THE RIEMANN DELTA INTEGRAL ON TIME SCALES

JAE MYUNG PARK*, DEOK HO LEE**, JU HAN YOON***, YOUNG KUK KIM****, AND JONG TAE LIM*****

Abstract. In this paper, we define the extension \(f^* : [a, b] \to \mathbb{R} \) of a function \(f : [a, b]_T \to \mathbb{R} \) for a time scale \(T \) and show that \(f \) is Riemann delta integrable on \([a, b]_T\) if and only if \(f^* \) is Riemann integrable on \([a, b]\).

1. Introduction and preliminaries

Let \(T \) be a time scale, \(a < b \) be points in \(T \), and \([a, b]_T\) be the closed interval in \(T \). A partition \(P = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n \) of \([a, b]_T\) is a collection of tagged intervals such that

\[a = t_0 < t_1 < \cdots < t_n = b, \quad t_i \in T \text{ for each } i = 1, 2, \ldots, n, \]

and \(\xi_i \) is an arbitrary point on \([t_{i-1}, t_i)_T\).

Let \(f \) be a real-valued bounded function on \([a, b]_T\). Let \(M_i = \sup\{f(t) : t \in [t_{i-1}, t_i)_T\} \) and \(m_i = \inf\{f(t) : t \in [t_{i-1}, t_i)_T\} \). The upper \(\Delta \)-sum \(\mathcal{S}_P(f) \) and the lower \(\Delta \)-sum \(\mathcal{S}_P(f) \) of \(f \) with respect to \(P \) are defined by

\[\mathcal{S}_P(f) = \sum_{i=1}^n M_i(t_i - t_{i-1}), \quad \mathcal{S}_P(f) = \sum_{i=1}^n m_i(t_i - t_{i-1}). \]

Let \(\{(a_k, b_k)\}_{k=1}^\infty \) be the sequence of intervals contiguous to \([a, b]_T\) in \([a, b]_T\).

For a function \(f : [a, b]_T \to \mathbb{R} \), define the extension \(f^* : [a, b] \to \mathbb{R} \) of \(f \) by

\[f^*(t) = \begin{cases} f(a_k) & \text{if } t \in (a_k, b_k) \text{ for some } k \\ f(t) & \text{if } t \in [a, b]_T. \end{cases} \]

Received April 07, 2014; Accepted April 16, 2014.
2010 Mathematics Subject Classification: Primary 26A39; Secondary 26E70.
Key words and phrases: time scales, Riemann delta integral, \(\delta \)-partition.
Correspondence should be addressed to Young Kuk Kim, ykkim@dragon.seowon.ac.kr.
It is well-known [7] that \(f : [a, b] \to \mathbb{R} \) is McShane delta integrable on \([a, b]\) if and only if \(f^* : [a, b] \to \mathbb{R} \) is McShane integrable on \([a, b]\).

In this paper, we consider the Riemann delta integral and show that a function \(f : [a, b] \to \mathbb{R} \) is Riemann delta integrable on \([a, b] \to \mathbb{R}\) if and only if \(f^* : [a, b] \to \mathbb{R} \) is Riemann integrable on \([a, b] \to \mathbb{R}\).

2. The Riemann delta integral

Definition 2.1. For given \(\delta > 0 \), a partition \(\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n \) is a \(\delta \)-partition of \([a, b] \) if for each \(i \in \{1, 2, \ldots, n\} \) either \(t_i - t_{i-1} \leq \delta \) or \(t_i - t_{i-1} > \delta \) and \(\sigma(t_{i-1}) = t_i \), where \(\sigma(t) = \inf\{s \in \mathcal{T} : s > t\} \).

Definition 2.2. A bounded function \(f : [a, b] \to \mathbb{R} \) is Riemann delta integrable (or \(R_{\Delta} \)-integrable) on \([a, b] \to \mathbb{R}\) if there exists a number \(A \) such that for each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that
\[
\left| \sum_{i=1}^n f(\xi_i)(t_i - t_{i-1}) - A \right| < \epsilon
\]
for every \(\delta \)-partition \(\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n \) of \([a, b] \). The number \(A \) is called the Riemann delta integral of \(f \) on \([a, b] \) and we write
\[
A = (R_{\Delta}) \int_a^b f.
\]

The following theorem gives a Cauchy criterion for \(R_{\Delta} \)-integrability.

Theorem 2.3. [3] A bounded function \(f : [a, b] \to \mathbb{R} \) is \(R_{\Delta} \)-integrable on \([a, b] \) if and only if for each \(\epsilon > 0 \) there exists a partition \(\mathcal{P} \) of \([a, b] \) such that
\[
\overline{\mathcal{S}}_{\mathcal{P}}(f) - \underline{\mathcal{S}}_{\mathcal{P}}(f) < \epsilon.
\]

Let \(\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n \) and \(\mathcal{Q} = \{(\eta_j, [x_{j-1}, x_j])\}_{j=1}^m \) be two partitions of \([a, b] \) (or \([a, b] \)). If \(\{t_0, t_1, \ldots, t_n\} \subset \{x_0, x_1, \ldots, x_m\} \), then we say that \(\mathcal{Q} \) is a refinement of \(\mathcal{P} \) and we denote \(\mathcal{Q} \geq \mathcal{P} \).

Recall that \(f : [a, b] \to \mathbb{R} \) is Riemann integrable on \([a, b] \) with value \(A \) for each \(\epsilon > 0 \) there exists a partition \(\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\} \) of \([a, b] \) such that
\[
\left| \sum_{j} f(\eta_j)(x_j - x_{j-1}) - A \right| < \epsilon
\]
for every refinement \(\mathcal{Q} = \{(\xi_i, [x_{j-1}, x_j])\} \) of \(\mathcal{P} \).

Theorem 2.4. A bounded function \(f : [a, b] \to \mathbb{R} \) is \(R_{\Delta} \)-integrable on \([a, b] \) if and only if \(f^* : [a, b] \to \mathbb{R} \) is Riemann integrable on \([a, b] \). In that case, \((R) \int_a^b f^* = (R_{\Delta}) \int_a^b f \).
Proof. Let $f : [a, b]_T \to \mathbb{R}$ be R_Δ-integrable on $[a, b]_T$ and let $\epsilon > 0$. Then there exists a partition $\mathcal{P}_0 = \{(\xi^0_j, [t^0_{j-1}, t^0_j])\}_{j=1}^m$ of $[a, b]_T$ such that

\begin{equation}
(2.1) \quad \left| \sum_{i=1}^n f(\xi_i)(t_i - t_{i-1}) - (R_\Delta) \int_a^b f \right| < \epsilon
\end{equation}

for every partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n \geq \mathcal{P}_0$ of $[a, b]_T$. Assume that $\mathcal{P}' = \{(\xi_i', [t_{i-1}', t_i'])\}_{i=1}^n$ is a partition of $[a, b]$ with $\mathcal{P}' \geq \mathcal{P}_0$, where we regard \mathcal{P}_0 as a partition of $[a, b]$. If $i \leq n$, then there is a unique $j \leq m$ such that $[t_{i-1}', t_i'] \subseteq [t^0_{j-1}, t^0_j]$ and there is a $\xi''_i \in [t^0_{j-1}, t^0_j]_T$ with $f^*(\xi_i') = f(\xi''_i)$. For each $j \leq m$, there are $i_{1j}, i_{2j} \leq n$ such that $[t_{i_{1j}-1}', t_{i_{1j}}'], [t_{i_{2j}-1}', t_{i_{2j}}'] \subseteq [t^0_{j-1}, t^0_j]$ and

\[f(\xi''_{i_{1j}}) = \min \left\{ f(\xi''_i) \right\}_{[t_{i-1}', t_i'] \subseteq [t^0_{j-1}, t^0_j]}, \quad f(\xi''_{i_{2j}}) = \max \left\{ f(\xi''_i) \right\}_{[t_{i-1}', t_i'] \subseteq [t^0_{j-1}, t^0_j]} \]

By (2.1), we have

\begin{equation}
(2.2) \quad \sum_{i=1}^n f^*(\xi_i')(t_i' - t_{i-1}')
\begin{align*}
&= \sum_{j=1}^m \sum_{[t_{i-1}', t_i'] \subseteq [t^0_{j-1}, t^0_j]} f(\xi''_i)(t_i' - t_{i-1}') \\
&= \sum_{j=1}^m \left(\sum_{[t_{i-1}', t_i'] \subseteq [t^0_{j-1}, t^0_j]} f(\xi''_i)(t^0_j - t^0_{j-1}) \right) (t^0_j - t^0_{j-1}) \\
&\leq \sum_{j=1}^m f(\xi''_{i_{1j}})(t^0_j - t^0_{j-1}) \\
&< \sum_{j=1}^m f(\xi''_{i_{2j}})(t^0_j - t^0_{j-1}) + 2\epsilon.
\end{align*}
\end{equation}

Similarly, we have

\begin{equation}
(2.3) \quad \sum_{i=1}^n f^*(\xi_i')(t_i' - t_{i-1}') > \sum_{j=1}^m f(\xi''_j)(t^0_j - t^0_{j-1}) - 2\epsilon.
\end{equation}

From (2.1), (2.2), (2.3) we have
such that
\[\int_a^b f = \lim_{n \to \infty} \sum_{i=1}^n f^*(\xi_i) \Delta x_i \]

Then \(Q \) is a refinement of \(P \).

Put \(\epsilon > 0 \). Let \(f^* : [a, b] \to \mathbb{R} \) be Riemann integrable on \([a, b] \). Let \(\epsilon > 0 \). Then there exists a partition \(P = [x_i, y_i] \) of \([a, b] \) such that

Thus \(f^* \) is Riemann integrable on \([a, b] \) and \(\int_a^b f^* = \int_a^b f \).

Conversely, suppose that \(f^* : [a, b] \to \mathbb{R} \) is Riemann integrable on \([a, b] \). Let \(\epsilon > 0 \). Then there exists a partition \(P = [x_i, y_i] \) of \([a, b] \) such that

\[\mathcal{S}_P(f^*) - \mathcal{S}_P(f^*) < \epsilon. \]

Let \(\{(a_k, b_k)\} \) be the sequence of intervals contiguous to \([a, b]_T \) in \([a, b] \). Put

\[A = \{i \mid [x_i, y_i] \subset [a_k, b_k] \text{ for some } k \in \mathbb{N}, i = 1, 2, \ldots, n\}, \]

\[B = \{1, 2, \ldots, n\} - A. \]

We see that \([x_i, y_i] \neq \emptyset\) for each \(i \in B \). Put

\[s_i = \inf[x_i, y_i], \quad t_i = \sup[x_i, y_i] \text{ for each } i \in B. \]

Put \(B_1 = \{i \in B \mid x_i < s_i\}, \quad B_2 = \{i \in B \mid t_i < y_i\} \)

\[B_3 = \{i \in B \mid s_i < t_i\}. \]

Let \(K = \{k \in \mathbb{N} \mid [x_i, y_i] \subset [a_k, b_k] \text{ for some } i \in A\} \)

\[\cup \{k \in \mathbb{N} \mid [x_i, s_i] \subset [a_k, b_k] \text{ for some } i \in B_1\} \]

\[\cup \{k \in \mathbb{N} \mid [t_i, y_i] \subset [a_k, b_k] \text{ for some } i \in B_2\}. \]

Then the partition

\[P' = \{[x_i, y_i] \mid i \in A\} \cup \{[x_i, s_i] \mid i \in B_1\} \cup \{[t_i, y_i] \mid i \in B_2\} \]

\[\cup \{[s_i, t_i] \mid i \in B_3\} \]

is a refinement of \(P \). Hence, \(\mathcal{S}_{P'}(f^*) - \mathcal{S}_{P'}(f^*) < \epsilon. \)

Put \(P'' = \{[s_i, t_i] \mid i \in B_3\}, \quad Q = \{[a_k, b_k] \mid k \in K\} \cup P''. \)

Then \(Q \) is a partition of \([a, b]_T \) and

\[\mathcal{S}_Q(f) - \mathcal{S}_Q(f) = \mathcal{S}_{P''}(f) - \mathcal{S}_{P''}(f) \]

\[\mathcal{S}_{P'}(f^*) - \mathcal{S}_{P'}(f^*) < \epsilon. \]
By Theorem 2.3, f is R_{Δ}-integrable on $[a, b]_T$. □

Theorem 2.5. Let f be a bounded R_{Δ}-integrable function on $[a, b]_T$. Then f is R_{Δ}-integrable on every subinterval $[c, d]_T$ of $[a, b]_T$.

Proof. Let f be a bounded R_{Δ}-integrable function on $[a, b]_T$. By Theorem 2.4, $f^*: [a, b] \to \mathbb{R}$ is Riemann integrable on $[a, b]$. By the property of the Riemann integral, f^* is Riemann integrable on every subinterval $[c, d] \subset [a, b]$. By Theorem 2.4, f is R_{Δ}-integrable on every subinterval $[c, d]_T \subset [a, b]_T$. □

Theorem 2.6. Let f and g be R_{Δ}-integrable on $[a, b]_T$ and α, β be real numbers. Then $\alpha f + \beta g$ is R_{Δ}-integrable on $[a, b]_T$ and

$$(R_{\Delta}) \int_a^b (\alpha f + \beta g) = \alpha (R_{\Delta}) \int_a^b f + \beta (R_{\Delta}) \int_a^b g.$$

Proof. Let f and g be R_{Δ}-integrable on $[a, b]_T$. By Theorem 2.4, $\alpha f^* + \beta g^*$ is Riemann integrable on $[a, b]$ and

$$(R) \int_a^b (\alpha f^* + \beta g^*) = \alpha (R) \int_a^b f^* + \beta (R) \int_a^b g^*.$$

Hence, $\alpha f + \beta g$ is R_{Δ}-integrable on $[a, b]_T$ and

$$(R_{\Delta}) \int_a^b (\alpha f + \beta g) = \alpha (R_{\Delta}) \int_a^b f + \beta (R_{\Delta}) \int_a^b g.$$

□

Theorem 2.7. Let f be a bounded function on $[a, b]_T$ and let $c \in T$ with $a < c < b$. If f is R_{Δ}-integrable on each of intervals $[a, c]_T$ and $[c, b]_T$, then f is R_{Δ}-integrable on $[a, b]_T$ and

$$(R_{\Delta}) \int_a^b f = (R_{\Delta}) \int_a^c f + (R_{\Delta}) \int_c^b f.$$

Proof. If f is R_{Δ}-integrable on $[a, c]_T$ and $[c, b]_T$, then f^* is Riemann integrable on $[a, c]$ and $[c, b]$. By the property of the Riemann integral, f^* is Riemann integrable on $[a, b]$ and

$$(R) \int_a^b f^* = (R) \int_a^c f^* + (R) \int_c^b f^*.$$

By Theorem 2.4, f is R_{Δ}-integrable on $[a, b]_T$ and

$$(R_{\Delta}) \int_a^b f = (R_{\Delta}) \int_a^c f + (R_{\Delta}) \int_c^b f.$$

□
Theorem 2.8. Let \(\{f_n\} \) be a sequence of \(R_\Delta \)-integrable functions on \([a, b]_T\) such that \(f_n \to f \) uniformly on \([a, b]_T\). Then \(f \) is \(R_\Delta \)-integrable on \([a, b]_T\) and
\[
(R_\Delta) \int_a^b f = \lim_{n \to \infty} (R_\Delta) \int_a^b f_n.
\]

Proof. Let \(\{f_n\} \) be a sequence of \(R_\Delta \)-integrable functions on \([a, b]_T\) such that \(f_n \to f \) uniformly on \([a, b]_T\). By Theorem 2.4, \(\{f_n^*\} \) is a sequence of Riemann integrable functions on \([a, b]\) such that \(f_n^* \to f^* \) uniformly on \([a, b]\).

By the property of Riemann integral, \(f^* \) is Riemann integrable on \([a, b]\) and
\[
(R) \int_a^b f^* = \lim_{n \to \infty} (R) \int_a^b f_n^*.
\]

By Theorem 2.4, \(f \) is \(R_\Delta \)-integrable on \([a, b]_T\) and
\[
(R_\Delta) \int_a^b f = \lim_{n \to \infty} (R_\Delta) \int_a^b f_n.
\]

\[\square\]

References

*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: parkjm@cnu.ac.kr

**
Department of Mathematics Education
KongJu National University
Kongju 314-701, Republic of Korea
E-mail: dhlee@kongju.ac.kr

Department of Mathematics Education
Chungbuk National University
Chungju 360-763, Republic of Korea
E-mail: yoonjh@cbnu.ac.kr

Department of Mathematics Education
Seowon University
Chungju 361-742, Republic of Korea
E-mail: ykkim@dragon.seowon.ac.kr

Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: shiniljt@gmail.com