비선형 정적하중을 통한 횡저항 시스템의 보유성능 평가 및 설계방안 연구

Design of Lateral Load Resisting System using Nonlinear Static Analysis

김건우 송진규 정성진 송영훈 이승창
Kim, Geon-Woo Song, Jin-Gyu Jung, Sung-Jin Song, Young-Hoon Lee, Seung-Chang

국문요약

횡저항 시스템의 설계는 구조 변동성의 경도와 노하우에 의존하는 경계가 크다. 또한 건물의 보유성능을 평가하여 설계과정에 적절히 반영할 수 있는 방법이 제시되지 않았다. 따라서 본 연구에서는 구조공학을 실지 보유하고 있는 보유보유능성(available full capacity, \(R_u\))와 설계기준에서 제시하고 있는 요구보유능성(minimum required capacity, \(R_{\text{mr}}\))에 의해 건물의 횡저항 시스템을 설계적으로 설계하는 방안을 제시하고자 한다. 적당 방법은 기존 구조 설계파악에 비선형 해석에 의한 횡장성 설계 평가가 주요한 것으로, 우선 기본 설계를 우선한 후, 투수비(putoshover/해석을 통해 구조물의 실제 횡장성 성능을 평가한다. 비선형 설계기준에서는 투수비(putoshover) 해석을 수행하고 이 시연회를 통해 최적화선언단바(\(V_f\))를 결정한다. 그리고 설계비밀선언단바(\(V_{\text{mr}}\))가 설계비밀선언단바(\(V_f\))보다 큰 경우 탑재선언단바로 바꾸고 설계비밀선언단바\(V_{\text{mr}}\)에 따른 설계를 확보한 후에, 구조물이 보유한 \(R_u\)의 신청한다. 설계비밀선언단바\(V_{\text{mr}}\)의 경우에 따른 보유보유능성을 신청하고 이 유해 모의성을 \(R_{\text{mr}}\)이 요구보유능성(\(R_u\))에 근접하도록 피드백 과정을 통하여 확보를 재설계한다. 본 논문에서는 건축한 2층동 빌딩 가시가 설계된 저층concrt 구조를 이용하여 두 가지 경우에 대하여 제안한 실제적인 횡저항 시스템의 설계를 적용하였다. 그 결과 기본설계와 비선형 정적하중 해석의 결과를 반복하여 요구보유 능성에 근접한 유해모의성을 갖는 횡저항 시스템을 설계하는 것이 가능하였다.

주요어 : 횡저항 시스템, 보유보유능성, 요구보유능성, 비선형 정적 해석

ABSTRACT

The design practice of the lateral resisting system has been traditionally dependent on the experience and know-how of a structural engineer. And the method to reflect the evaluation results of building's capacity on design process doesn't exist. The proposal of a rational design of the lateral load resisting system is based on the available full capacity (\(R_u\)) of a building and the minimum required capacity (\(R_{\text{mr}}\)) suggested in the code. This study suggests that nonlinear static analysis, which is the estimation of the lateral capacity with the pushover analysis, be included in the existing design procedure of the structure. After finishing the basic structural design, the lateral resisting capacity of a building is estimated. At the phase of nonlinear static analysis, pushover analysis is performed to define the fully yielded base shear (\(V_f\)). When the design wind base shear (\(V_{\text{mr}}\)) is bigger than the design seismic base shear (\(V_f\)), the value is checked to determine whether or not it is smaller than the \(V_f\). After confirming that it is smaller, the \(R_u\) of the structure is computed. If the \(V_f\) is bigger at first, only the \(R_{\text{mr}}\) is computed. When the value of the estimation shows remarkable differences with the \(R_{\text{mr}}\), repetition of the design modification is needed for those approximate to the \(R_{\text{mr}}\). Application of the proposed design procedure to 2-D steel braced RC buildings has proven to be efficient.

Key words : lateral resisting system, available full capacity, minimum required capacity, nonlinear static analysis

1. 서 론

우리나라는 매년 태풍과 같이 강한 통풍이 발생하며, 지진의 위험이 또한 매년 증가하고 있는 추세이다. 또한 요구와 같이 구조물이 대형화되며 고층화 되어갈수록 지진화중 및 통풍중과 같은 환경이 변해 구조물의 저장 성능이 중요화 되고 있다. 건물의 구조설계 시 수평하중과 수평하중에 대하여 구조부재가 안전하게 설계되어야 하며, 수평하중에 대해서는 수평변화가 일정 범위 내에 들어 건 물의 사용상 요구조건을 반영하여야 한다. 구조물의 횡장 항 시스템은 중력 증가에 저항하는 시스템에 비하여 값은 구조 시스템이라고 설정에 따라 저장 성능이 큰 차이를 나타낼 수 있다. 하지만 현행의 횡저항 시스템의 설계는 어떠한 지진이나 경영적인 기준이 없이 구조 건축가의 경험과 노하우에 의존하는 경계가 크다.

따라서 본 논문에서는 구조물이 설계 보유하고 있는 유 효모의성을(available full capacity, \(R_u\))과 설계기준에서 제시하고 있는 요구보유능성(minimum required capacity, \(R_{\text{mr}}\))의 관계를 이용하여 횡저항 시스템을 합리적 으로 설계하는 방안을 제시하고자 한다. 본 방법은 현행 구조설계에서 이루어지는 기본 설계과정에 비선형 정적해석에 의한 횡저항 성능의 평가과정이 추가된 방법으로 면 저 사용상 평가까지 모든 기본 구조설계 과정을 바 Зна. 그리고 비선형 정적해석의 투수비(putoshover) 해석을 실 시하여 구조물의 성능을 좀 더 원활하게 수정하였다. 우선 성능특성을 이변환한 후에 횡장중의 중요한 성능 중 하나인 변형에 대한 안전성을 확보하고 구조물의 중요한 횡저항 성능인 강도단계(\(R_u\))와 연성계수(\(R_{\text{mr}}\))를 이용하여 \(R_{\text{mr}}\)를 산정한다.
2. 고차모드의 영향이 반영된 횡중 분배계수 산정

본 논문에서 제안한 방법에 의한 횡중 시스템의 설계를 위해서는 구조물이 실제 보유한 유효부고유성분의 확장한 평가가 중요하다. 하지만 무시오버(pushover) 해석은 횡중 분배방법에 따라 같은 구조물을 해석하더라도 그 결과가 상당한 차이를 나타낼 수 있다. ATC 40(5)와 FEMA 273(6)에서는 각각의 횡중 분배방법을 제안하고 있다. 하지만 일반적인 횡중 분배방법은 고차모드의 영향이 반영되어있지 않기 때문에 상대적으로 고차모드의 영향을 많이 받는 고층 건물이나 비정형 건물의 비선형 성능을 정확히 평가할 수가 없다. 또한 기존의 고차 모드의 영향이 반영 된 방법(6,7)에서는 다소 복잡한 과정을 거쳐야 한다. 그러고 그 지역에서 발생할 미래의 지진을 대표할 수 없으나 특정 지진을 이용하여 횡중 분배계수를 산정한다는 단점을 가지고 있다.

따라서 본 논문에서는 FEMA 273에서 제시한 고차모드의 영향이 반영된 횡중 분배계수의 산정을 위한 방법을 복용하며, 지진파에 대한 대표성을 확보하도록 본 연구지가 수행한 방법을 사용하였다. 그리고 건물의 설계에 사용된 KBC 2005(8)에서 제시하고 있는 설계용압 스크립트를 사용하여 고차모드의 영향을 고려한 횡중 분배계수를 산정하였다.

횡중 분배법의 산정 절차는 다음과 같다.

1. 통합의 고유치 해석을 통해 3~5차 진동모드 주기 (7) 및 횡상행수(α)을 얻어낸다.
2. 코드의 설계용압 스크립트를 이용하여 3차 모드에 대한 횡장해을 식 (1)에 의해 계산한다.

\[f_{m} = \sum \psi_{i} \rho_{i} \psi_{i} \]
\[\psi_{i} : \text{코드에서 제시한 설계용압 스크립트에 의한 가속도 } \]
3. 식 (1)에서 구해진 횡장해에 의해 식 (2)를 이용하여 조 선단력을 산정하게 된다.

\[V_{m} = \sum \left| f_{i} \psi_{i} \right| \]
4. 각 모드별 조 선단력을 SRSS(식 (3))를 이용하여 조 합한다.

\[V_{i} = \sqrt{\sum \left(V_{m} \right)^{2}} \]
5. 조합된 각 조선단력에 의한 동시에 횡장해 윗으로 분리한다.

\[f_{i} = V_{i} - V_{i-1} \]
6. 각 횡장 해의 최고치를 1로 표준화하여 횡장해 분배계수를 결정한다.

3. 횡지향 시스템의 합리적인 설계절차 제안

3.1 횡지향 시스템의 설계 절차

본 연구에서는 구조물의 지지표로 구조물을 설계 시에 작용하는 반응수정계수(\(R_{\text{mod}}\))를 이용하여 횡지향 시스템을 합리적으로 설계하는 방안을 제시하고자 한다. 그 림 2는 합리적 설계절차를 간단하게 나타낸 것이다.

제안된 방법은 우선 구조시스템 설정 (고정, 할, 지진, 지중 유동 등), 계산, 재료 선택, 부재 설계, 그리고 최종적으로 사용성평가까지 모두 실시하는 기존의 기본 설계를 우선 마련한 후, 본 연구에서는 설계용압선단력 (\(V_{\text{mod}}\))과 설계진단설관단력 (\(V_{\text{mod}}\))의 크기를 비교한다. \(V_{\text{mod}}\) 와 \(V_{\text{mod}}\)는 본문의 횡지향 시스템 설계의 가장 중요한 두 가지 요소로 일반적으로 높이가 그리 높지 않은 건물은 \(V_{\text{mod}}\)이 \(V_{\text{mod}}\)보다 크다. 이러한 경우에는 \(V_{\text{mod}}\)에서 보는 바와 같이 바로 \(R_{\text{mod}}\)을 산정한다. 하지만 고고층 건물의 경우 \(V_{\text{mod}}\)보다 \(V_{\text{mod}}\)보다 크고 \(V_{\text{mod}}\)의 크기와 비슷한 경우도 발생하기도 한다. 또한 이러한 경우 때로는 전체 시스템의 소실능력 과정이 합리적으로 이루어지지 않고 특정 층에 집중되어 부재에 소실 발생이 시작한 지 얼마 후에
3.2 유효보수성능(\(R_{uc}\)) 평가 방법

구조물의 보수유 효보수성능은 강도계수(\(R_y\)), 연성계수(\(R_{uc}\))로 표현할 수 있다.

\(R_y\)는 실제 대상 건물에서 기대되는 최대 보수강도(항복 밀면단력)와 실제강도(설계강도밀면단력)의 비로 정의된다. FEMA 302\(^{(9)}\)와 FEMA 303\(^{(8)}\) (Commentary)에서는 건물의 초과강도를 연속적인 소성 현지 메가니즘의 관점에서 접근하였다. 즉, 건물이 충분한 압력력을 보유하고 있고 내력의 재해계가 보장되도록 적절히 설계되었을 경우에, 압력력을 상실하기 전의 밀면단력(항복밀면단력, \(V_y\))과 건물에 조기항복(first plastic hinge)이 발생하였을 때의 밀면단력(\(V_\text{f} \))의 비로 강도계수로 정의하였다. 따라서 본 연구에서는 항복밀면단력은 그대로 사용하면 \(V_y\) 대신 크기는 비슷하나 반응수정계수의 기본 정의에 사용되는 \(V_\text{f} \)를 사용하여 강도계수를 다음 식 (5)와 같이 정의하였다.

\[R_y = \frac{V_y}{V_D} \quad (5) \]

건물이 항복밀면단력(\(V_y\))에 도달하는 경우가 발생할 수 있기 때문에 이를 확인하기 위하여 \(V_\text{f}\)와 \(V_D\)를 비교하여 \(V_\text{f} > V_D\)가 \(V_D\)보다 작아 탄성구간에 있음을 우선 확인한 후에 \(R_{uc}\)를 선정한다. 그러고 선정된 \(R_{uc}\)의 값은 \(R_{uc}\)와 비교하여 \(R_{uc} < R_{uc}\)에 근접하도록 기본 구조설계와 비슷한 정직력적 피드백(feedback) 과정을 반복한다.

\[
R_y = \frac{(\mu - 1)}{\Delta_c} + 1 \quad T < T_c \quad (6)
\]

\[
R_y = \frac{\Delta_{\text{max}}}{\Delta_T} \quad T \geq T_c\]

여기서, \(\mu\)는 연성비로 두 번째의 식과 같고 \(T_c\)는 특성 주기로 건물의 설계에 사용된 설계용담스터럼의 기속도가 일정한 구간 중 가장 큰 값을 갖는 주기를 나타낸다. 그리고 \(\Delta_c\)는 이선형과 곡선에서 항복변위이고, \(\Delta_{\text{max}}\)는 최대변위로 본 논문에서는 특정 중에서 최대 중간변위가 발생하였을 때의 최고층에서의 변위이다. 일반적으로 \(R_y\)는 그림 3에서 보는 바와 같이 등가 변형법을 적용할 경우 \(\mu\)와 같은 값을 갖게 된다.

이상한 개념을 의거하여 그림 3과 같이 \(R_{uc}\)을 정의하면 식 (7)과 같이 강도계수와 연성계수의 약간 설명할 수 있다.

\[
R_{uc} = R_y \times R_{f}\]

4. 활력항 시스템의 합리적인 설계

본 논문에서는 활력항 시스템의 설계에 영향을 미치는 두 가지 활력중의 지진효과를 주로 증가에 대하여 비연속 시 에 설계를 나누고 있다. 건물의 폭이 같을 경우 높이가 높아질수록 \(V_{\text{max}}\)가 원계활용중이 되는 경우가 많다. 따라서 \(V_D\)가 \(V_{\text{max}}\)보다 큰 경우가 \(V_{\text{max}}\)가 \(V_D\)보다 큰 두 가지 경우에 대한 적용을 위하여 그림 4와 같이 20층과 60층에 따라 건물들을 이용하여 합리적인 활력항시스템의 설계를 적용하였다. 20층 예제는 \(V_D\)가 \(V_{\text{max}}\)보다 큰 경우로 건물의 높이방향 수직수정계가 설치되어있는 건물의 설계에 의
4.1 예제건물의 기본 구조설계

4.1.1 예제건물의 기본사항

예제건물은 사무소 용도의 건물로 본 논문에서 제안한 V_p와 V_{win}의 크기에 따른 절차의 차이를 위하여 기본 중속을 30m/sec(20층), 40m/sec(60층)로 나누어 비교하였다. 20층 건물의 경우 중속은 설치하지 않고 수직재배만을 설치하였으며, 60층 건물은 중속설계 15개층에 하나씩 설치하였다. 건물의 중속은 3.6m로 철근콘크리트 구조에 가설은 창문으로 예제건물은 주)마다스IT에서 개발한 MIDAS Gen 6.3.5를 이용하여 2차원 설계 및 해석을 수행하였다. 각 부재별로 보는 모델로 기둥은 축력과 모멘트 그리고 가설은 축력에 대하여 힘리지(hinge) 특성을 둔하며, 기본 값이 back-bone 모델에 정의되어있는 힘리지(hinge) 유형을 이산형 모델로 변화하였으며 변형 후 경화율은 1%를 적용하였다. 하중건물은 이하와 같은 따라 설계를 실시하였다.

<table>
<thead>
<tr>
<th>부재</th>
<th>처수(mm)</th>
<th>위치(층)</th>
<th>사용재료</th>
</tr>
</thead>
<tbody>
<tr>
<td>기둥</td>
<td>C1</td>
<td>750~750</td>
<td>1~3</td>
</tr>
<tr>
<td>C2</td>
<td>900~900</td>
<td>4~10</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>650~650</td>
<td>4~10</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>800~800</td>
<td>4~10</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>600~600</td>
<td>11~17</td>
<td>$f_{ck}=27$</td>
</tr>
<tr>
<td>C6</td>
<td>650~650</td>
<td>11~17</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>450~450</td>
<td>18~20</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>500~500</td>
<td>18~20</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>400~550</td>
<td>1~10</td>
<td>$f_{ck}=30$</td>
</tr>
<tr>
<td>G1A</td>
<td>400~600</td>
<td>1~10</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>400~550</td>
<td>1~10</td>
<td>$f_{ck}=27$</td>
</tr>
<tr>
<td>G1A</td>
<td>400~550</td>
<td>1~10</td>
<td></td>
</tr>
<tr>
<td>트러스</td>
<td>B-200×200×4.5</td>
<td>SS400</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>부재</th>
<th>처수(mm)</th>
<th>위치(층)</th>
<th>사용재료</th>
</tr>
</thead>
<tbody>
<tr>
<td>기둥</td>
<td>C1</td>
<td>1700~1700</td>
<td>1~10</td>
</tr>
<tr>
<td>C2</td>
<td>1500~1500</td>
<td>4~10</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>1650~1650</td>
<td>4~10</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>1500~1500</td>
<td>11~20</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>1300~1300</td>
<td>11~20</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>1450~1450</td>
<td>21~29</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>1200~1200</td>
<td>21~29</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>1070~1070</td>
<td>30~35</td>
<td>$f_{ck}=30$</td>
</tr>
<tr>
<td>C9</td>
<td>900~900</td>
<td>30~35</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>850~850</td>
<td>30~35</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>800~800</td>
<td>41~46</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>700~700</td>
<td>41~46</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>600~600</td>
<td>47~52</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>550~550</td>
<td>47~52</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>700~900</td>
<td>53~60</td>
<td></td>
</tr>
<tr>
<td>G1A</td>
<td>700~900</td>
<td>53~60</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>650~950</td>
<td>53~60</td>
<td></td>
</tr>
<tr>
<td>G1A</td>
<td>600~900</td>
<td>53~60</td>
<td></td>
</tr>
<tr>
<td>트러스</td>
<td>B-500×500×12</td>
<td>SS400</td>
<td></td>
</tr>
</tbody>
</table>

그래프 4 예제건물의 층 가세 위치변화

해에서 모든 부재의 초기 기본 설계를 하고 제시한 설계과정에 의해 비타당 해석을 실시하였다. 제안된 절차에 따라 기본 구조설계를 실시하여 철근콘크리트 부재가 모든 설계중층 조합에 의해 안전하므로 가세의 단면을 1/2로 감소를 시켜 R_w를 감소시켰다. 그리고 최종적으로 가세를 모두 제거하고 순수한 철근콘크리트 구조만으로 저장하는 경우에 대하여 R_w의 변화를 살펴보았다. 60층은 V_{win}가 V_p보다 큰 경우로 15개층마다 층 가세가 설치된 초기 건물을 설계과정에 적용하고 층 가세의 수를 한 개층씩 감소시키고 위치도 20층 그리고 30층마다 한 개층씩으로 설치하며 기본 구조설계단계로의 피드백(feedback) 과정을 반복하며 R_w의 변화를 살펴보았다. 두 가지 예제에서 20층은 더 이상 단면을 감소시킬 수 없고, 60층은 층 가세를 최상층에만 설치할 경우 사용성을 만족할 수 없어 피드백(feedback) 과정을 중단하였다.

예제건물의 명칭은 편의상 그림 4에서와 같이 20-1~3과 60-1~3으로 표기하였다.
表 2 사용성 검토결과

<table>
<thead>
<tr>
<th></th>
<th>평가중</th>
<th>재단차점 (m/sec)</th>
<th>최심층 (mm)</th>
<th>최대층간 변위 (mm)</th>
<th>변위비 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-1</td>
<td>144</td>
<td>38.57</td>
<td>30.25</td>
<td>0.840</td>
<td></td>
</tr>
<tr>
<td>20-2</td>
<td>44.17</td>
<td>34.91</td>
<td>0.970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-3</td>
<td>63.01</td>
<td>51.42</td>
<td>1.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-1</td>
<td>412.17</td>
<td>52.13</td>
<td>1.448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-2</td>
<td>420.85</td>
<td>53.23</td>
<td>1.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-3</td>
<td>429.40</td>
<td>53.61</td>
<td>1.489</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) 고정하시중
지붕 슬래브 6.00×10^3 N/mm²
일반층 슬래브 5.00×10^3 N/mm²
2) 환하중
지붕 2.00×10^3 N/mm²
사무실(일반층) 2.50×10^3 N/mm²
3) 지진하시중
내진동급 : 특
Site Class : S8
S0s : 0.36575
S0d : 0.1463
중요도 계수 : 1.5
반응수정계수(\(H_{corr}\)) : 5
4) 평가중
실제 기본 증속 : 30m/sec(20층), 40m/sec(60층)
중요도 계수 : 1.1
로봉도 : A
가스트 계수 : 2.5

4.2.1 사용성 검토

1) 평가중에 대한 검토
평가중에 대한 사용성의 검토는 계산된 설계용량중에 의하여 건물 최상층의 변위가 h/500에서 변동하고 한다. 따라서 검토 결과 표 2와 같은 값을 얻을 수 있다.

2) 지진하시중에 대한 검토
지진하시중에 대해서는 반사형면적(\(V_e\))을 이용하여 사용 성 검토를 실시한다. \(V_e\) 수준의 하중에 대해서 어떤 층에 서도 최대 층간변위비(Interstory Drift Ratio, IDR)가 1.5%를 넘지 않아야 한다. 그 결과는 표 2와 같다.

4.2 비선형 정적해석

4.2.1 모달 푸쉬오버(pusherover) 해석을 위한 횡하중 분배계수 산정

우선 횡하중 분배계수를 산정하기 위한 코드 스펙트럼은 설계 시에 사용한 다음 식(7)-(9)을 이용하여 작성된 KBC 2005의 설계용달 스펙트럼(그림 5)을 사용하였다.

\[
S_r = 0.6 \frac{S_{DES}}{T_0} + 0.4S_{DES}, \quad T \leq T_0 \\
S_r = S_{DES}, \quad T_0 < T \leq T_5 \\
S_r = \frac{S_{DA}}{T}, \quad T_5 < T
\]

여기서, \(S_{DES}\) : 단주기에서의 설계스펙트럼 응답기수도
\(S_{DA}\) : 1초에서의 설계스펙트럼 응답기수도
\(T\) : 구조물의 유속기수

\[
T_0 = 0.2S_{DA}/S_{DES}, \quad T_5 = S_{DA}/S_{DES}
\]

고차모드의 영향이 반영된 푸쉬오버(pusherover) 해석을 위한 횡하중 분배계수의 산정을 위해 우선 예제건물의 고유치해석을 통하여 주기(T)와 형상함수(\(v\))를 얻어내었 다. 주기와 형상함수는 20층과 60층 예제건물에서 모드참 여율의 합이 95%까지, 20층 예제에서는 3차 모드, 60층 예제에서는 6차 모드까지를 산출하여 조합하였다. 그리고 얻어진 이 값들에 의해 횡하중 분배계수를 산정하는 순서 에 따라 예제건물의 횡하중 분배계수를 산정하였다.

그림 6은 초기 설계 예제건물의 20-1과 60-1의 횡하중 분배계수이다. 그림에서 보는 바와 같이 일반적으로 사용 하고 있는 1차 모드의 형상과 같이 고차모드의 영향이 반 영되지 않은 횡하중 분배계수는 차이가 많음을 알 수 있다.
4.2.2 성능개선 이성형화 및 V_{num}와 V_p 비교

각 에제건물의 푸쉬오버(pushover) 해석을 실시하여 성능개선을 얻은 다음 이성형화를 실시하였다. 이성형화를 실시함에 있어 가장 중요한 요소는 이성형화 곡선의 기울기와 V_p의 결정이다. 본 연구에서는 우선 이성형화 곡선의 기울기를 결정하기 위하여 원점과 설계 시에 지진하중에 의한 V_p을 연결하여 초기 기울기를 우선 결정하였다. 그리고 V_p는 성능극선과 탐성-완전소성 그래프와의 등가 변칙법에 의하여 결정하였다. FEMA 273에서는 철근콘크리트 기둥의 최대 외전능력을 3%로 정의하고 있다. 따라서 본 논문에서는 철근콘크리트구조의 최대 충진변형능력을 3%로 정의하고 임의의 충에서 충진변위가 3%가 발생한 시점까지를 Δ_{max}으로 보고 이때의 성능극선을 이성형화에 사용하였다.

본 논문에서는 V_{num}와 V_p의 크기에 따라 20층과 60층 에제건물을 선택하여 제안한 환경형시스템의 설계에 적용하였다. 먼저 20층 에제건물은 세 가지 예제건물이 모두 V_p는 1.09×10^7N이고, V_{num}은 0.58×10^7N으로 $V_p > V_{\text{num}}$인 경우이다. 그리고 60층 에제건물은 60-1의 V_p는 4.90×10^7N, 60-2와 60-3의 V_p은 4.89×10^7N이고 V_{num}는 6.35×10^7N으로 $V_p < V_{\text{num}}$인 경우이다. 따라서 60층 건물의 경우 모든 예제건물에 대하여 R_c를 산정하기에 앞서 $V_p > V_{\text{num}}$임을 확인하면 표 3에서 보는 바와 같이 모든 60층 예제건물이 이를 만족한다.

각각의 예제건물에 대한 성능극선과 이성형화 곡선은 그림 7과 같다. 본 논문에서 사용한 성능극선의 이성형화를 위한 V_p는 예제건물의 실제 지진하중으로 각 예제건물

<table>
<thead>
<tr>
<th>표 3 예제건물의 R_c 산정결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>20층</td>
</tr>
<tr>
<td>V_p (10^8N)</td>
</tr>
<tr>
<td>V_{num} (10^8N)</td>
</tr>
<tr>
<td>R_p</td>
</tr>
<tr>
<td>R_c</td>
</tr>
<tr>
<td>Δ_{Δ} (10^{-3}mm)</td>
</tr>
<tr>
<td>Δ_{max} (10^{-3}mm)</td>
</tr>
<tr>
<td>R_{fs}</td>
</tr>
<tr>
<td>R_{col}</td>
</tr>
</tbody>
</table>

의 중량이 크게 변화하지 않으므로 큰 차이를 나타내지 않았다.

4.2.3 예제건물의 유효보수성능 산정

우선 20층 에제건물의 비성형 해석 결과를 살펴보면, 20-1 에제건물에서는 R_c가 2.66, R_i가 5.52로 R_c의 값은

![Image](https://via.placeholder.com/150)

(그림 7 예제 건물의 성능극선)
14.68을 나타내어, 따라서 이 값은 $R_{\text{מבוק}}$에 근접시키기 위하여 20-1 예제건물에 설치되어있는 수직 가세의 단면을 1/2로 감소시켰다. 이때에 가세를 제외한 나머지 구조부재는 설계하중에 대하여 안전할을 확인하였고 사용성 평가가 모두 마친 후 다시 비선형 해석을 수행하였다. 그 결과 앞에서 언급한 바와 같이 V_D는 거의 차이가 없으나 V_Q가 20-1보다 30%정도 감소하여 R_{c}는 1.81로 감소하였다. 또한 R_{p}를 결정하기 위한 Δ_{p}는 20-1의 값보다 작은 값을 나타내었으나 $\Delta_{\text{מבוק}}$은 20-1보다 증가하여 R_{p}의 값은 6.98로 20-1보다 증가하였다. 하지만 20-2의 R_{c}는 R_{p}의 증가폭에 비해 R_{c}의 감소폭이 컸다. 12.63으로 20-1의 14.68보다는 감소하였다. 또한 20-2의 R_{p}를 감소시키기 위하여 건물의 중앙에 설치되어있는 수직가세를 모두 제거하였다. 그리고 기본 구조설계에서 모두 마친 20-3의 R_{c}는 산정하기 위한 비선형 해석을 수행한 결과 20-1에서 20-2로 변화했을 때의 모든 계수에서 나타난 현상과 같았다. R_{p}는 20-2에서와 마찬가지로 20-3에서도 30%정도 감소된 1.32를 나타내었고, R_{p}도 20-2에서 Δ_{p}는 약간 감소하고 $\Delta_{\text{מבוק}}$은 증가하여 8.08로 15%정도 증가하였다. 하지만 20-2에서와 마찬가지로 R_{c}의 증가폭에 비해 R_{c}의 감소폭이 컷 R_{p}는 20-2보다 감소한 10.67로 감소되었다.

60-1 예제건물에서는 20중에서와는 달리 환변위에 대한 사용성 평가를 만족시키기 위하여 2개 경간에 걸쳐 수직 가세를 설치하였고, 15개 중에 하나의 중간가세를 설치하였다. 60중 예제건물의 비선형 해석 결과를 살펴보면, 60-1에서는 R_{p}가 4.07, R_{c}가 3.00으로 R_{p}의 값은 12.21을 나타내었다. 따라서 이 값은 $R_{\text{מבוק}}$에 근접시키기 위하여 60-1의 예제건물에 설치되어 있는 가세를 하나 제거하고 그 위치도 20개 중에서 하나씩으로 변화하였다. 그 결과 V_D가 60-1보다 감소한 18.16x10$^{-4}$N으로 나타나 R_{c}는 3.71로 감소하였다. R_{p}를 결정하기 위한 Δ_{p}와 $\Delta_{\text{מבוק}}$는 20중 예제에 서와는 달리 두 계수가 모두 감소하였다. 하지만 $\Delta_{\text{מבוק}}$의 감소에 비해 Δ_{p}의 감소폭이 컷 R_{c}는 3.09로 60-1에 비 해 약간 증가하였다. 따라서 60-2의 R_{c}은 20중 예제건물에서와 마찬가지로 R_{c}의 증가폭에 비해 R_{c}의 감소폭이 컷 11.46으로 60-1보다 감소하였다. 다시 60-2의 R_{p}를 감소시키기 위하여 중 가세를 하나 더 제거하고 위치도 30 개 중에서 하나씩으로 변화하였다. 따라서 모든 계수가 60-1에서 60-2로 변화했을 때의 현상과 같은 현상을 나타내면서 60-3의 R_{p}의 값은 10.98로 감소하였다.

20중 예제에서는 수직가세의 변화에 의해서 본 논문에서 제시한 합리적인 설계과정을 적용하였다. 그 결과 예제 건물의 변화에 따라 시스템의 안전성은 증가하였고, 초과 강도와 강도는 점차 감소하며 R_{c}의 값이 $R_{\text{מבוק}}$에 점차 근접하였다. 60중 예제에서는 증가세를 한 개충의 제거하고 그 위치도 건물 높이에 균등분배되도록 변화하며 합리 적인 설계과정을 적용하였다. 그 결과 시스템의 강도와 연성은 초과강도의 변화에 비해 크게 변화하지 않지만 초과 강도의 감소에 의해서 시스템의 R_{c}의 값에도 점차 감소하며 $R_{\text{מבוק}}$에 근접하였다.

5. 결론
본 논문에서는 구조물의 비선형 해석에 의해 획득한 시스템을 해석적으로 해결하는 방법을 제시하고자 하였으며, 예제건물을 통해 V_D가 $V_{\text{מבוק}}$보다 큰 경우와 V_Q가 V_D보다 큰 경우에 대하여 본 논문에서 제시한 방법을 적용해보았다.

20층 예제건물의 경우는 설치된 가세의 변화에 따라 시스템의 연성은 증가하였으나 강도와 강도가 감소하면서 R_{c}의 값이 점차 $R_{\text{מבוק}}$에 근접하였다. 그리고 60층의 경우도 시스템의 강도와 연성은 크게 변화하지 않았으나 초과 강도가 감소하면서 R_{c}의 값을 점차 $R_{\text{מבוק}}$에 가깝도록 감소할 수 있었다.

본 논문에서 제안한 합리적인 획득한 시스템의 설계 방법을 이용할 경우 구조물이 실제 보유한 획득한 성능의 산정에 의하여 적절한 획득한 시스템의 도출이 가능할 것이다. 또한 현재는 건물이 대형화, 고층화 되어가므로 부재설계에 제안한 방법을 적용할 경우 적절한 구조물량의 산출도 가능할 것으로 사료된다.

감사의 글
본 연구는 “2005년도 교육인적자원부 지방연구중심대학 육성사업”과 “삼성물산(주)에서 출연한 성능에 기초한 내진 해석/설계 Procedure 정립 및 비탄성 해석 프로그램 개발”에 의한 것이며, 이에 감사드립니다.

참고 문헌
1. ATC, Seismic Evaluation and Retrofit of Concrete Buildings Volume 1, ATC 40, Applied Technology Council, Redwood City, California, 1996.

10. MIDAS/Gen, General structure design system-MIDAS/Gem Ver. 6.3.5 Program, MIDAS Information Technology Co., LTD., 2004.

11. ATC, A critical review of current approaches to earthquake-resistant design, ATC 34, Applied Technology Council, Redwood City, California, 1996.