \). Note that \(\{(\operatorname{tr}(Q^m)^2)Q^m\}_{m \in \mathbb{N}} \) is bounded in \(L^{\frac{4}{3}}((0, T) \times \Omega) \).

We can extract a subsequence (not relabeled) \(\{(Q^m, \varphi^m)\}_{m \in \mathbb{N}} \) such that
\[
Q^m \rightharpoonup \tilde{Q} \text{ weakly in } L^2(0, T; W^{1,2}(\Omega; S_0)),
\]
\[
Q^m \rightharpoonup \tilde{Q} \text{ weakly in } L^4(0, T; L^4(\Omega; S_0)),
\]
\[
(\operatorname{tr}(Q^m)^2)Q^m \rightharpoonup P \text{ weakly in } L^\frac{4}{3}((0, T) \times \Omega),
\]
\[
\varphi^m \rightharpoonup \tilde{\varphi} \text{ weakly in } L^2(0, T; H^1(\Omega)).
\]
Using the Sobolev imbedding \(W^{1,2} \subset L^4[5] \), we obtain imbeddings
\[
L^4(0, T; W^{1,2}(\Omega; S_0)) \hookrightarrow L^4((0, T) \times \Omega; S_0),
\]
\[
L^\frac{4}{3}((0, T) \times \Omega; S_0) \hookrightarrow L^\frac{4}{3}(0, T; [W^{1,2}(\Omega; S_0)]').
\]
It follows that \(\\{\frac{\partial Q^m}{\partial t}\}_{m \in \mathbb{N}} \) is bounded in \(L^\frac{4}{3}(0, T; [W^{1,2}(\Omega; S_0)]') \). Since \(\{Q^m\}_{m \in \mathbb{N}} \) is bounded in \(L^2(0, T; W^{1,2}(\Omega; S_0)) \), Aubin’s compactness shows that
\[
Q^m \rightarrow \tilde{Q} \text{ strongly in } L^2(0, T; L^2(\Omega; S_0)).
\]
This concludes that \(\operatorname{tr} \tilde{Q}^2 \tilde{Q} = P \), and therefore \((\tilde{Q}, \tilde{\varphi}) \) is a weak solution pair.

Corollary 1. There exists a weak solution pair \((Q, \varphi)\) which belongs to \(L^2(0, \infty; W^{1,2}(\Omega; S_0)) \times L^2(0, \infty; H^1(\Omega)) \) to (1.4), (1.5), and (1.6).
Proof. As in the proof of lemma 2.1, multiplying (1.4),(1.5) by Q and φ followed by integration by parts we obtain

\begin{equation}
\int_{\Omega} \left(L|\nabla Q|^2 + A \text{tr} Q^2 - B \text{tr} Q^3 + C(\text{tr} Q^2)^2 + \frac{1}{2} (\epsilon(Q)\nabla \varphi) \cdot \nabla \varphi \right) \, dx \\
+ \frac{d}{dt} \int_{\Omega} |Q|^2 \, dx = 0
\end{equation}

Since $C > 0$, there exists D such that $A \text{tr} Q^2 - B \text{tr} Q^3 + C(\text{tr} Q^2)^2 \geq -D$. It follows from (3.2) and the Poincaré inequality that

\begin{equation}
\frac{d}{dt} \int_{\Omega} |Q|^2 \, dx + M \int_{\Omega} |Q|^2 \, dx \leq D|\Omega|,
\end{equation}

where $M = \frac{L}{2} > 0$ with the Poincaré constant K. By Grownwall’s inequality we have

\[||Q(t)||_{L^2} \leq ||Q(0)||_{L^2} e^{-Mt} + \frac{D|\Omega|}{M} (1 - e^{-Mt}). \]

Therefore $\sup_{0 \leq t < \infty} ||Q(t)||_{L^2} \leq \frac{D|\Omega|}{M}$ and the proof is complete.

Next, we prove that such a weak solution is unique and it converges to an equilibrium solution of the energy functional E.

THEOREM 3.2. If $\epsilon_1 = \epsilon_2 = 0$ in (1.5), then there exists a unique weak solution to (1.4),(1.5), and (1.6).

Proof. Let (Q_1, φ_1) and (Q_2, φ_2) be two weak solutions. Then

\begin{align*}
\frac{1}{2} \frac{d}{dt} \int_{\Omega} |Q|^2 \, dx &+ \int_{\Omega} \left[L|\nabla Q|^2 + (f'_{\text{bulk}}(Q_1) - f'_{\text{bulk}}(Q_2)) \cdot Q \right] \\
&= \frac{1}{2} \epsilon_3 \int_{\Omega} \nabla \varphi \cdot (\nabla \cdot Q) \, dx,
\end{align*}

\begin{align*}
\int_{\Omega} (\epsilon_0 \nabla \varphi) \cdot \nabla \varphi \, dx &= -\epsilon_3 \int_{\Omega} (\nabla \cdot Q) \cdot \nabla \varphi \, dx,
\end{align*}

where $Q = Q_1 - Q_2$, $\varphi = \varphi_1 - \varphi_2$. Plugging the second equation into the first one, we get

\begin{align*}
\frac{1}{2} \frac{d}{dt} \int_{\Omega} |Q|^2 \, dx &+ \int_{\Omega} \left(L|\nabla Q|^2 + \frac{1}{2} \epsilon_0 |\nabla \varphi|^2 \right) \, dx \\
&= \int_{\Omega} \left[(f'_{\text{bulk}}(Q_1) - f'_{\text{bulk}}(Q_2)) \cdot Q \right] \, dx \\
&\leq M \int_{\Omega} |Q|^2 \, dx \text{ for some } M > 0.
\end{align*}
Hence \(||Q||_{L^2} \leq ||Q(0)||_{L^2}e^t = 0 \) so that \(Q_1 = Q_2 \) and \(\varphi_1 = \varphi_2 \).

Theorem 3.3. If \(Q_0 \in W^{1,2}(\Omega, S_0) \), then there is a subsequence of solutions to (1.4) which converges to a solution of the steady state problem as \(t \to \infty \).

Proof. Multiplying individual equation by \(\frac{\partial Q_{ij}}{\partial t} \) and integrating by parts followed by summing up, we obtain

\[
\int_\Omega |Q_t|^2 = -\frac{d}{dt} \int_\Omega \left[\frac{L}{2} |\nabla Q|^2 + A \text{tr} Q^2 - B \text{tr} Q^3 + C (\text{tr} Q^2)^2 \right] dx \\
+ \epsilon_3 \int_\Omega \nabla \cdot Q_t \cdot \nabla \varphi dx - \frac{d}{dt} \int_\Omega |\nabla \varphi|^2 dx \\
= \epsilon_3 \int_\Omega \nabla \cdot Q_t \cdot \nabla \varphi dx.
\]

Then

\[
\int_\Omega |Q_t|^2 = -\frac{d}{dt} \int_\Omega \left[\frac{L}{2} |\nabla Q|^2 + A \text{tr} Q^2 - B \text{tr} Q^3 + C (\text{tr} Q^2)^2 + |\nabla \varphi|^2 \right] dx
\]

and

\[
\int_0^T \int_\Omega |Q_t|^2 dx \, dt = -\int_\Omega \left[\frac{L}{2} |\nabla Q|^2 + A \text{tr} Q^2 - B \text{tr} Q^3 + C (\text{tr} Q^2)^2 + |\nabla \varphi|^2 \right]_{t=T} dx \\
+ \int_\Omega \left[\frac{L}{2} |\nabla Q|^2 + A \text{tr} Q^2 - B \text{tr} Q^3 + C (\text{tr} Q^2)^2 + |\nabla \varphi|^2 \right]_{t=0} dx \\
\leq \int_\Omega \left[\frac{L}{2} |\nabla Q|^2 + A \text{tr} Q^2 - B \text{tr} Q^3 + C (\text{tr} Q^2)^2 + |\nabla \varphi|^2 \right]_{t=0} dx + M|\Omega|,
\]

where \(M \) is the minimum value of \(A \text{tr} Q^2 - B \text{tr} Q^3 + C (\text{tr} Q^2)^2 \).

Hence we obtain \(Q_t \in L^2(0, \infty; L^2(\Omega; S_0)) \). This shows that

\[
\int_\Omega |Q_t(x, t_i)|^2 dx \to 0 \quad \text{as} \quad i \to \infty,
\]

for almost all sequence \(\{t_i\}_{i \in \mathbb{N}} \) satisfying \(t_i \to \infty \) as \(i \to \infty \). Furthermore, we also get

\[
(\nabla Q, \nabla \varphi) \in L^\infty(0, \infty; L^2(\Omega; S_0)) \times L^\infty(0, \infty; L^2(\Omega)).
\]
By Poincare inequality, we have
\((Q, \varphi) \in L^\infty(0, \infty; W^{1,2}(\Omega; S_0)) \times L^\infty(0, \infty; W^{1,2}(\Omega))\)
and there is a sequence \(\{t_i\} \in \mathbb{N}\) with \(t_i \to \infty\) as \(i \to \infty\) such that
\((Q(x, t_i), \varphi(x, t_i)) \to (\bar{Q}, \bar{\varphi})\) weakly in \(W^{1,2}\) as \(t_i \to \infty\).

Since \((Q, \varphi)\) is a weak solution pair,
\[
\begin{cases}
\frac{\partial \bar{Q}}{\partial t} + \langle \bar{L} \nabla \bar{Q} + A \bar{Q} - B \text{tr} \bar{Q}^2 + C(\text{tr} \bar{Q}^2) \bar{Q}, \nabla \tilde{Q} \rangle \\
+ \varepsilon \langle \nabla \varphi, \nabla \cdot \tilde{Q} \rangle = 0, \\
\int_{\Omega} (\nabla \varphi \cdot \nabla \psi + \nabla \cdot \bar{Q} \cdot \nabla \psi) \, dx = 0,
\end{cases}
\]
for all \(\tilde{Q} \in W^{1,2}(\Omega, S_0), \psi \in W^{1,2}(\Omega)\). Passing to the limit as \(t_i \to \infty\), we obtain
\[
\begin{cases}
\int_{\Omega} (\bar{L} \nabla \bar{Q} + A \bar{Q} - B \text{tr} \bar{Q}^2 + C(\text{tr} \bar{Q}^2) \bar{Q}) \cdot \nabla \tilde{Q} \\
+ \varepsilon \int_{\Omega} \nabla \varphi \cdot (\nabla \cdot \tilde{Q}) \, dx = 0, \\
\int_{\Omega} (\nabla \bar{\varphi} \cdot \nabla \psi + \nabla \cdot \bar{Q} \cdot \nabla \psi) \, dx = 0.
\end{cases}
\]
This completes the proof. \(\square\)

References

* Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: jhpark2003@gmail.com