SYMMETRIC BI-f-MULTIPLIERS OF INCLINE ALGEBRAS

KYUNG HO KIM* AND YONG HOON LEE**

ABSTRACT. In this paper, we introduce the concept of a symmetric bi-f-multiplier in incline algebras and give some properties of incline algebras. Also, we characterize $\text{Ker}(D)$ and $\text{Fix}_a(D)$ by symmetric bi-f-multipliers in incline algebras.

1. Introduction

Z. Q. Cao, K. H. Kim and F. W. Roush [2] introduced the notion of incline algebras in their book. Some authors studied incline algebras and application. N. O. Alshehri [1] introduced the notion of derivation in incline algebras. In this paper, we introduce the concept of a symmetric bi-f-derivation in incline algebra and give some properties of incline algebras. Also, we characterize $\text{Ker}_D(K)$ and $\text{Fix}_D(K)$ by symmetric bi-f-derivations in incline algebras.

2. Incline algebras

An incline algebra is a set K with two binary operations denoted by “+” and “∗” satisfying the following axioms:

(K1) $x + y = y + x$,
(K2) $x + (y + z) = (x + y) + z$,
(K3) $x ∗ (y ∗ z) = (x ∗ y) ∗ z$,
(K4) $x ∗ (y + z) = (x ∗ y) + (x ∗ z)$,
(K5) $(y + z) ∗ x = (y ∗ x) + (z ∗ x)$,
(K6) $x + x = x$,

Received March 24, 2016; Accepted July 15, 2016.
2010 Mathematics Subject Classification: Primary 06F35, 03G25.
Key words and phrases: Incline algebra, derivation, symmetric bi-f-derivation, isotone, $\text{Ker}(D)$.
Correspondence should be addressed to Kyung Ho Kim, ghkim@ut.ac.kr.
(K7) $x + (x \ast y) = x,$
(K8) $y + (x \ast y) = y$
for all $x, y, z \in K$.

For convenience, we pronounce “+” (resp. “$$\ast$$”) as addition (resp. multiplication). Every distributive lattice is an incline algebra. An incline algebra is a distributive lattice if and only if $x \ast x = x$ for all $x \in K$. Note that $x \leq y \iff x + y = y$ for all $x, y \in K$. It is easy to see that “$$\leq$$” is a partial order on K and that for any $x, y \in K$, the element $x + y$ is the least upper bound of $\{x, y\}$. We say that $$\leq$$ is induced by operation $+$.

In an incline algebra K, the following properties hold.

(K9) $x \ast y \leq x$ and $y \ast x \leq x$ for all $x, y \in K$,
(K10) $y \leq z$ implies $x \ast y \leq x \ast z$ and $y \ast x \leq z \ast x$, for all $x, y, z \in K$,
(K11) If $x \leq y$ and $a \leq b$, then $x + a \leq y + b$, and $x \ast a \leq y \ast b$ for all $x, y, a, b \in K$.

Furthermore, an incline algebra K is said to be commutative if $x \ast y = y \ast x$ for all $x, y \in K$. A map f is isotone if $x \leq y$ implies $f(x) \leq f(y)$ for all $x, y \in K$.

A subincline of an incline algebra K is a non-empty subset M of K which is closed under the addition and multiplication. A subincline M is said to be an ideal if $x \in M$ and $y \leq x$ then $y \in M$. An element “0” in an incline algebra K is a zero element if $x + 0 = x = 0 + x$ and $x \ast 0 = 0 = 0 \ast x$ for any $x \in K$. An non-zero element “1” is called a multiplicative identity if $x \ast 1 = 1 \ast x = x$ for any $x \in K$. A non-zero element $a \in K$ is said to be a left (resp. right) zero divisor if there exists a non-zero $b \in K$ such that $a \ast b = 0$ (resp. $b \ast a = 0$) A zero divisor is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra K with multiplicative identity 1 and zero element 0 is called an integral incline if it has no zero divisors. By a homomorphism of inclines, we mean a mapping f from an incline algebra K into an incline algebra L such that $f(x + y) = f(x) + f(y)$ and $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in K$. A map $f : K \to K$ is regular if $f(0) = 0$. A subincline I of an incline algebra K is said to be k-ideal if $x + y \in I$ and $y \in I$, then $x \in I$. Let K be an incline algebra. An element $a \in K$ is called a additively cancellative if for all $a, b \in K$, $a + b = a + c \Rightarrow b = c$. If every element of K is additively cancellative, it is called additively cancellative.
Definition 2.1. Let K be an incline algebra. A mapping $D(., .) : K \times K \to K$ is called symmetric if $D(x, y) = D(y, x)$ holds for all $x, y \in K$.

Definition 2.2. Let K be an incline algebra and $x \in K$. A mapping $d(\cdot) = D(\cdot, \cdot)$ is called trace of $D(., .)$, where $D(., .) : K \times K \to K$ is a symmetric mapping.

Definition 2.3. Let K be an incline algebra and let $D : K \times K \to K$ be a symmetric mapping. We call D a symmetric bi-derivation on K if it satisfies the following condition

$$D(x \ast y, z) = (D(x, z) \ast y) + (x \ast D(y, z))$$

for all $x, y, z \in K$.

3. *-Symmetric bi-f-multipliers of incline algebras

In what follows, let K denote an incline algebra with a zero-element unless otherwise specified.

Definition 3.1. Let K be an incline algebra and let $D : K \times K \to K$ be a symmetric mapping. We call D a *-symmetric bi-f-multiplier on K if there exists a function $f : K \to K$ such that

$$D(x \ast y, z) = D(x, z) \ast f(y)$$

for all $x, y, z \in K$.

Obviously, a *-symmetric bi-f-multiplier D on K satisfies the relation

$$D(x, y \ast z) = D(x, y) \ast f(z)$$

for all $x, y, z \in K$.

Example 3.2. Let K be a commutative incline algebra. Define a mapping on K by $D(x, y) = f(x) \ast f(y)$ where $f : K \to K$ satisfies $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in K$. Then we can see that D is a *-symmetric bi-f-multiplier on K.

Example 3.3. Let K be a commutative incline algebra and $a \in K$. Define a mapping on K by $D(x, y) = (f(x) \ast f(y)) \ast a$ where $f : K \to K$ satisfies $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in K$. Then we can see that D is a *-symmetric bi-f-multiplier on K.

Example 3.4. Let $K = \{0, a, b, 1\}$ be a set in which “+” and “*” is defined by

$$0 \ast 0 = 0, \quad 0 \ast a = a \ast 0 = a, \quad 0 \ast b = b \ast 0 = b, \quad 0 \ast 1 = 1 \ast 0 = 1$$

$$a \ast a = a, \quad a \ast b = b \ast a = 0, \quad a \ast 1 = 1 \ast a = 1$$

$$b \ast b = b, \quad b \ast 0 = 0 \ast b = 0, \quad b \ast 1 = 1 \ast b = 1$$

$$1 \ast 0 = 0 \ast 1 = 0, \quad 1 \ast a = a \ast 1 = a, \quad 1 \ast b = b \ast 1 = b, \quad 1 \ast 1 = 1$$

These operations make K an incline algebra.

By the above definitions, $D(x, y) = f(x) \ast f(y)$ is a *-symmetric bi-f-multiplier on K. We can see that D satisfies the relation $D(x, y \ast z) = D(x, y) \ast f(z)$ for all $x, y, z \in K$.
Then it is easy to check that \((K, +, \ast)\) is an incline algebra. Define a map \(D : K \times K \to K\) by
\[
D(x, y) = \begin{cases}
 b & \text{if } (x, y) \in \{(b, b), (b, 1), (1, b), (1, 1)\} \\
 0 & \text{otherwise}
\end{cases}
\]
and \(f : K \to K\) by
\[
f(x) = \begin{cases}
 b & \text{if } x \in \{b, 1\} \\
 0 & \text{otherwise}
\end{cases}
\]

Then it is easily checked that \(D\) is a \(\ast\)-symmetric bi-\(f\)-multiplier of an incline algebra \(K\).

Proposition 3.5. Let \(K\) be an incline algebra and let \(D\) be a \(\ast\)-symmetric bi-\(f\)-multiplier on \(K\). Then the following identities hold.

(i) \(D(x \ast y, z) \leq f(y)\), for all \(x, y, z \in K\),

(ii) \(D(x, y) = D(x, y) \ast f(1)\), for all \(x, y \in K\),

(iii) \(D(x \ast y, z) \leq D(x, z) + f(y)\), for all \(x, y \in K\).

Proof. (i) Let \(x, y, z \in K\). By using (K9), we have \(D(x \ast y, z) = D(x, z) \ast f(y) \leq f(y)\).

(ii) Let \(x, y \in K\). Then we have \(D(x, y) = D(x \ast 1, y) = D(x, y) \ast f(1)\).

(iii) Let \(x, y, z \in K\). Then we have \(D(x \ast y, z) = D(x, z) \ast f(y) \leq D(x, z)\). Also, we get \(D(x, z) \ast f(y) \leq f(y)\). Therefore, we have \(D(x \ast y, z) \leq D(x, z) + f(y)\).

Proposition 3.6. Every \(\ast\)-symmetric bi-\(f\)-multiplier on \(K\) with \(f(0) = 0\) is regular.

Proof. Let \(D\) be a \(\ast\)-symmetric bi-\(f\)-multiplier on \(K\) with a zero element. Then we have
\[
D(0, 0) = D(x \ast 0, 0) = D(x, 0) \ast f(0) = D(x, 0) \ast 0 = 0
\]
for all \(x \in K\).

Proposition 3.7. Let \(D\) be a \(\ast\)-symmetric bi-\(f\)-multiplier on \(K\). If \(K\) is a distributive lattice, we have \(D(x, y) \leq f(x)\) and \(D(x, y) \leq f(y)\) for all \(x, y \in K\).
Proof. Let D be a $*$-symmetric bi-f-multiplier on K and let K be a distributive lattice. Then $D(x, y) = D(x * x, y) = D(x, y) * f(x)$, and so by using (K9), we get $D(x, y) \leq f(x)$. Similarly, we have $D(x, y) \leq f(y)$.

Proposition 3.8. Let D be a $*$-symmetric bi-f-multiplier on K and let K be a distributive lattice. Then we have $d(x) \leq f(x)$ for all $x \in K$.

Proof. Let D be a $*$-symmetric bi-f-multiplier on K and let K be a distributive lattice. Then we have

$$d(x) = D(x, x) = D(x * x, x) = D(x, x) * f(x) = D(x, x) * f(x) \leq f(x)$$

for all $x \in K$.

Theorem 3.9. Let K be an integral incline with a multiplicative identity and let D be a $*$-symmetric bi-f-multiplier on K where f is a function satisfying $f(1) = 1$ and $a \in K$. Then for all $x, y \in K$, we have $D(x, y) * a = 0$ implies $a = 0$ or $D = 0$.

Proof. Let $D(x, y) * a = 0$ for all $x, y \in K$. Since K is an integral incline, that is, it has no zero-divisors, we have $a = 0$ or $D(x, y) = 0$ for all $x, y \in K$. Hence we get $a = 0$ or $D = 0$.

Definition 3.10. Let K be an incline algebra. If $D : K \times K \to K$ be a symmetric mapping. We call D a **additive mapping** if it satisfies

$$D(x + y, z) = D(x, z) + D(y, z)$$

for all $x, y, z \in K$.

Proposition 3.11. Let d be a trace of additive $*$-symmetric bi-f-multiplier D on K. Then the following identities hold for all $x, y \in K$,

(i) $d(x + y) = d(x) + d(y) + D(x, y)$ and $d(x) + d(y) \leq d(x + y)$,

(ii) $D(x * y, x) \leq d(x)$.

Proof. (i) Let $x, y \in K$. Then we have

$$d(x + y) = D(x + y, x + y) = D(x, x + y) + D(y, x + y)
= D(x, x) + D(x, y) + D(y, x) + D(y, y)
= D(x, x) + D(y, y) + D(x, y).$$

Hence we get $d(x + y) = d(x) + d(y) + D(x, y)$ and $d(x) + d(y) \leq d(x + y)$.

(ii) Let $x, y \in K$. It follows from (K7) that $d(x) = D(x, x) = D(x + (x * y), x) = D(x, x) + D(x * y, x)$, which implies $D(x * y, x) \leq d(x)$.
Proposition 3.12. Let D be a trace of $*$-symmetric bi-f-multiplier on K. Then $D(x * y, y) \leq D(x, y)$ for all $x, y \in K$.

Proof. Let $x, y \in K$. Then we have

$$D(x, y) = D(x + x * y, y) = D(x, y) + D(x * y, y),$$

which implies $D(x * y, y) \leq D(x, y)$.

Definition 3.13. Let D be a $*$-symmetric bi-f-multiplier on K. If $x \leq w$ implies $D(x, y) \leq D(w, y)$, D is called an isotone $*$-symmetric bi-f-multiplier for all $x, y, w \in K$.

Theorem 3.14. Let D be a additive $*$-symmetric bi-f-multiplier on K. Then D is an isotone $*$-symmetric bi-f-multiplier on K.

Proof. Let x and w be such that $x \leq w$. Then $x + w = w$, and so

$$D(w, y) = D(w + x, y) = D(w, y) + D(x, y)$$

for all $x, y, w \in K$. This implies that $D(x, y) \leq D(w, y)$. This completes the proof.

Proposition 3.15. Let D be a $*$-symmetric bi-f-multiplier on K and let f be an endomorphism on K. Then $Fix_a(D)$ is a subincline of K.

Proof. Let $x, y \in Fix_a(D)$. Then we have $D(x, a) = f(x)$ and $D(y, a) = f(y)$, and so

$$D(x * y, a) = D(x, a) * f(y) = f(x) * f(y) = f(x * y).$$

Hence we get $x * y \in Fix_a(D)(K)$. Also, we get $D(x + y, a) = D(x, a) + D(y, a) = f(x) + f(y) = f(x + y)$, and so $x + y \in Fix_a(D)$. This completes the proof.

Proposition 3.16. Let D be a $*$-symmetric bi-f-multiplier on K with $f(x * y) = f(x) * f(y)$ for all $x, y \in K$. If $x \in Fix_a(D)$ and let f be an endomorphism on K, then $x * y \in Fix_a(D)$.

Proposition 3.17. Let K be additively cancellative and let D be a additive $*$-symmetric bi-f-multiplier on K and let f be an endomorphism on K. Then $Fix_a(D)$ is a k-ideal of K.
Symmetric bi-f-multipliers of incline algebras

Proof. Let $x + y \in \text{Fix}_a(D)$ and $y \in \text{Fix}_D(K)$. Then we have $f(x) + f(y) = f(x + y) = D(x + y, a) = D(x, a) + D(y, a) = D(x, a) + f(y)$. Since K is additively cancellative, we have $f(x) = D(x, a)$, which implies $x \in \text{Fix}_a(D)$. This completes the proof.

Definition 3.18. Let K be an incline algebra and let $D : K \times K \to K$ be a symmetric mapping. Define a set $\text{Ker}(D)$ by $\text{Ker}(D) = \{ x \in K \mid D(0, x) = 0 \}$.

Proposition 3.19. Let D be an additive $*$-symmetric bi-f-multiplier on K. If $x \leq y$ and $y \in \text{Ker}(D)$, then we have $x \in \text{Ker}(D)$.

Proof. Let $x \leq y$ and $y \in \text{Ker}(D)$. Then we get $x + y = y$ and $D(0, y) = 0$. Hence we get

$$0 = D(0, y) = D(0, x + y) = D(0, x) + D(0, y) = D(0, x) + 0 = D(0, x),$$

which implies $x \in \text{Ker}(D)$. This completes the proof.

Proposition 3.20. Let D be a additive $*$-symmetric bi-f-multiplier on K. Then $\text{Ker}(D)$ is a subincline of K.

Proof. Let $x, y \in \text{Ker}(D)$. Then $D(x, 0) = 0$, and so

$$D(0, x * y) = D(x * y, 0) = D(x, 0) * f(y) = 0 * f(y) = 0,$$

which implies $x * y \in \text{Ker}(D)$. Now $D(x + y, 0) = D(x, 0) + D(y, 0) = 0 + 0 = 0$. Hence $x + y \in \text{Ker}(D)$. This completes the proof.

Theorem 3.21. Let D be a additive $*$-symmetric bi-f-multiplier on K. Then $\text{Ker}(D)$ is an ideal of K.

Proof. By Proposition 3.10 and 11, it is obvious that $\text{Ker}(D)$ is an ideal of K.

4. $+-$Symmetric bi-f-multipliers of incline algebras

Definition 4.1. Let K be an incline algebra and let $D : K \times K \to K$ be a symmetric mapping. We call D a $+-$symmetric bi-f-multiplier on K if there exists a function $f : K \to K$ such that

$$D(x, y + z) = D(x, y) + f(z)$$

for all $x, y, z \in K$.

Example 4.2. Let K be an incline algebra. Define a mapping on K by $D(x, y) = x + f(y)$ where $f : K \rightarrow K$ satisfies $f(x + y) = f(x) + f(y)$ for all $x, y \in K$. Then we can see that D is a $+\text{-symmetric bi-$f$-multiplier on K}.$

Proposition 4.3. Let D be a $+\text{-symmetric bi-$f$-multiplier on K}.$ Then the following identities hold.

(i) $f(y) \leq D(x, y)$, for all $x, y, z \in K$,
(ii) $D(x, y) + f(y) \leq D(x, y)$, for all $x, y \in K$.

Proof. (i) Let D be a $+\text{-symmetric bi-$f$-multiplier on K}.$ Then we have $D(x, y) = D(x, y + y) = D(x, 0) + f(y)$, which implies $f(y) \leq D(x, y)$.

(ii) Let D be a $+\text{-symmetric bi-$f$-multiplier on K}.$ Then we have $D(x, y) = D(x, 0 + y) = D(x, 0) + f(y)$, which implies $D(x, 0) + f(y) \leq D(x, y)$. \qed

Proposition 4.4. Let D be a $+\text{-symmetric bi-$f$-multiplier on K}.$ with $f(x + y) = f(x) + f(y)$ for all $x, y \in K$ and $x + y \in Fix_a(D)$, then $x \in Fix_a(D)$.

Proof. Let D be a $+\text{-symmetric bi-$f$-multiplier on K and $x \in Fix_a(D)$}.$ Then we have $D(a, x) = f(x)$. Hence

$$D(a, x + y) = D(a, x) + f(y) = f(x) + f(y)$$

which implies $x + y \in Fix_D(K)$. \qed

Proposition 4.5. Let D be a $+\text{-symmetric bi-$f$-multiplier on an incline algebra K}.$ that is additively cancellative. If $f(x + y) = f(x) + f(y)$ for all $x, y \in K$ and $x + y \in Fix_a(D)$ and $y \in Fix_a(D)$, then $x \in Fix_a(D)$.

Proof. Let D be a $+\text{-symmetric bi-$f$-multiplier and $x + y \in Fix_a(D)$}.$ Then

$$f(x) + f(y) = f(x + y) = D(a, x + y)$$

$$= D(a, x) + f(y)$$

Therefore we get $D(a, x) + f(y) = f(x) + f(y)$. Since K is additively cancellative, we have $D(a, x) = f(x)$, which implies $x \in Fix_a(D)$. \qed
Symmetric bi-f-multipliers of incline algebras

References

* Department of Mathematics
Korea National University of transportation
Chungju 380-702, Republic of Korea
E-mail: ghkim@ut.ac.kr

** Department of Mathematics
Dankook University
Cheonan 330-714, Republic of Korea
E-mail: yonghoon@dankook.ac.kr