ALMOST OPEN AND ALMOST HOMEOMORPHISMS

GUI SEOK KIM* AND KYUNG BOK LEE**

Abstract. This paper is devoted to the study of various notions of almost openness and almost homeomorphisms and the characterization of some of them in terms of the relative interior operator. Generally, openness (or quasi-openness) for a continuous map \(f \) is well known. We define openness (or quasi-openness) at a point \(x \) using the relative interior operator and characterize that a continuous map \(f \) is almost open, almost quasi-open, almost embedding and almost homeomorphisms.

1. Introduction and preliminaries

The main purpose of this paper is to extend the following Theorem A and Theorem B for almost continuity maps and homeomorphisms to open maps and almost homeomorphisms.

Theorem A [6]. Let \(E \) be a Baire Space, \(F \) be a second countable space and \(f \) be a mapping of \(E \) into \(F \). Then the set of points of almost continuity of \(f \) is dense in \(E \).

Theorem B [8]. Let \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) be continuous. If \(g \circ f : X \rightarrow Z \) is a homeomorphism, then \(g \) one-to-one (or \(f \) onto) implies that \(f \) and \(g \) are homeomorphisms.

We prove here the following results.

Theorem A'. Let \(f : X_1 \rightarrow X_2 \) be a continuous, closed and proper map. For every \(V_1 \in U_{X_1} \), the set \(\text{Int}\{ y \in X_2 : f \text{ is } V_1 \text{ open at each } x \in f^{-1}(y) \} \) is an open and dense subset of \(X_2 \). In particular, if \(X_1 \) is metrizable and \(X_2 \) is Baire, then \(\{ y \in X_2 : f \text{ is } V_1 \text{ open at each } x \in f^{-1}(y) \} \) is a residual subset of \(X_2 \).

Theorem B'. Let \(f : X_1 \rightarrow X_2 \) and \(g : X_2 \rightarrow X_3 \) be continuous maps. Then
(1) Assume f is surjective. $g \circ f$ is an almost homeomorphism if and only if both f and g are almost homeomorphisms.

(2) Assume g is an almost homeomorphism. If $g \circ f$ is almost open, then f is almost quasi-open.

(3) Assume g is an almost homeomorphism. If $g \circ f$ is almost quasi-open and g is closed, then f is almost quasi-open.

We now introduce notions and definitions necessary for our works. Throughout the present paper, X_1 and X_2 always mean topological spaces and by $f : X_1 \rightarrow X_2$ we denote a map. Let A and B be subsets of X. The closure of A and the interior of A are denoted by \overline{A} and $\text{Int} A$, respectively. A subset B of A is dense in A means that $\overline{A} \subset B$. A subset A of X is said to be pre-open if $A \subset \text{Int} \overline{A}$ in [6]. This set is called by quasi-open in [2].

A relation $F : X_1 \rightarrow X_2$ is considered a map from X_1 to the power set of X_2, that is, each $x \in X_1$ corresponds to a subset $F(x)$ of X_2, or a subset of $X_1 \times X_2$ so that $y \in F(x)$ means $(x, y) \in F$.

For relations $F : X_1 \rightarrow X_2$ and $G : X_2 \rightarrow X_3$ we define the inverse $F^{-1} : X_2 \rightarrow X_1$ and the composition $G \circ F$ (simply GF): $X_1 \rightarrow X_3$ by $x \in F^{-1}(y) \iff y \in F(x)$, i.e., $F^{-1} = \{(y, x) \mid (x, y) \in F\}$.

$y \in (GF)(x) \iff z \in F(x)$ and $y \in G(z)$ for some $z \in X_2$.

In other words, GF is the projection to $X_1 \times X_3$ of the subset $\{(x, z, y) \in X_1 \times X_2 \times X_3 \mid (x, z) \in F \text{ and } (z, y) \in G\}$.

A relation $F : X_1 \rightarrow X_2$ is called a closed relation if it is a closed subset of $X_1 \times X_2$. It is a pointwise closed relation if $F(x)$ is a closed subset of X_2 for every $x \in X_1$. Clearly, a closed relation is a pointwise closed relation. F is called a compact relation if $F(x)$ is a compact subset of X_2 for any $x \in X_1$.

Remark that in general, a compact relation need not be a closed relation. For example, let $X = [0, 1]$ and $F = \{([0, 1/2]) \cup ([1/2, 1]) \times \{1, 2\}\} \cup \{(1/2, 1/2)\}$. Then F is a compact and pointwise closed relation but F is not a closed relation. We are concerned with subsets of a cartesian product $X \times X$ of a set with itself. These subsets are relations on X. If $U = U^{-1}$, then U is called symmetric. The set of all pairs (x, x) for x in X is called the identity relation, or the diagonal, and is denoted by $\Delta(X)$ or simply Δ. For each subset A of X the set $U(A)$ is defined to be $\{y : (x, y) \in U \text{ for some } x \in A\}$, and if x is a point of X, then $U(x)$ is $U(\{x\})$. For each U and V and each A it is true that $(U \circ V)(A) = U(V(A))$. Finally, a simple definition will be needed.

Definition 1.1. [4] A uniformity for a set X is a non-void family \mathcal{U}_X of subsets of $X \times X$ such that
(1) each member of \(U_X \) contains the diagonal \(\Delta \);
(2) if \(U \in U_X \), then \(U^{-1} \in U_X \);
(3) if \(U \in U_X \), then there exists \(V \in U_X \) such that \(VV = V^2 \subset U \);
(4) if \(U \) and \(V \) are members of \(U_X \), then \(U \cap V \in U_X \); and
(5) if \(U \in U_X \) and \(U \subset V \subset X \times X \), then \(V \in U_X \).

The pair \((X, U_X)\) (simply denote \(U_X \)) is a uniform space.

The metric antecedents of the conditions above are not hard to discern. The first is derived from the condition that \(d(x, x) = 0 \) and the second derives from the condition that \(d(x, y) = d(y, x) \). The third is a vestigial form of the triangle inequality - it says roughly that for \(r \)-spheres there are \((r/2)\)-spheres. The fourth and fifth resemble axioms for the neighborhood system of a point and they will be used to derive the corresponding properties for a neighborhood system relative to a topology which will presently be defined.

There may be many different uniformities for a set \(X \). The largest of these is the family of all those subsets of \(X \times X \) which contain \(\Delta \) and the smallest is the family whose only member is \(X \times X \). If \(X \) is the set of real numbers the usual uniformity for \(X \) is the family \(U_X^2 \).

2. Semi-continuous relations

In this section, we develop the fundamentals of the upper and lower semi-continuous relations.

Let \(f : X_1 \to X_2 \) be a map. We define the equivalence relation:
\[
E_f = (f \times f)^{-1}(1_{X_2}) = \{(x_1, x_2) : f(x_2) = f(x_1)\} = f^{-1} \circ f.
\]

Definition 2.1. Let \(F : X_1 \to X_2 \) and \(H : X_2 \to X_2 \) be relations. we define the relation \(F^*H \) on \(X_1 \) by:
\[
F^*H = \{(x_1, x_2) : F(x_2) \subset (H \circ F)(x_1)\}.
\]

Proposition 2.2. Let \(F : X_1 \to X_2 \) be a relation. The following properties hold:
(1) For relations \(H_1, H_2 \) on \(X_2 \) we have
\[
H_1 \subset H_2 \text{ implies } F^*H_1 \subset F^*H_2 \text{ and }
F^*(H_1)F^*(H_2) \subset F^*(H_1H_2).
\]
(2) For relations \(H \) on \(X_2 \) and \(K \) on \(X_1 \):
\[
FK \subset HF \text{ if and only if } K \subset F^*H.
\]
For any relation \(H \) on \(X_2 \):
\[
F(F^*H) \subset HF.
\]
with equality when \(F \) is a surjective map.
(3) $1_{X_2}^*H = H$, and if $G : X_0 \to X_1$ and $F : X_1 \to X_2$ are relations, then:

$$G^*(F^*H) \subset (FG)^*H$$

with equality when G is a map.

(4) For a map $f : X_1 \to X_2$ and relations $F : X_0 \to X_1$ and $G : X_0 \to X_2$:

$$fF \subset G \iff F \subset f^{-1}G.$$

(5) For a map $f : X_1 \to X_2$ and relation H on X_2:

$$f^*H = f^{-1}Hf = (f \times f)^{-1}(H) = \{(x_1, x_2) : f(x_2) \in H(f(x_1))\}.$$

So when f is a map:

$$f^*(H^{-1}) = (f^*H)^{-1} \text{ and } E_f(f^*H)E_f = f^*H.$$

Proof. (1) By the definition of F^*H, $F^*H_1 \subset F^*H_2$ for every $H_1 \subset H_2$. Let $(x_1, x_3) \in F^*(H_1)F^*(H_2)$ be given. By the definition of composition, we can find $x_2 \in X_2$ such that $(x_1, x_2) \in F^*(H_2)$ and $(x_2, x_3) \in F^*(H_1)$. In other words, $F(x_2) \subset H_2F(x_1)$ and $F(x_3) \subset H_1F(x_2)$. Hence $F(x_3) \subset H_1F(x_2) \subset H_1H_2F(x_1)$.

(2) Let A be a subset of X_1 and $x \in A$. If $F(A) \subset HF(x_1)$, then $F(x) \subset HF(x_1)$. Hence $(x_1, x) \in F^*H$, i.e., $x \in (F^*H)(x_1)$. Conversely, assume that $A \subset (F^*H)(x_1)$. If $y \in F(A)$, then there exists $x \in A \subset (F^*H)(x_1)$ such that $y \in F(x) \subset HF(x_1)$. Hence we obtain the following property.

$$F(A) \subset HF(x_1) \iff A \subset (F^*H)(x_1).$$

Replace A by $K(x_1)$ and we get:

$$(FK)(x_1) \subset (HF)(x_1) \iff K(x_1) \subset (F^*H)(x_1).$$

Hence $FK \subset HF \iff K \subset F^*H$.

In particular, with $K = F^*H$ we have $FK \subset HF$ if and only if $K \subset F^*H$. For the surjective map case, we first consider (5).

(5) It is clear that $(x_1, x_2) \in f^*H$ if and only if $f(x_2) \in H(f(x_1))$. This says $f^*H = (f \times f)^{-1}(H)$ and $f^*H = f^{-1}Hf$, $f^*H = f^{-1}Hf = (f \times f)^{-1}(H) = \{(x_1, x_2) : f(x_2) \in H(f(x_1))\}$. From this $f^*(H^{-1}) = (f^*H)^{-1}$ is obvious.

When f is a surjective map, $ff^*H = ff^{-1}Hf = Hf$ by $ff^{-1} = 1_{X_2}$.

(3) $1_{X_2}^*H = H$ is clear. By (2), $FG(G^*(F^*H)) \subset F(F^*H)G \subset HFG$. The $G^*F^*H \subset (FG)^*H$ by (2). If $G = g$ is a map, $(Fg)((Fg)^*H)g^{-1} \subset (H(Fg))g^{-1} \subset HF$ and $g((Fg)^*H)g^{-1} \subset F^*H$. By (5), $(Fg)^*H \subset g^{-1}g((Fg)^*H)g^{-1}g \subset g^{-1}(F^*H)g = g^*(F^*H)$. Alternatively, observe that $(x_1, x_2) \in (Fg)^*H$ if and only if $F(g(x_2) \subset HF(g(x_1)))$ and so if and only if $(g(x_1), g(x_2)) \in F^*H$.

Gui Seok Kim and Kyung Bok Lee
(4) Recall that for subsets A of X_1 and B of X_2 $f(A) \subset B \iff A \subset f^{-1}(B)$. Put $A = F(x_0)$ and $B = G(x_0)$ for given $x_0 \in X_0$. Then $fF \subset G \iff F \subset f^{-1}G$.

(5) For a map f, $E_f = (f \times f)^{-1}(1_{X_2}) = \{(x_1, x_2) : f(x_1) = f(x_2)\} = f^{-1}f = f*1_{X_2}$. Since f is a map, $f = f1_{X_1} \subset ff^{-1}f \subset 1_{X_1}f = f$ and $f^{-1} = 1_{X_1}f^{-1} \subset f^{-1}ff^{-1} \subset f^{-1}1_{X_2} = f^{-1}$. Hence $fE_f = ff^{-1}f = f$ and $E_f f^{-1} = f^{-1}ff^{-1} = f^{-1}$.

Finally, by (1), $E_f f^*H E_f = f^*1_{X_2}(f^*H)f^*1_{X_2} \subset f^*(1_{X_2}H)f^*1_{X_2} = (f^*H)(f^*1_{X_2}) \subset f^*(H1_{X_2}) = f^*(H)$. Since $1_{X_1} \subset f^{-1}f$ and $E_f = f^{-1}f = f^*1_{X_1}$, $f^*H = 1_{X_1}(f^*H)1_{X_1} \subset f^{-1}f(f^*H)f^{-1}f = E_f(f^*H)E_f$ and $f^*(H^{-1}) = f^{-1}H^{-1}f = (f^{-1}H)^{-1} = (f^*H)^{-1}$. [End of proof]

Definition 2.3. For a relation $F : X_1 \to X_2$, $V_2 \in U_{X_2}$ and $x \in X_1$ we call F is V_2 upper semicontinuous at x, when $x \in \text{Int}((F^*V_2)(x))$; V_2 lower semicontinuous at x, when $x \in \text{Int}((F^*V_2)^{-1}(x))$; V_2 continuous at x, when $(x, x) \in \text{Int}F^*V_2$ in $X_1 \times X_1$. F is upper semicontinuous / lower semicontinuous / continuous at x if it is V_2 upper semicontinuous / V_2 lower semicontinuous / V_2 continuous at x for all $V_2 \in U_{X_2}$, respectively. F is upper semicontinuous / lower semicontinuous / continuous if it satisfies the corresponding condition at every $x \in X_1$. F is uniformly continuous provided that for every $V_2 \in U_{X_2}$ there exists $V_1 \in U_{X_1}$ such that $FV_1 \subset V_2F$.

The following examples show that F is upper semicontinuous but is not lower semicontinuous at x, G is lower semicontinuous but is not upper semicontinuous at x, and H is continuous at x.

Example 2.4. Define a relation F on \mathbb{R} by $F = (-\infty, 0) \times \{1\} \cup [0, \infty) \times [\frac{1}{2}, \frac{3}{2}]$ and let $\epsilon \in (0, \frac{1}{2})$ be given. By definition of F^*V_ϵ, if $(x, y) \in F^*V_\epsilon$, then $F(y) \subset V_\epsilon(F(x)) = B(F(x), \epsilon)$, where $V_\epsilon = \{(x_1, x_2) \in \mathbb{R} \times \mathbb{R} : d(x_1, x_2) < \epsilon\}$. If $x \in (-\infty, 0)$, then $F(y) \subset B(F(x), \epsilon) = B(\{1\}, \epsilon) = (1 - \epsilon, 1 + \epsilon) \subset (\frac{1}{2}, \frac{3}{2})$. Hence $y \in (-\infty, 0)$. If $x \in [0, \infty)$, then $F(y) \subset B(F(x), \epsilon) = B([\frac{1}{2}, \frac{3}{2}], \epsilon) = (\frac{1}{2} - \epsilon, \frac{3}{2} + \epsilon)$. Hence $y \in (-\infty, \infty)$. This means that $F^*V_\epsilon \subset (-\infty, 0) \times (-\infty, 0) \cup [0, \infty) \times (-\infty, \infty)$. Let $(x, y) \in (-\infty, 0) \times (-\infty, 0) \cup [0, \infty) \times (-\infty, \infty)$ be given. If $x < 0$ and $y < 0$, then $F(y) = \{1\} \subset (1 - \epsilon, 1 + \epsilon) = B(\{1\}, \epsilon) = B(F(x), \epsilon) = V_\epsilon(F(x))$. Hence $(x, y) \in F^*V_\epsilon$. If $x \geq 0$ and $y \in \mathbb{R}$, $F(y) \subset [\frac{1}{2}, \frac{3}{2}] \subset (\frac{1}{2} - \epsilon, \frac{3}{2} + \epsilon) = B([\frac{1}{2}, \frac{3}{2}], \epsilon) = B(F(x), \epsilon) = V_\epsilon(F(x))$. Hence $(x, y) \in F^*V_\epsilon$. Finally, we know that $F^*V_\epsilon = (-\infty, 0) \times (-\infty, 0) \cup [0, \infty) \times (-\infty, \infty)$. Since $F^*V_\epsilon(0) = (0, \infty, 0) \in \text{Int}F^*V_\epsilon(0)$. Therefore F is V_ϵ upper semicontinuous at 0. Since $(F^*V_\epsilon)^{-1} = (-\infty, 0) \times (-\infty, 0) \cup [0, \infty) \times (-\infty, \infty)$.
Define a relation G on \mathbb{R} by $G = (-\infty, 0) \times \{1\} \cup (0, \infty) \times \left[\frac{1}{2}, \frac{3}{2}\right]$ and let $\epsilon \in (0, \frac{1}{4})$ be given. Since $G^*V_\epsilon = (-\infty, 0]\times(-\infty, 0]\cup(0, \infty)\times(-\infty, \infty)$, $G^*V_\epsilon(0) = (-\infty, 0]$. We know that G is not V_ϵ upper semicontinuous at 0 because $0 \notin (-\infty, 0] = \text{Int}(G^*V_\epsilon(0))$. Since $(G^*V_\epsilon)^{-1} = (-\infty, 0]\times(-\infty, 0]\cup(-\infty, \infty)\times(0, \infty)$, $(G^*V_\epsilon)^{-1}(0) = (-\infty, \infty)$. It means that G is V_ϵ lower semicontinuous at 0 because $0 \in (-\infty, \infty) = \text{Int}(G^*V_\epsilon)^{-1}(0)$.

Example 2.6. Define a relation H on \mathbb{R} by $H = (-\infty, \infty) \times \left[\frac{1}{2}, \frac{3}{2}\right]$ and let $\epsilon > 0$ be given. Since $H^*V_\epsilon = (-\infty, \infty) \times (-\infty, \infty)$, H is V_ϵ continuous at 0 because $(0, 0) \in (-\infty, \infty) \times (-\infty, \infty) = \text{Int}H^*V_\epsilon$.

Lemma 2.7. Let $F : X_1 \rightarrow X_2$ be a relation and $V_2 \in \mathcal{U}_{X_2}$.

1. Let $V_2 \subset V_2$. If F is V_2 upper semicontinuous at x, if \tilde{V}_2 lower semicontinuous at x, then F satisfies the corresponding property for V_2.

2. If F is V_2 continuous at x, then F is V_2 upper semicontinuous at x and V_2 lower semicontinuous at x. If $\tilde{V}_2 \in \mathcal{U}_{X_2}$ with $\tilde{V}_2^2 \subset V_2$ and F is \tilde{V}_2 upper semicontinuous at x and \tilde{V}_2 lower semicontinuous at x, then F is V_2 continuous at x.

3. F is continuous at x if and only if F is upper semicontinuous at x and lower semicontinuous at x. If F is uniformly continuous, then F is continuous. If F is continuous and X_1 is compact, then F is uniformly continuous.

Proof. (1) This follows from Proposition 2.2 (1).

(2) If F be V_2 continuous at x, $(x, x) \in \text{Int}F^*V_2$. This means that $x \in \text{Int}(F^*V_2)(x)$ and $x \in \text{Int}(F^*V_2)^{-1}(x)$. Therefore, F is V_2 upper semicontinuous at x and V_2 lower semicontinuous at x. Let $\tilde{V}_2 \in \mathcal{U}_{X_2}$ with $\tilde{V}_2^2 \subset V_2$, F be \tilde{V}_2 upper semicontinuous at x and \tilde{V}_2 lower semicontinuous at x. Since $\tilde{V}_2 \subset V_2$, $x \in \text{Int}((F^*V_2)(x))$ and $x \in \text{Int}((F^*V_2)^{-1}(x))$. It means that F is \tilde{V}_2 continuous at x.

(3) By Definition 2.3, the proof of (3) is obvious.

Theorem 2.8. Let $F : X_1 \rightarrow X_2$ be a pointwise closed relation. Assume that F is upper semicontinuous and $F(x)$ is compact for every $x \in X_1$. For every $V_2 \in \mathcal{U}_{X_2}$ the set of V_2 continuity points, $\{x : (x, x) \in \text{Int}F^*V_2\}$, is open and dense in X_1.

\end{document}
Proof. The set of V_2 continuity points, \(\{ x : (x, x) \in \text{Int}F^*V_2 \} \), is always open. By Lemma 2.7 (2), it suffices to prove that the set of V_2 upper semicontinuous points and the set of V_2 lower semicontinuous points are each dense.

Fix $V_2 \in \mathcal{U}_{X^2}$, $x_1 \in X_1$, and O_1 an open set containing x_1. We claim that $O_1 \cap \{ x : (x, x) \in \text{Int}F^*V_2 \} \neq \emptyset$.

We produce $x_0 \in O_1$ at which F is V_2 lower semicontinuous. Choose \tilde{V}, $W \in \mathcal{U}_{X^2}$, symmetric, with \tilde{V} closed and such that $\tilde{V}^2 \subset V_2$, $W^2 \subset \tilde{V}$ and $W^2 \subset \tilde{V}$. Because F is upper semicontinuous, there is an open set $\tilde{O} \subset O_1$ such that $x \in \tilde{O}$ implies $F(x) \subset W(F(x_1))$, i.e. $(x_1, x) \in F^*W$.

Because $F(x_1)$ is compact, it has a finite subset R such that $F(x_1) \subset W(R)$. Define for $x \in \tilde{O}$:

\[
R(x) = R \cap \tilde{V}(F(x)).
\]

Clearly, for $x \in \tilde{O}$:

\[
\text{(2.1)} \quad \text{if there exists } y \in \tilde{V}(F(x) \cap \tilde{V}(R(x)), \text{ then } y \in \tilde{V}(F(x)).
\]

If there exists $y \in F(x) \cap \tilde{V}(R(x))$, then $y \in F(x)$ and $y \in \tilde{V}(F(x))$. This is a contradiction for $(R - R(x)) \cap \tilde{V}(R(x)) = \emptyset$. Hence we get:

\[
\text{(2.2)} \quad \begin{align*}
F(x) \cap \tilde{V}(R - R(x)) &= \emptyset \quad \text{and} \quad F(x) \subset \tilde{V}(R(x)), \\
F(x) \cap \tilde{V}(R - R(x)) &= \emptyset \quad \text{and} \quad F(x) \subset \tilde{V}(R(x)).
\end{align*}
\]

Since F is upper semicontinuous and $F(x_1) \subset W(R)$, we obtain the following property.

\[
F(x) \subset W(F(x_1)) \subset W^2(R) \subset \tilde{V}(R(x)) \cup \tilde{V}(R - R(x)).
\]

Now choose $x_0 \in \tilde{O}$ so that $R(x_0)$ is minimal in the family \(\{ R(x) : x \in \tilde{O} \} \) of subsets of the finite set R.

Since $F(x_0)$ is compact and $\tilde{V}(R - R(x_0))$ is the finite union of closed sets, and thus is closed, there exists $W_0 \in \mathcal{U}_{X^2}$ such that

\[
W_0(F(x_0)) \cap \tilde{V}(R - R(x_0)) = \emptyset.
\]

Since F is upper semicontinuous:

\[
O_0 \equiv \{ x \in \tilde{O} : (x_0, x) \in F^*W_0 \}
\]

is a neighborhood of x_0. For $x \in O_0$, $W_0(F(x_0)) \cap \tilde{V}(R - R(x_0)) = \emptyset$ implies $R(x) \cap (R - R(x_0)) = \emptyset$, so $R(x) \subset R(x_0)$. By the minimality of $R(x_0)$, we have $R(x) = R(x_0)$ for all $x \in O_0$. Therefore we obtain that

\[
F(x_0) \subset \tilde{V}(R(x_0)) = \tilde{V}(R(x)) \subset \tilde{V}^2(F(x)) \subset V_2(F(x))
\]

for all $x \in O_0$.

This means $O_0 \times \{ x_0 \} \subset F^*V_2$, so F is V_2 lower semicontinuous at x_0, i.e. $x_0 \in O_1 \cap \{ x : (x, x) \in \text{Int}F^*V_2 \}$. Hence the set of V_2 upper
semicontinuous points is dense. Similarly, we can derive the fact that
the set of V_2 lower semicontinuous points is dense. □

Theorem 2.9. Let $F : X_1 \to X_2$ be a pointwise closed relation.
Assume that F is lower semicontinuous and X_2 is compact. For every
$V_2 \in \mathcal{U}_{X_2}$ the set of V_2 continuity points, \{ $x : (x, x) \in \text{Int} F^* V_2$ \}, is open
and dense in X_1.

Proof. If $x_1 \in X_1$ and O_1 is an open set containing x_1, then we can
choose \tilde{V}, $W \in \mathcal{U}_{X_2}$ symmetric with \tilde{V} open, $\tilde{V}^2 \subset V_2$, and $W^2 \subset \tilde{V}$. Choose R a finite subset of X_2 such that $W(R) = X_2$, and define $R(x)$
for all $x \in X_2$ according to $R(x) = R \cap \tilde{V}(F(x))$. Then for all $x \in X_2$,
(2-1) and (2-2) hold as before.

Choose $x_0 \in O_1$ so that $R(x_0)$ is maximal in the family \{ $R(x) : x \in O_1$ \}. Since \tilde{V} is open and $F(x_0)$ is compact, there exists $W_0 \in \mathcal{U}_{X_2}$ symmetric such that for each $y \in R(x_0)$ there exists $z_y \in F(x_0)$ such
that $W_0(z_y) \subset \tilde{V}(y)$. Because F is lower semicontinuous:

\[O_0 \equiv \{ x \in O_1 : F(x_0) \subset W_0(F(x)) \} \]

is a neighborhood of x_0. For each $x \in O_0$ and $y \in R(x_0)$, $\tilde{V}(y)$
contains $W_0(z_y)$, which meets $F(x)$. Thus $y \in \tilde{V}(F(x))$. Consequently,
$R(x_0) \subset R(x)$, so by the maximality of $R(x_0)$, we have $R(x_0) = R(x)$
for all $x \in O_0$. Hence for all $x \in O_0$:

\[F(x) \subset \tilde{V}(R(x)) = \tilde{V}(R(x_0)) \subset \tilde{V}^2(F(x_0)) \subset V_2(F(x_0)). \]

This says $\{ x_0 \} \times O_0 \subset F^* V_2$, so F is upper semicontinuous at x_0. □

Lemma 2.10. X is a Baire space if and only if given any countable
collection \{ U_n \} of open sets in X, each of which is dense in X, their
intersection $\cap U_n$ is also dense in X.

Lemma 2.11. Let $f : X_1 \to X_2$ be a continuous map.

1. Let f be a closed map. Assume A is an E_f invariant set, i.e.,
$A = E_f(A)$. If B is closed and $B \subset A$, then $B_1 = E_f(B)$ is an E_f
invariant closed subset of X_1 satisfying $B \subset B_1 \subset A$. If O is open and
$A \subset O$, then $O_1 = \{ x : E_f(x) \subset O \}$ is an E_f invariant open subset of
X_1 satisfying $A \subset O_1 \subset O$. The relations E_f on X_1 and $f^{-1} : X_2 \to X_1$
are upper semicontinuous.

2. If f is a proper map (i.e., point inverses are compact) and f^{-1} is
upper semicontinuous, then f is a closed map.

Proof. (1) If B is closed, then $B_1 = E_f(B) = f^{-1} f(B)$ is closed
when f is a continuous, closed map. $B \subset A = E_f(A)$ implies $B \subset
$E_f(B) \subset E_f(A) = A$. Since O is open, $O_1 = \{x : E_f(x) \subset O\} = X_1 - E_f(X - O)$ is open. If A is invariant, then $A_1 = \{x : E_f(x) \subset A\} = A$. Therefore $A \subset O$ implies $A = A_1 \subset O_1 \subset O$. Similarly, $\{y \in X_2 : f^{-1}(y) \subset O\} = X_2 - f(X_1 - O)$ is open in X_2. In particular, for any $V_1 \in \mathcal{U}_X$, and $y \in X_2$, $y \in \{y_1 \in X_2 : f^{-1}(y_1) \subset \text{Int}V_1(f^{-1}(y))\} \subset ((f^{-1})^*V_1)(y)$. Then $y \in \text{Int}((f^{-1})^*V_1)(y)$ for any $V_1 \in \mathcal{U}_X$. Thus f^{-1} is upper semicontinuous at y. By Proposition 2.2 (3), since f is a map, $E_fV_1 = f^*(f^{-1})^*V_1 = f^{-1}((f^{-1})^*V_1)f$. Hence for any $x \in X_1$, $(E_fV_1)(x) = f^{-1}((f^{-1})^*V_1(f(x)))$. Then $f(x) \in (f^{-1})^*V_1(f(x))$ implies $x \in \text{Int}(E_f)^*V_1(x)$, so E_f is upper semicontinuous at x.

(2) If A is closed in X_1, $y \notin f(A)$ and $f^{-1}(y)$ is compact, then there exists $V_1 \in \mathcal{U}_X$, such that $V_1(f^{-1}(y)) \cap A = \emptyset$. If f^{-1} is upper semicontinuous at y, then there exists O_2 open with $y \in O_2$ and $f^{-1}(O_2) \subset V_1(f^{-1}(y))$. Then $O_2 \cap f(A) = \emptyset$ and $y \notin f(A)$. Hence f is a closed map. □

3. Genericity and almost homeomorphisms

In this section, we define openness (or quasi-openness) at a point x using the relative interior operator and characterize that a continuous map f is almost open, almost quasi-open, almost embedding and almost homeomorphism.

For a continuous map $f : X_1 \to X_2$ and let $A \subset X_1$, we define the relative interior operator:

$$\text{Int}_fA = (\text{Int}A) \cap f^{-1}(\text{Int}f(A)).$$

Clearly, Int_fA is an open subset of $\text{Int}A$. For $x \in X_1$, $x \in \text{Int}_fA$ if and only if $x \in \text{Int}A$ and $f(x) \in \text{Int}f(A)$.

Definition 3.1. Let $f : X_1 \to X_2$ be a continuous map. For $V_1 \in \mathcal{U}_X$ and $x \in X_1$, we call f is V_1 open at x if $x \in \text{Int}_fV_1(x)$. f is open at x provided it is V_1 open at x for all $V_1 \in \mathcal{U}_X$ and f is open if f is open at x for every $x \in X_1$.

The equivalent conditions of V_1 openness are the following.

Lemma 3.2. Let $f : X_1 \to X_2$ be a continuous map. Then the following statements are equivalent:

1. f is V_1 open at x.
2. If U is a neighborhood of x in X_1, then $f(U)$ is a neighborhood of $f(x)$ in X_2.
3. For any subset A of X_1, $x \in \text{Int}A$ implies $x \in \text{Int}_fA$.

Proof. (1)⇒(2). If \(f \) is \(V_1 \) open at \(x \) for all \(V_1 \in U_{X_2} \), then \(x \in \text{Int}_f V_1(x) \). Let \(U \) be a neighborhood of \(x \) in \(X_1 \). By the definition of the relative interior operator, \(x \in f^{-1}(\text{Int}_f(V_1(x))) \). It means that \(f(x) \in f(f^{-1}(\text{Int}_f(V_1))) \subseteq \text{Int}_f(V_1(x)) \subset f(U) \).

(2)⇒(3). Let \(A \) be a subset of \(X_1 \) and \(x \in \text{Int} A \). By the hypothesis, \(f(\text{Int} A) \) is a neighborhood of \(f(x) \). It means that \(x \in f^{-1}(\text{Int}(A)) \).

Thus, \(x \in \text{Int} f(A) \).

(3)⇒(1). Since \(x \in V_1(x) \), \(x \in \text{Int} V_1(x) \). By (3), \(x \in \text{Int}_f V_1(x) \). It means that \(f \) is \(V_1 \) open at \(x \).

Lemma 3.3. Let \(f : X_1 \to X_2 \) be a continuous map and let \(y \in X_2 \) and \(V_1 \) be a symmetric element of \(U_{X_1} \). If \(f^{-1} \) is \(V_1 \) lower semicontinuous at \(y \), then \(f \) is \(V_1 \) open at \(x \) and \(E_f \) is \(V_1 \) lower semicontinuous at \(x \) for all \(x \in f^{-1}(y) \). If \(f^{-1}(y) \) is compact and \(f \) is \(V_1 \) open at every \(x \in f^{-1}(y) \), then \(f^{-1} \) is \(V_1^2 \) lower semicontinuous at \(y \). In particular, if \(f^{-1}(y) = \emptyset \), then \(f^{-1} \) is lower semicontinuous at \(y \).

Proof. If \(f^{-1} \) is \(V_1 \) lower semicontinuous at \(y \), then there exists \(V_2 \in U_{X_2} \) such that \(V_2(y) \subseteq ((f^{-1})^*(V_1))^{-1}(y) \). This is, \(\forall y_1 \in V_2(y) \) implies \(f^{-1}(y) \subseteq V_1(f^{-1}(y_1)) \), so \(V_2(y) \subseteq f(V_1(x)) \) for all \(x \in f^{-1}(y) \). For \(x_1 \in f^{-1}(V_2(y)) \) setting \(y_1 = f(x_1) \) shows \(E_f(x) = f^{-1}(y) \subset V_1(E_f(x_1)) \).

Thus \(E_f \) is \(V_1 \) lower semicontinuous at \(x_1 \).

If \(f^{-1}(y) \) is compact, then there exists \(\{x_1, \ldots, x_n\} \) in \(f^{-1}(y) \) \(\subset \bigcup_{i=1}^n V_1(x_i) \). If \(f \) is \(V_1 \) open at each \(x_i \), then there exists \(V_2 \in U_{X_2} \) such that \(V_2(y) \subset \bigcap_{i=1}^n f(V_1(x_i)) \). If \(y_1 \in V_2(y) \), \(f^{-1}(y_1) \cap V_1(x_i) \neq \emptyset \), so \(f^{-1}(y_1) \cap V_2(x) \neq \emptyset \) for every \(x \in f^{-1}(y) \). That is \(V_2(y) \subset ((f^{-1})^*(V_1^2))^{-1}(y) \) and \(f^{-1} \) is \(V_1^2 \) lower semicontinuous at \(y \).

Proposition 3.4. Let \(f : X_1 \to X_2 \) be a continuous map. Then the following statements are equivalent:

1. \(f \) is open.
2. If \(U \) is open in \(X_1 \), then \(f(U) \) is open in \(X_2 \).
3. For all \(A \subset X_1 \), \(\text{Int} A = \text{Int}_f A \).

Proof. This is obvious from Lemma 3.2.

Definition 3.5. Let \(f : X_1 \to X_2 \) be a continuous map. We call \(f \) is almost open provided that for all \(A \subset X_1 \), \(\text{Int} A \neq \emptyset \) implies \(\text{Int}_f A \neq \emptyset \).

The equivalent conditions of almost openness are the following.

Theorem 3.6. Let \(f : X_1 \to X_2 \) be a continuous map. Then the following statements are equivalent:

1. \(f \) is almost open.
(2) \(D \) dense in \(X_2 \) implies \(f^{-1}(D) \) is dense in \(X_1 \).

(3) If \(U \) is open in \(X_1 \), then \(\text{Int}_f U = U \cap f^{-1}(\text{Int} f(U)) \) is dense in \(U \).

(4) For every \(V_1 \in \mathcal{U}_{X_1} \), \(\{ x : f \text{ is } V_1 \text{ open at } x \} \) is dense in \(X_1 \).

(5) For every \(V_1 \in \mathcal{U}_{X_1} \), \(\{ x : (x, f(x)) \in \text{Int}(f \circ V_1) \} \) is open and dense in \(X_1 \).

Proof. (1)\(\Rightarrow \) (2). Suppose that \(f^{-1}(D) \) is not dense in \(X_1 \). Then \(U = X_1 - f^{-1}(D) \) is a nonempty open set. By (1), \(\text{Int} f(U) \neq \emptyset \). Since \(f(U) \cap D = \emptyset \), \(\text{Int} f(U) \cap D = \emptyset \). This is a contradiction.

(2)\(\Rightarrow \) (3). For any \(A \subseteq X_1 \), \(D = (\text{Int} f(A)) \cup (X_2 - f(A)) \) is dense in \(X_2 \). By (2), \(f^{-1}(A) \) is dense in \(X_1 \). If \(U \) is an open subset of \(X_1 \), then \(\text{Int}_f U = U \cap f^{-1}(D) \) is dense in \(U \).

(3)\(\Rightarrow \) (4). Let \(V_1 \in \mathcal{U}_{X_1} \), and \(x \in X_1 \). Also, let \(V_2 \) be an open, symmetric element of \(\mathcal{U}_{X_1} \) such that \(V_2^2 \subseteq V_1 \). By (3), \(V_2(x) \cap f^{-1}(\text{Int} f(V_2(x))) \) is open and dense in \(V_2(x) \). Choose \(x_1 \in V_2(x) \cap f^{-1}(\text{Int} f(V_2(x))) \). Then \(f(x_1) \in f(f^{-1}(\text{Int} f(V_2(x)))) \subseteq \text{Int} f(V_2(x)) \). Since \(V_2 \) can be chosen arbitrarily small, \(f \) is \(V_1 \) open at points of a dense set.

(4)\(\Rightarrow \) (1). For all \(A \subseteq X_1 \), let \(\text{Int} A \neq \emptyset \). If \(V_2^2(x) \subseteq \text{Int} A \) let \(x_1 \in V_1(x) \) at which \(f \) is \(V_1 \) open. Since \(f(V_1(x_1)) \subset f(V_2^2(x)) \subset f(A) \), \(f(V_1(x_1)) \) is a neighborhood of \(f(x_1) \).

(4) \(\iff \) (5). For \(V_1 \) symmetric in \(\mathcal{U}_{X_1} \), \(\{ x : (x, f(x)) \in \text{Int}(f \circ V_1) \} \subset \{ x : f \text{ is } V_1 \text{ open at } x \} \subset \{ x : (x, f(x)) \in \text{Int}(f \circ V_2^2) \} \).

Observe that \(U_1 \times U_2 \subseteq f \circ V_1 \) if and only if \(U_2 \subseteq f(V_1(x_1)) \) for all \(x_1 \in U_1 \). The first inclusion is clear, and the second follows from \(f(V_1(x)) \subset f(V_2^2(x_1)) \) for all \(x \in V_1(x) \). Together these inclusions yield the equivalence.

Theorem 3.7. Let \(f : X_1 \to X_2 \) and \(g : X_2 \to X_3 \) be continuous maps. If both \(f \) and \(g \) are almost open, then \(g \circ f \) is almost open. If \(g \circ f \) is almost open and \(f \) is surjective, then \(g \) is almost open.

Proof. Let \(f \) and \(g \) be almost open and let \(\text{Int} A \) be a nonempty subset of \(X_1 \). Since \(f \) and \(g \) are almost open, \(\text{Int} f(A) \) and \(\text{Int} g(f(A)) \) are nonempty subsets of \(X_2 \) and \(X_3 \), respectively. Let \(g \circ f \) be almost open, \(f \) be surjective and \(\text{Int} A_2 \) be a nonempty subset of \(X_2 \). Since \(f \) is continuous and surjective, \(f^{-1}(\text{Int} A_2) \) is a nonempty open subset of \(X_1 \). \(\text{Int}((g \circ f)(f^{-1}(\text{Int} A_2))) = \text{Int} g(\text{Int} A_2) \) is a nonempty subset of \(X_3 \) because \(g \circ f \) is almost open. Therefore \(g \) is almost open.

Theorem 3.8. Let \(f : X_1 \to X_2 \) be a continuous, closed and proper map. For every \(V_1 \in \mathcal{U}_{X_1} \), the set:
\[\text{Int}\{ y \in X_2 : f \text{ is } V_1 \text{ open at each } x \in f^{-1}(y) \} \]
is an open and dense subset of X_2. In particular, if X_1 is metrizable and X_2 is Baire, then
\[
\{ y \in X_2 : f \text{ is } V_1 \text{ open at each } x \in f^{-1}(y) \}
\]
is a residual subset of X_2.

Proof. By Lemma 2.11 (1), f^{-1} is an upper semicontinuous relation. By Theorem 2.8, $\{ y : (y, y) \in \text{Int}(f^{-1}V_1) \}$ is open and dense in X_2 and it is contained in the set of points at which f^{-1} is a lower semicontinuous relation. By Lemma 3.3, f is V_1 open at every point $x \in X_1$ such that $y = f(x)$ lies in this set. As usual when X_1 is metrizable, we can intersect over a countable base for U_{X_1} to obtain a residual subset of X_2. \qed

Generally $\{ x : f \text{ is almost open at } x \}$ is not dense when f is a continuous, closed and proper map.

Example 3.9. Define $f : [0,1] \to [0,2]$ by $f(x) = 1$. Then f is a continuous, closed and proper map. But $\{ x : f \text{ is almost open at } x \} = \emptyset$.

A subset A of X is called quasi-open if $A \subset \text{Int}A$. For any subset A of X define the quasi-interior:
\[
\text{QInt}A = A \cap \text{Int}A.
\]

For a continuous map $f : X_1 \to X_2$ and a subset A of X_1, define
\[
\text{QInt}_fA = (\text{QInt}A) \cap f^{-1}(\text{QInt}f(A)) = (\text{QInt}A) \cap f^{-1}(\text{Int}f(A)).
\]
The two definitions agree because $f^{-1}(f(A)) \supset A$. In particular:
\[
x \in \text{QInt}_fA \text{ if and only if } x \in \text{QInt}A \text{ and } f(x) \in \text{Int}f(A).
\]

Proposition 3.10. The following properties are hold

1. A is quasi-open in X if and only if there exist open subset U and dense set D such that $A = U \cap D$. In particular, any open set or any dense set is quasi-open.

2. The arbitrary union of quasi-open sets is quasi-open. If A is quasi-open and U is open, then $A \cup U$ is quasi-open.

3. The $\text{QInt}A$ is dense in \overline{A}. $\text{QInt}A$ is the largest quasi-open set contained in A. In particular, $\text{QInt}(\text{QInt}A) = \text{QInt}A$. The set A is quasi-open if and only if $A = \text{QInt}A$. $\text{QInt}A = \emptyset$ if and only if A is nowhere dense.

4. If $f : X_1 \to X_2$ is continuous and $A \subset X_1$, then QInt_fA is a quasi-open subset of $\text{QInt}A$. If A is quasi-open, then $f(\text{QInt}A) = \text{QInt}f(A)$ which is quasi-open in X_2. If U is open, then QInt_fU is open.

Proof. (1) Let A be quasi-open in X, i.e., $A \subset \text{Int}A$. Put $D = A \cup (X - \overline{A})$. Then D is dense in X. Since A is quasi-open, $A =
D \cap \text{Int} \overline{A} = (A \cup (X - \overline{A})) \cap \text{Int} \overline{A}. \text{ Conversely, let } A = U \cap D \text{ where } U \text{ is open and } D \text{ is dense in } X. \text{ Then } A \text{ is dense in } U, \text{ i.e., } \overline{A} = \overline{U}. \text{ Thus } A \subset U \subset \text{Int} \overline{U} = \text{Int} \overline{A}. \text{ Since } A \cap X = A, \text{ any open set or any dense set is quasi-open.}

(2) Let \{A_\alpha : \alpha \in \Lambda \} be quasi-open, i.e., A_\alpha \subset \text{Int} \overline{A_\alpha} \text{ for all } \alpha \in \Lambda. \text{ Since } A_\alpha \text{ is quasi-open for all } \alpha \in \Lambda, U_\alpha \subset A_\alpha \subset U_\alpha \cap \text{Int} \overline{A_\alpha} \subset \text{Int}(U_\alpha) \cap \text{Int}(\bigcup_{\alpha \in \Lambda} A_\alpha).

Let A be quasi-open and let U be open. By (1), A = V \cap D \text{ for some open } V \text{ and dense } D. \text{ Thus } A \cap U = (U \cap V) \cap D \text{ is quasi-open.}

(3) Since A is dense in \overline{A} and \text{Int} \overline{A} is open in \overline{A}, \text{Int} \overline{A} = A \cap \text{Int} \overline{A} \text{ is dense in } \text{Int} \overline{A}. \text{ We have that } \text{Int}(\text{Int} \overline{A}) = \text{Int} \overline{A} \cap \text{Int}(\text{Int} \overline{A}) = \text{Int} \overline{A} \cap \text{Int}(\text{Int} \overline{A}) = \text{Int} \overline{A}. \text{ Clearly, } A \text{ is quasi-open if and only if } A = \text{Int} \overline{A}. \text{ Thus } \text{Int} \overline{A} \text{ is quasi-open.}

(4) Since \text{Int} fA \text{ is quasi-open and } f^{-1}(\text{Int} \overline{A}) \text{ is open, } \text{Int} fA = \text{Int} fA \cap f^{-1}(\text{Int} \overline{A}) = \text{Int} f(A) \cap f^{-1}(\text{Int} \overline{A}) = \text{Int} f(A) \cap f^{-1}(\text{Int} \overline{A}) = f(\text{Int} fA) = f(A) \cap \text{Int} \overline{A}. \text{ Since } \text{Int} \overline{A} \text{ is quasi-open.}

Generally, \text{Int} fA \subset \text{Int} A \subset \text{QInt} A \subset A \text{ and } \text{Int} fA \subset \text{QInt} fA \subset \text{QInt} A \subset A \text{ for any subset } A \text{ of } X_1. \text{ The followings are examples in which equalities are not hold by the above inclusion relations.}

Example 3.11. If \(A = ([0, 1] \cap \mathbb{Q}) \cup [1, 2] \), then \text{Int} A \subset \text{QInt} A \subset A. Define \(f : \mathbb{R} \rightarrow \mathbb{R} \) by \(f(x) = |x| \). Let \(B = [-1, 1] - \{-\frac{1}{2}, \frac{1}{2} \} \). Then \(\text{Int} fB \subset \text{Int} B \).

Define \(f : \mathbb{R} \rightarrow \mathbb{R} \) by \(f(x) = |x - 1| \). Let \(C = ([0, 1] \cap \mathbb{Q}) \cup [1, 2] \). Then \text{Int} fC \subset \text{QInt} fC.

Definition 3.12. Let \(f : X_1 \rightarrow X_2 \) be a continuous map. For \(x \in X_1 \) and \(V_1 \in \mathcal{U}_{X_1} \), we call \(f \) is \(V_1 \) quasi-open at \(x \) if \(x \in \text{QInt} fV_1(x) \). If \(f \) is \(V_1 \) quasi-open at \(x \) for every \(V_1 \in \mathcal{U}_{X_1} \), then we call \(f \) is quasi-open at \(x \). If \(f \) is quasi-open at every \(x \in X_1 \), then we call \(f \) is quasi-open.

Theorem 3.13. Let \(f : X_1 \rightarrow X_2 \) be a continuous map. For \(x \in X_1 \) the following conditions are equivalent.

1. \(f \) is quasi-open at \(x \).
2. For all \(A \subset X_1, x \in \text{QInt} A \) implies \(x \in \text{QInt} fA \).
3. If \(U \) is an open neighborhood of \(x \) in \(X_1 \), then \(\text{QInt} fU \) is an open neighborhood of \(x \) in \(X_1 \) with \(f(x) \) in \(\text{QInt} fU = \text{QInt} f(\text{QInt} U) \) quasi-open in \(X_2 \).
(4) If U is a neighborhood of x in X_1, then $\overline{f(U)}$ is a neighborhood of $f(x)$ in X_2.

Proof. (1)\Rightarrow(2). Let $A \subset X_1$ and $x \in \overline{\operatorname{Int} A}$. Assume V_1 is open in U_{X_1} with $V_1(x) \subset A$. Since $f(x) \in \operatorname{Int}\overline{f(V_1(x))}$, there exists open U_2 in X_2 such that $f(x) \in U_2 \subset \operatorname{Int} f(V_1(x)) \subset f(V_1(x)) \subset f(A) \subset f(A)$. This means that $x \in f^{-1}(U_2) \subset f^{-1}(\operatorname{Int}\overline{f(A)})$, i.e., $x \in \overline{\operatorname{Int} f(A)}$.

(2)\Rightarrow(3). Since U is open, U is quasi-open. By Proposition 3.10, $f(\overline{\operatorname{Int} f(U)}) = \overline{\operatorname{Int} f(U)}$. If $x \in U$, then $x \in \overline{\operatorname{Int} f(U)}$. This means that $f(x) \in f(\overline{\operatorname{Int} f(U)}) = \overline{\operatorname{Int} f(U)}$.

(3)\Rightarrow(4). Let U be a neighborhood of x. By (3), $f(x) \in f(\overline{\operatorname{Int} f(U)}) = \overline{\operatorname{Int} f(U)}$. This means that $f(x) \in \overline{\operatorname{Int} f(U)} \subset \overline{\operatorname{Int} \overline{\operatorname{Int} f(U)}} \subset f(U)$.

(4)\Rightarrow(1). Let $V_1 \in U_{X_1}$ be given. Since $V_1(x)$ is a neighborhood of x, $\overline{f(V_1(x))}$ is a neighborhood of $f(x)$. □

Theorem 3.14. Let $f : X_1 \rightarrow X_2$ be a continuous map. The following conditions are equivalent.

(1) f is quasi-open.

(2) For all $A \subset X_1$, $\overline{\operatorname{Int} A} = \overline{\operatorname{Int} f(A)}$.

(3) If A is quasi-open in X_1, then $f(A)$ is quasi-open in X_2.

(4) If U is open in X_1, then $f(U)$ is quasi-open in X_2.

(5) For all U open in X_1, $U = \overline{\operatorname{Int} f(U)}$.

Proof. (1)\Rightarrow(2). This is obvious from Theorem 3.13 (1) \iff (2).

(2)\Rightarrow(3). Let A be quasi-open in X_1. Since $A = \overline{\operatorname{Int} A} = \overline{\operatorname{Int} f(A)}$, $A \subset f^{-1}(\overline{\operatorname{Int} f(A)})$. This means that $f(A) \subset \overline{\operatorname{Int} f(A)}$.

(3)\Rightarrow(4). Since U is open, U is quasi-open. By (3), $f(U)$ is quasi-open.

(4)\Rightarrow(1). Let $V_1 \in U_{X_1}$ and $x \in X_1$. Since $V_1(x)$ is an open neighborhood of x, $f(x) \in \overline{f(V_1(x))}$.

(2)\Rightarrow(5). Since U open in X_1, $f(\overline{\operatorname{Int} f(U)}) = \overline{\operatorname{Int} f(U)} = U$.

(5)\Rightarrow(4). Let U be open in X_1. By (5), $U = \overline{\operatorname{Int} f(U)} \subset f^{-1}(\overline{\operatorname{Int} f(U)})$. This means that $f(U) \subset \overline{\operatorname{Int} f(U)}$, i.e., $f(U)$ is quasi-open in X_2. □

Theorem 3.15. Let $f : X_1 \rightarrow X_2$ and $g : X_2 \rightarrow X_3$ be continuous maps. If both f and g are quasi-open, then $g \circ f$ is quasi-open. If $g \circ f$ is quasi-open and f is surjective, then g is quasi-open.

Proof. Let f and g be quasi-open and let A_1 be quasi-open in X_1. By Proposition 3.14 (3), $f(A_1)$ and $g(f(A_1))$ are quasi-open in X_2 and X_3, respectively. Let $g \circ f$ be quasi-open, f be surjective and U_2 be an open subset of X_2. Since f is continuous, $f^{-1}(U_2)$ is open in X_1.

(4) If U is a neighborhood of x in X_1, then $\overline{f(U)}$ is a neighborhood of $f(x)$ in X_2.

Proof. (1)\Rightarrow(2). Let $A \subset X_1$ and $x \in \overline{\operatorname{Int} A}$. Assume V_1 is open in U_{X_1} with $V_1(x) \subset A$. Since $f(x) \in \operatorname{Int}\overline{f(V_1(x))}$, there exists open U_2 in X_2 such that $f(x) \in U_2 \subset \operatorname{Int} f(V_1(x)) \subset f(V_1(x)) \subset f(A) \subset f(A)$. This means that $x \in f^{-1}(U_2) \subset f^{-1}(\operatorname{Int}\overline{f(A)})$, i.e., $x \in \overline{\operatorname{Int} f(A)}$.

(2)\Rightarrow(3). Since U is open, U is quasi-open. By Proposition 3.10, $f(\overline{\operatorname{Int} f(U)}) = \overline{\operatorname{Int} f(U)}$. If $x \in U$, then $x \in \overline{\operatorname{Int} f(U)}$. This means that $f(x) \in f(\overline{\operatorname{Int} f(U)}) = \overline{\operatorname{Int} f(U)}$.

(3)\Rightarrow(4). Let U be a neighborhood of x. By (3), $f(x) \in f(\overline{\operatorname{Int} f(U)}) = \overline{\operatorname{Int} f(U)}$. This means that $f(x) \in \overline{\operatorname{Int} f(U)} \subset \overline{\operatorname{Int} \overline{\operatorname{Int} f(U)}} \subset f(U)$.

(4)\Rightarrow(1). Let $V_1 \in U_{X_1}$ be given. Since $V_1(x)$ is a neighborhood of x, $\overline{f(V_1(x))}$ is a neighborhood of $f(x)$. □
Let D be a subset of X_1 with $\text{Int} A \neq \emptyset$. Put $U = \text{Int} A$. Since U is nonempty open, U is quasi-open. By (5), $\emptyset \neq \text{QInt} f(U) \subset \text{Int} f(A)$.

\[(g \circ f)(f^{-1}(U_2)) = g(U_2) \text{ is quasi-open because } g \circ f \text{ is quasi-open and } f \text{ is surjective}. \]

Definition 3.16. Let $f : X_1 \to X_2$ be a continuous map. We call f is almost quasi-open when for all $A \subset X_1$, $\text{Int} A \neq \emptyset$ implies $\text{Int} f(A) \neq \emptyset$.

Theorem 3.17. Let $f : X_1 \to X_2$ be a continuous map. The following conditions are equivalent.

1. f is almost quasi-open.
2. For every $V_1 \in \mathcal{U}_{X_1}$, \(\{ x : f \text{ is } V_1 \text{ quasi-open at } x \} \) is dense in X_1.
3. For every $V_1 \in \mathcal{U}_{X_1}$, $\text{Int} \{ x : f \text{ is } V_1 \text{ quasi-open at } x \}$ is open and dense in X_1.
4. If A is quasi-open in X_1, then $\text{QInt} f(A)$ is dense in A.
5. For all $A \subset X_1$, $\text{QInt} A \neq \emptyset$ implies $\text{QInt} f(A) \neq \emptyset$.
6. B is nowhere dense in X_2 implies $f^{-1}(B)$ is nowhere dense in X_1.
7. D is open and dense in X_2 implies $f^{-1}(D)$ is dense in X_1.

Proof. (1)\(\Rightarrow \) (2). Let $V_1 \in \mathcal{U}_{X_1}$ and $x \in X_1$. Let $V = V^{-1}$ be open in \mathcal{U}_{X_1}, with $V^2 \subset V_1$. By (1), $\text{Int} f(V(x)) \neq \emptyset$. Since $\text{QInt} f(V(x)) = \text{QInt} f(V(x) \cap f^{-1}(\text{Int} f(V(x))))$ is open and nonemptyset, we can find $x_1 \in \text{QInt} f(V(x))$ and notice that $f(x_1) \in \text{Int} f(V(x)) \subset \text{Int} f(V_1(x_1))$. Thus, f is V_1 quasi-open at x_1. Since V can be chosen arbitrarily small, $\{ x : f \text{ is } V_1 \text{ quasi-open at } x \}$ is dense.

(2)\(\Rightarrow \) (3). Let $V_1 \in \mathcal{U}_{X_1}$ be given and let $V = V^{-1}$ be open in \mathcal{U}_{X_1} with $V^2 \subset V_1$. f is V quasi-open at x if and only if there is an open neighborhood U of x such that $f(U) \subset \text{Int} f(V(x))$. By (2), $V(x) \cap \{ x : f \text{ is } V_1 \text{ quasi-open at } x \} \neq \emptyset$ for all $x \in X$. If $x_1 \in U \cap V(x)$, then $f(U) \subset \text{Int} f(V_1(x_1))$. So f is V_1 quasi-open at every point of a neighborhood of x.

(3)\(\Rightarrow \) (4). Let A be quasi-open in X_1. Since $\text{QInt} f(A) \subset A$, $\text{QInt} f(A) \subset A$. For a neighborhood U of $x \in A$, choose V_1 open in \mathcal{U}_{X_1} such that $V_1(x) \subset U$. Since A is quasi-open in X_1, there exists $x_1 \in V_1(x) \cap A$ such that f is V_1 quasi-open at x_1. This means that $f(x_1) \in \text{Int} f(V_1(x)) \subset \text{Int} f(U) = \text{Int} f(A)$. Since $x_1 \in A = \text{QInt} A$, it follows that $x_1 \in \text{QInt} f(A)$.

(4)\(\Rightarrow \) (5). Let A be a subset of X_1 with $\text{QInt} A \neq \emptyset$. Put $A_1 = \text{QInt} A$. By (4), $\text{QInt} f(A_1)$ is dense in A_1. Since A_1 is quasi-open, $\text{QInt} f(A_1) = f(\text{QInt} f(A_1)) \neq \emptyset$.

(5)\(\Rightarrow \) (1). Let A be a subset of X_1 with $\text{Int} A \neq \emptyset$. Put $U = \text{Int} A$. Since U is nonempty open, U is quasi-open. By (5), $\emptyset \neq \text{QInt} f(U) \subset \text{Int} f(A)$.
Let V be surjective and is a \textit{dense}. Since V is continuous and surjective, f is continuous and surjective, then f is almost quasi-open. The converse is true as well if f is surjective, then $g \circ f$ is almost quasi-open.

Proof. Let f and g be almost quasi-open and let $Q \text{Int} A$ be a nonempty subset of X_2. By Theorem 3.17, $Q \text{Int} f(A)$ and $Q \text{Int} g(f(A))$ are nonempty subsets of X_2 and X_3, respectively. Let $g \circ f$ be almost quasi-open, f be surjective and let $U_2 \equiv \text{Int} A_2$ be a nonempty set, where $A_2 \subset X_2$. Since f is continuous and surjective, $f^{-1}(U_2) = \text{Int} f^{-1}(U_2)$ is nonempty. By Theorem 3.17, $\emptyset \neq \text{Int}(g \circ f)(f^{-1}(U_2)) = \text{Int} g(U_2) \subset \text{Int} g(A_2)$.

Remark 3.19. If for every dense G_f set B in X that $f^{-1}(B)$ is dense in X_1, then f satisfies (7) of Theorem 3.17, so f is almost quasi-open. The converse is true as well if X_1 is Baire.

Definition 3.20. Let $f : X_1 \to X_2$ be a continuous map. For $x \in X_1$ and $V_1 \in \mathcal{U}_{X_1}$, we call f a V_1 embedding at x if there exists $V_2 \in \mathcal{U}_{X_2}$ such that

$$(f^* V_2)(x) = f^{-1}(V_2(f(x))) \subset V_1(x).$$

This just says that the preimage of some neighborhood of $f(x)$ is contained in $V_1(x)$. Clearly f is a V_1 embedding at x if and only if the associated surjective map $f : X_1 \to f(X_1)$ is a V_1 embedding at x. If f is surjective and is a V_1 embedding at x, then f is V_1 open at x because $V_2(f(x)) \subset f(V_1(x))$. If f is a V_1 embedding at x for all $V_1 \in \mathcal{U}_{X_1}$, then we call f is an \textit{embedding} at x.

Theorem 3.21. Let $f : X_1 \to X_2$ be a continuous map. For $x \in X_1$ the following conditions are equivalent.

1. $f(x)$ is nowhere dense in X_2.
2. f is almost quasi-open.
3. f is a V_1 embedding at x.

By (1), $\emptyset \neq \text{Int} f(A) \subset \text{Int} B$.

(6)\Rightarrow(7). Let D be open and dense in X_2 and put $B = X_2 - D$. If both D_1 and D_2 are nonempty, then $f^{-1}(D_1) = \text{Int} f^{-1}(D_1) = \emptyset$. This is a contradiction. Thus $f(D) = \text{Int} f^{-1}(D)$.

(7)\Rightarrow(1). Let A be a subset of X_1 with $\text{Int} A \neq \emptyset$ and let $\text{Int} f(A) = \emptyset$. Put $D = X_2 - f(A)$ and D is open and dense. By (7), f^{-1} is open and dense. Since $A \subset f^{-1}(f(A)) \subset f^{-1} f(A)$ and $f^{-1}(D) = X_1 - f^{-1}(f(A))$, $f^{-1}(D) \cap A = \emptyset$. This is a contradiction. Thus $\text{Int} f(A) \neq \emptyset$.

\begin{proof}
Let $f : X_1 \to X_2$ and $g : X_2 \to X_3$ be continuous maps. If both f and g are almost quasi-open, then $g \circ f$ is almost quasi-open. If $g \circ f$ is almost quasi-open and f is surjective, then g is almost quasi-open.

\begin{proof}
Let f and g be almost quasi-open and let $Q \text{Int} A$ be a nonempty subset of X_1. By Theorem 3.17, $Q \text{Int} f(A)$ and $Q \text{Int} g(f(A))$ are nonempty subsets of X_2 and X_3, respectively. Let $g \circ f$ be almost quasi-open, f be surjective and let $U_2 \equiv \text{Int} A_2$ be a nonempty set, where $A_2 \subset X_2$. Since f is continuous and surjective, $f^{-1}(U_2) = \text{Int} f^{-1}(U_2)$ is nonempty. By Theorem 3.17, $\emptyset \neq \text{Int}(g \circ f)(f^{-1}(U_2)) = \text{Int} g(U_2) \subset \text{Int} g(A_2)$.

\end{proof}

\end{proof}
Almost open and almost homeomorphisms

(1) f is an embedding at x.
(2) $f^{-1}u[f(x)] = u[x]$, where $u[f(x)]$ is an uniform neighborhood of $f(x)$.
(3) For every $V_1 \in U_{X_1}$, there exists U_2 a neighborhood of $f(x)$ such that $f^{-1}(U_2) \times f^{-1}(U_2) \subset V_1$.

If f is an embedding at x, then $f^{-1}(f(x)) = E_f(x) = \{x\}$. Conversely if f is a closed map and $E_f(x) = \{x\}$, then f is an embedding at x.

Proof. If $V = V^{-1}$ and $V^2 \subset V_1$, then $f^{-1}(U) \subset V(x)$ implies $f^{-1}(U) \times f^{-1}(U) \subset V_1$. So (1)$\Rightarrow$(3). (3) obviously implies (1) which is equivalent to (2), i.e.,\{(fV_2) (x) = f^{-1}(V_2(f(x))) : V_2 \in U_{X_2}\} is a base for the neighborhood of x. Clearly if f is a V_1 embedding at x, then $E_f(x) \subset V_1(x)$. If f is an embedding at x, $E_f(x) = \{x\}$. If V_1 is open and f is closed, then $f(X_1 - V_1(x))$ is closed in X_2 and $f(X_1 - V_1(x)) \cap f(x) = \emptyset$ if $E_f(x) = \{x\}$. In that case the complement U satisfies $f^{-1}(U) \subset V_1(x)$. The last assertion is already true at the V_1 level as previously discussed.

Notice that f is an embedding at x, for all $x \in X_1$ if and only if f is an embedding, i.e., if and only if the surjective map $f : X_1 \to f(X_1)$ is a homeomorphism.

DEFINITION 3.22. A continuous map $f : X_1 \to X_2$ is called an almost embedding if U_1 is open and nonempty in X_1, then there exists U_2 open in X_2 such that $f^{-1}(U_2)$ is a nonempty subset of U_1.

THEOREM 3.23. Let $f : X_1 \to X_2$ be a continuous map. The following conditions are equivalent.

(1) f is an almost embedding.
(2) For every $V_1 \in U_{X_1}$, $\{x \in X_1 : f^{-1}(U) \times f^{-1}(U) \subset V_1 \text{ for some neighborhood } U \text{ of } f(x)\}$ is open and dense in X_1.
(3) For every $V_1 \in U_{X_1}$, $\{x \in X_1 : f \text{ is a } V_1 \text{ embedding at } x\}$ is dense in X_1.
(4) For $D \subset X_1$, $f(D)$ dense in $f(X_1)$ implies D dense in X_1.
(5) For all U open in X_1 the open set:

\[U^r = X_1 - f^{-1}(f(X_1 - U)) = f^{-1}(\text{Int}(X_2 - f(X_1 - U)))\]

is dense in U.

Proof. (1)\Rightarrow(2). If U_1 is open and nonempty, then we shrink to get $U_1 \times U_1 \subset V_1$. By (1), there exist $x \in U_1$ and U_2 a neighborhood of $f(x)$ such that $f^{-1}(U_2) \subset U_1$.

(2)\Rightarrow(3). This is obvious.
(3)⇒(4). Assume \(f(D) \) is dense in \(f(X_1) \). Given \(x_0 \in X_1 \) and \(W \in \mathcal{U}_{X_1} \), we show that \(W(x_0) \cap D \neq \emptyset \). Choose \(V_1 \in \mathcal{U}_{X_1} \) symmetric such that \(V_1^2 \subseteq W \). By (3), there exists \(x_1 \in V(x_0) \) and \(f \) is a \(V_1 \) embedding at \(x_1 \). This means that \(f^{-1}(V_2(f(x_1))) = (f^*V_2)(x_1) \subset V_1(x_1) \) for some \(V_2 \in \mathcal{U}_{X_2} \). Since \(f(D) \) is dense in \(f(X_1) \), we can find \(y_1 \in f(D) \cap V_2(f(x_1)) \). Thus there exists \(x_2 \in D \) such that \(f(x_2) = y_1 \) and \(f(x_2) \in V_2(f(x_1)) \). Therefore \(x \in f^{-1}(V_2(f(x_1))) = (f^*V_2)(x_1) \subset V_1(x_1) \subset V_1(V_1(x_0)) = V_1^2(x_0) \subset W(x_0) \). It means that \(x_2 \in D \cap W(x_0) \). Thus \(D \) is dense in \(X_1 \).

(4)⇒(5). Let \(D = U^f \cap (X_1 - U) = f^{-1}(\text{Int}(X_2 - f(X_1 - U))) \cup (X_1 - U) \). \(f(D) = (f(X_1) \cap \text{Int}(X_2 - f(X_1 - U))) \cup (X_1 - U) \) which is dense in \(f(X_1) \). By (4), \(D \) is dense in \(X_1 \), so \(D \cap U = (U^f \cup (X_1 - U)) \cap U = U^f \cap U \) is dense in \(U \).

(5)⇒(1). Let \(U_1 \) be open and nonempty in \(X_1 \). Put \(U_2 = \text{Int}(X_2 - f(X_1 - U_1)) \). By (5), \(f^{-1}(U_2) \) is dense in \(U_1 \). Thus \(f^{-1}(U_2) \) is nonempty.

Definition 3.24. A continuous map \(f \) is called an almost homeomorphism if it is a surjective almost embedding.

Example 3.25. Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, \{a, b, c\}\} \). Let \(Y = \{1, 2\} \) and \(\sigma = \{\emptyset, \{1, 2\}\} \). Define a map \(f : (X, \tau) \to (Y, \sigma) \) as follows: \(f(a) = 1 \), \(f(b) = 1 \) and \(f(c) = 2 \). Then \(f \) is an almost homeomorphism. However, \(f \) is not a homeomorphism.

Theorem 3.26. If \(f \) is an almost homeomorphism, then for any \(V_1 \) closed in \(\mathcal{U}_{X_1} \),
- \(\{x : f \text{ is } V_1 \text{ open at } x\} = \{x : f \text{ is a } V_1 \text{ embedding at } x\} \),
- \(\{x : f \text{ is open at } x\} = \{x : f \text{ is an embedding at } x\} \).

Proof. In general, for a surjective continuous map \(f \) and \(V_1 \in \mathcal{U}_{X_1} \), if \(f \) is \(V_1 \) embedding at \(x \), then there exists \(V_2 \in \mathcal{U}_{X_2} \) such that \((f^*V_2)(x) = f^{-1}(V_2(f(x))) \subset V_1(x) \). It means that \(f(x) \in V_2(f(x)) \subset f(V_1(x)) \). Thus \(f \) is \(V_1 \) open at \(x \).

If \(f \) is an almost embedding, \(A \) is closed in \(X_1 \), and \(U \) is open in \(X_2 \), then the following property holds:
- If \(U \subset f(A) \), then \(f^{-1}(U) \subset A \).

If not, then \(U_1 = f^{-1}(U) - A \) is a nonempty open subset of \(X_1 \). Since \(f \) is almost embedding, there exists nonempty open \(U_2 \) in \(X_2 \) such that \(f^{-1}(U_2) \subset U_1 \). But \(U_2 = f(f^{-1}(U_2)) \subset f(U_1) \subset U \subset f(A) \). This is a contradiction.

If \(V_1 \) is closed and \(f \) is \(V_1 \) open at \(x \), then there exists open \(U \) of \(X_2 \) such that \(f(x) \in U \subset f(V_1(x)) \). Hence there exists \(V_2 \) open in \(\mathcal{U}_{X_2} \) such
that $V_2(f(x)) \subset U \subset f(V_1(x))$. By the above property, $f^{-1}(V_2(f(x))) \subset V_1(x)$. Hence f is V_1 embedding at x.

\{x : f \text{ is open at } x\} = \{x : f \text{ is an embedding at } x\} \text{ is clear.} \quad \square

Theorem 3.27. Let $f : X_1 \to X_2$ and $g : X_2 \to X_3$ be continuous maps. Then

1. Assume f is surjective. $g \circ f$ is an almost homeomorphism if and only if both f and g are almost homeomorphisms.
2. Assume g is an almost homeomorphism. If $g \circ f$ is almost open, then f is almost quasi-open.
3. Assume g is an almost homeomorphism. If $g \circ f$ is almost quasi-open and g is closed, then f is almost quasi-open.

Proof. (1) Let U_1 be a nonempty subset of X_1. Since $g \circ f$ is an almost homeomorphism, there exists nonempty open $U_2 \subset X_3$ such that $(g \circ f)^{-1}(U_3)$ is a nonempty subset of U_1, i.e., $f^{-1}(g^{-1}(U_3)) \subset U_1$. Put $U_2 \equiv g^{-1}(U_3)$. Since g is continuous, U_2 is a nonempty open subset of X_2. It follows that $f^{-1}(U_2) \subset U_1$. Hence f is an almost homeomorphism. Let U_2 be a nonempty open subset of X_2. Since f is surjective continuous, $f^{-1}(U_2)$ is nonempty open in X_1. By the definition of the almost homeomorphism of $g \circ f$, there exists nonempty open $U_3 \subset X_3$ such that $(g \circ f)^{-1}(U_3) \subset f^{-1}(U_2)$. It follows that $g^{-1}(U_3) = f(f^{-1}(g^{-1}(U_3))) \subset f(f^{-1}(U_2)) = U_2$. Hence g is an almost homeomorphism.

Conversely, let f and g be almost homeomorphisms and let U_1 be a nonempty subset of X_1. By the definition of the almost homeomorphism of f and g, we can find nonempty open $U_2 \subset X_2$ and $U_3 \subset X_3$ such that $f^{-1}(U_2) \subset U_1$ and $g^{-1}(U_3) \subset U_2$. This means that $(g \circ f)^{-1}(U_3) = f^{-1}(g^{-1}(U_3)) \subset f^{-1}(U_2) \subset U_1$.

(2) Let A be a subset of X_1 with Int$A \neq \emptyset$. Since $g \circ f$ is almost open, Int$(g \circ f)(\text{Int}A) \neq \emptyset$. Since g is surjective and continuous, $g^{-1}(\text{Int}g(f(\text{Int}A)))$ is nonempty open in X_2. Since g is an almost homeomorphism, there exists nonempty open U_3 in X_3 such that $g^{-1}(U_3) \subset g^{-1}(\text{Int}g(f(\text{Int}A)))$.

(3) Let A be a subset of X_1 with $\text{Int}A \neq \emptyset$. Put $U_1 = \text{Int}A$. Since $g \circ f$ is almost quasi-open, $\text{Int}(g \circ f)(U_1) \neq \emptyset$. Since g is continuous and closed, $\text{Int}g(f(U_1)) = \text{Int}g(f(U_1))$. Put $U_3 = \text{Int}g(f(U_1))$. Then U_3 is nonempty open and satisfies $U_3 \subset g(f(U_1))$ and $g^{-1}(U_3) \subset f(U_1)$. This means that $\emptyset \neq g^{-1}(U_3) \subset \text{Int}f(U_1) \subset \text{Int}f(A)$. Thus, f is an almost quasi-open. \quad \square
References

* Department of Mathematics
 Hoseo University
 ChungNam 337-850, Republic of Korea
 E-mail: kgs_1119@hanmail.net

** Department of Mathematics
 Hoseo University
 ChungNam 337-850, Republic of Korea
 E-mail: kblee@hoseo.edu