Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability

Ok, Seung-Yong · Park, Kwan-Soon · Song, Junho · Koh, Hyun-Moo

Abstract >> This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

Key words: Target Reliability, Integrated Optimal Design, Hybrid System, Multi-Objective Optimization Technique, Structural Control System

1. 서론

지난 20여 년 동안 많은 연구자들이 의하여 수동형, 능동

형, 준능동형 및 복합형 등 다양한 종류의 구조제어장치가 제시되면서, 각 장치별 특성에 따라 제어성능을 극대화할 수 있는 최적 제어이론 및 최적 설계방법이 연구되었다[1][3]. 이들 연구들은 대부분 특정 제어장치의 사용을 가정한 후 그 장치의 특성을 활용함으로써 제어성능을 극대화할 수 있는 최적 제어알고리즘이나 최적 설계방법 개발에 집중되어 있다고 할 수 있다. 그러나 심화장치에서 진동제어가 발생하는 경우에는 먼저 설계 변경을 통하여 구조부재를 보강함으로써 문제를 해결하고자 하는 것이 일반적이다. 이는 설

치비용뿐만 아니라 지속적인 유지비용도 요구되는 구조제

수록 (2008. 1. 18 / 심사종료일: 2008. 3. 13)
어시스템에 비해, 구조부재를 이용한 강성 보강방법이 다소 사공이 편하며 경제적이기 때문이다. 한편, 부재보강이
로는 충분한 성능 개선을 얻지 못하는 경우에는 보다 높은
성능을 발휘할 수 있는 재어시스턴트의 적용을 고려할 수 있
다.때때로 목표 성능의 수준이 매우 높은 경우에는 부재보
강과 재어시스턴트를 병용함으로써 목표 성능을 달성할 수도
있다. 이러한 구조부재의 보강 설계→재어시스턴트 설계
의 순차적 설계(sequential design)는 사공의 편의성과 경제
성을 높이지 않아 설계 과정도 용이하므로 기존 설계 과정에서
보편적으로 이루어지고 있는 방법이라 할 수 있다44.
순차적 설계방법은 주어진 구조물에 대하여 경제적인
구조부재의 보강설계(은) 결정할 수 있으며 또한 보강된
구조물에 대하여 재어시스턴트 설계도 결정할 수 있다. 이렇게
설계된 시스템이 최적의 설계임을 보려는 힘들다. 이는
구조물과 재어시스턴트의 상호 작용에 의하여 보다 최적한 해
가 따로 존재할 수 있기 때문이다. 즉, 기존설계 보강설계
에 대하여 재어시스턴트를 결정하였으려면 이렇게 결정된 재어시
스턴트에 대한 보강부재의 최적설계를 다례 설계할 수 있
다. 따라서 설계된 재어시스턴트에 대하여 구조부재의 보강가
은 또 다시 최적화가 가능하며, 이에 따라 재어시스턴트는 첫
번째 해답 또다른 설계로 결정한다. 이러한 반복설계과정
을 피하기 위하여 이 연구에서는 구조재어시스턴트와 구조물
을 통합한 하나의 시스템으로 간주하고 구조물 및 재어시스턴
트의 설계변수를 동시에 고려할 수 있는 통합최적설계기법
(integrated optimal design technique)을 제시하고자 한다.
이는 두 가지 시스템을 동시에 최적 설계로 동시에 최적설
계기법(simultaneous optimal design technique)이라고도
할 수 있다.
구조물→재장치의 복합시스템에 대한 통합최적설계는
구조부재의 사용량 및 재어시스턴트의 용량뿐만 아니라 구조
물의 용량도 동시에 최적화하는 다목적최적화문제로 구성
된다. 기존 연구로는 Park and Koh9, Park et al.9 및 박찬
순 등6을 고려할 수 있다. Park and Koh9는 선효도에 기
반한 최적화방법을 제안한 바 있으며, Park et al.9는 생애
주기비용(Life-Cost Cycle)의 측면에서 가장 경제적인 최적
설계해를 제시하는 연구를 하였으며, 박찬순 등6은 구조부
재와 재장치의 사용량 및 구조물의 용량 크기에 대하여 다단계의
설계모형을 산정하고 이를 점차적으로 만족시도
로 최적화과정을 유도하는 목표실현유전자알고리즘(Goal
Updating Genetic Algorithm, GUGA)을 제안한 바가 있
다. 그러나 이들 연구에서는 가중합방법을 이용하여 다목적
함수를 단일목적함수로 치환하는 최적화방법을 사용하기
때문에 가중치 또는 설계목표에 따라 최적해가 달라질 수
있다. 따라서 합리적인 설계안을 얻기 위해서는 구조부재
및 재장치의 설계에 따른 소요비용 등을 비교함으로써 가
중치 또는 설계목표를 신중하게 결정하는 과정이 요구된다.
그러나 재장치의 소요비용은 단순한 사용량뿐만 아니라
설치위치에 따라서도 달라질 수 있으므로 이를 미리 선정하
는 것은 쉽지 않다.
한편, 이 연구에서 다루고자 하는 최적화문제는 구조물의
응답, 구조부재의 사용량, 감쇠기의 사용량을 동시에 최적화
하므로, 최소 3개의 목적함수를 갖는다. 참고로, 농동재어시
스템까지 설계에 추가할 경우, 4개의 목적함수를 갖는 다목
적최적화문제로 확장된다. 즉, 다목적최적화가 필요하면
개수의 해를 목적함수 영역 내에서 균등하게 분포되도록 검
색을 수행하던지, 목적함수가 증가함수일 경우 목적함수 영역
내에서 해가 충분히 분포될 수 있도록 검색하여야 하는 해의
개수도 약간 증가하여야 한다. 즉, 목적함수가 3개
인 경우에는 3차원 영역에서 균등 분포되기에는 충분한 개수의
해를 검색하여야 하며, 목적함수가 4개인 경우에는 4차
원 영역에서 균등 분포할 수 있도록 충분한 개수의 해를 검
색하는 것이 필요하다. 이는 최적화과정에서의 검색시간이
기하급수적으로 늘어나는 것을 의미한다. 또한, 설계변수로
서 각 구조부재 및 재장치의 위치별 최적 배치를 다루으
로, 매우 넓은 설계영역을 갖게 된다. 이처럼 넓은 설계영역
과 많은 목적함수를 갖는 최적화문제에서는 높은 수준의 연
산능력 및 검색시간이 요구된다. 이러한 문제를 해결하기
위하여, 이 연구에서는 가능한 목적함수의 개수를 줄일 수
있도록 대상 최적화문제를 제한조건을 갖는 다목적최적화
문제(constrained multi-objective optimization problem)로
제고성하였다. 구조부재의 사용량과 재어시스턴트의 사용량
등은 비용의 측면에서 고려되는 항목인 반면, 구조물의 응
답은 재장치능과 관련한 항목으로서 경제성과는 차별화된
다. 이 연구에서는 구조물의 응답에 대하여 목표실현성을
도입하고 이를 항상 만족하는 제한조건으로 지정함으로써
목표실현성을 만족하는 구조물→재어시스턴트의 통합최적화문
제로 재구성하였다. 이는 일반적인 설계과정과도 부합하는
장점이 가진다. 즉, 대상 구조물의 응답이 목표실현성을 만
족하는 내에서 가장 경제적인 설계안을 찾는 것이 일반적인
설계과정이라 할 수 있다. 그러므로 제시하는 방안은 목표
실현성 제한조건을 만족하면서 각 구조부재 및 재어시스템
의 사용량, 즉 비용을 최소화하는 설계문제로 다루어진다.
이 논문의 구성은 다음과 같다. 먼저 2장에서는 불규칙
지진하중을 받는 병합구조물의 신체성 평가방법을 기술한
다. 다음과 3장에서는 목표선형성을 만족하는 구조물-제어장치의 복합시스템 설계를 위한 제한조건을 갖는 다목적 최적화기법을 다룬다. 그리고 4장에서는 제안하는 방법에 대한 수치 예시로서 20종 빌딩구조물에 대한 구조부재-수동강성의 동합최적설계 및 설계결과에 대하여 평의하고 마지막으로 결론을 제시한다.

2. 불규칙진동효과에 대한 빌딩구조물의 신뢰성 평가

2.1 상태공간방정식

대상 구조물로는 그림 1에 제시한 **n**층 전단방대 모델을 고려하며, 내진성능 향상을 목적으로 부가적인 구조재를 이용한 강성보강 또는 제어장치를 적용하고자 한다. 제어장치는 속도에 비례하는 감쇠력을 발휘하는 선형점성강성기(linear viscous damper)를 사용한다. 따라서 구조보강은 강성행렬(stiffness matrix)로, 선형점성강성기는 감쇠행렬(damping matrix)로 모델링될 수 있다. 이에 따른 운동방정식은 식 (1)의 2차 상미분방정식으로 표현된다.

\[
M_0 \ddot{u}(t) + (C_0 + C_d) u(t) + (K_0 + K_d) \dot{u}(t) = E_0 \dddot{u}_p(t)
\]

\[
M_0 \ddot{u}(t) + (C_0 + C_d) u(t) + (K_0 + K_d) \dot{u}(t) = E_0 \dddot{u}_p(t) \tag{1}
\]

여기서, \(M_0, C_0, K_0\)는 각각 \([n \times n]\) 크기의 질량, 감쇠, 강성행렬이고, \(\dddot{u}(t), \dot{u}(t), u(t)\)는 구조물의 가속도, 속도, 변위벡터로서 \([n \times 1]\)의 크기를 갖는다. \(K_d\)와 \(C_d\)는 각각 구조보강 및 선형점성강성기로 인한 부가적 강성 및 감쇠에 상응하는 행렬로서 각 구조부재 및 강성기의 설치 위치별 자유도에 따라 구성된다. \(E_0\)는 입력지반가속도 \(\dddot{u}_p(t)\)의 작용위치벡터로서 \(-M_0\dddot{u}_p(t)\)로 정의된다. 여기서, 벡터 1은 모든 요소가 1인 \([n \times 1]\)크기의 열벡터(column vector)이다.

주파수응답함수(frequency response function)를 유도하기 위하여 식 (1)의 운동방정식은 식 (2)의 상태공간방정식(state space equation)으로 변화된다\(^7\).

\[
\dot{x}(t) = A_x x(t) + B_x \dddot{u}_p(t) \tag{2a}
\]

\[
y(t) = C_x x(t) + D_x \dddot{u}_p(t) \tag{2b}
\]

여기서, \(x(t)\)는 \([2n \times 1]\)크기의 상태벡터벡터이며, \(A_x\)와 \(B_x\)는 각각 시스템행렬과 하중위치벡터이다. 이들은 식 (3)으로 정의된다.

\[
x(t) = \begin{bmatrix} \dddot{u}(t) \\ u(t) \end{bmatrix} \tag{3a}
\]

\[
A_x = \begin{bmatrix} 0 & -I \\ -M_0^{-1}(K_0 + K_d) & -M_0^{-1}(C_0 + C_d) \end{bmatrix} \tag{3b}
\]

\[
B_x = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{3c}
\]

식 (2b)에서 출력벡터 \(y(t)\)는 해석을 통하여 얻고자 하는 구조물의 응답이다. 식에서 \(C_x\)와 \(D_x\)는 어떠한 구조물의 응답을 출력행렬로서 정의하는데 따라 결정되는 출력행렬(output matrix)로서 각각 \([1 \times 2n]\) 및 \([1 \times 1]\)의 크기를 갖는다. 여기서, \(t\)은 출력응답 \(y(t)\)의 크기가이다. 예를 들어, 연속한 충격상대변위를 출력행렬로 할 때, 출력행렬 \(C_x\)와 \(D_x\)는 식 (4)와 같다. 여기서, \(0\)은 모든 요소가 0(zero)인 행렬 또는 벡터이다.

\[
C_x = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 0 & \cdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & -1 \end{bmatrix} \tag{4a}
\]

\[
D_x = \begin{bmatrix} 0 \\ 0 \\ \cdots \\ 0 \\ 0 \end{bmatrix} \tag{4b}
\]
입력지반가속도 \(u_g(t) \)은 식 (5)의 Kanai-Tajimi power spectral density (PSD) 함수를 사용하여 모델링하였다\(^{(28)}\).

\[
\Phi_{u_g u_g}(\omega) = \frac{\omega_g^4 + 4\xi^2\omega_g^2 \cdot \omega^2}{(\omega_g^2 - \omega^2)^2 + 4\xi^2 \omega_g^2 \omega^2} \Phi_0
\] \((5) \)

여기서, \(\omega_g, \xi \) 및 \(\Phi_0 \)는 각각 입력지진 PSD의 주파수중심, 범주폭 및 세기(intensity)를 결정짓는 계수이다.

식 (5)의 Kanai-Tajimi 입력지진 모델은 기저(base)에 대한 지반운동의 상태변수 \(u_g(t) \)에 대하여 식 (6)의 2차 상미분 방정식에 상응한다.

\[
\dddot{u}_g(t) + 2\xi\omega_g \ddot{u}_g(t) + \omega_g^2 u_g(t) = w(t)
\] \((6) \)

여기서, \(w(t) \)는 세기 \(\Phi_0 \)를 갖는 백색잡음(white noise)이다.

따라서 지반운동에 대한 상태공간방정식 및 질대 지반가속도 \(\ddot{u}_g(t) \)는 식 (7)로 표현될 수 있다.

\[
\begin{align*}
\dot{x}(t) &=
\begin{bmatrix}
\dot{u}_g(t) \\
\dot{\ddot{u}}_g(t)
\end{bmatrix} =
\begin{bmatrix}
\omega_g^2 & \frac{\omega_g^2}{2} \\
\frac{\omega_g^2}{2} & \omega_g^2
\end{bmatrix}
\begin{bmatrix}
\ddot{u}_g(t) \\
\dot{u}_g(t)
\end{bmatrix} +
\begin{bmatrix}
0 \\
-2\xi\omega_g
\end{bmatrix} \begin{bmatrix}
\dddot{u}_g(t) + A_n u_g(t) + B_n w(t)
\end{bmatrix} \\
\dddot{u}_g(t) &= -\omega_g^2 \ddot{u}_g(t) - 2\xi\omega_g \dot{u}_g(t) + \omega_g^2 u_g(t)
\end{align*}
\] \((7a) \)

\[
\dot{u}_g(t) = \dddot{u}_g(t) - w = -\omega_g^2 \ddot{u}_g(t) - 2\xi\omega_g \dot{u}_g(t) + \omega_g^2 u_g(t)
\] \((7b) \)

식 (7b)를 식 (2)의 입력지반가속도 \(\dddot{u}_g(t) \)에 대입함으로써 식 (2)와 식 (7)이 결합된(augmented) 식 (8)의 새로운 상태공간방정식을 얻을 수 있다.

\[
\begin{align*}
\dot{x}(t) &=
\begin{bmatrix}
\dot{u}_g(t) \\
\dot{\ddot{u}}_g(t)
\end{bmatrix} =
\begin{bmatrix}
A_n & B_n \omega_g (t) \\
B_n \omega_g (t) & \omega_g^2
\end{bmatrix}
\begin{bmatrix}
\ddot{u}_g(t) \\
\dot{u}_g(t)
\end{bmatrix} +
\begin{bmatrix}
0 \\
-2\xi\omega_g
\end{bmatrix} \begin{bmatrix}
\dddot{u}_g(t) + A_n u_g(t) + B_n w(t)
\end{bmatrix} \\
y(t) &=
\begin{bmatrix}
C_n & D_n \omega_g(t)
\end{bmatrix}
\begin{bmatrix}
\ddot{u}_g(t) \\
\dot{u}_g(t)
\end{bmatrix} + D_n w(t)
\end{align*}
\] \((8a) \)

\[
\begin{align*}
y(t) &= C_n \ddot{u}_g(t) + D_n \omega_g(t)
\end{align*}
\] \((8b) \)

여기서, 행렬 \(D_n \)는 \(\omega \times 1 \) 크기의 영행렬이다.

시스템 이론\(^{(29)}\)에 따라, 입력후속에 대한 출력응답의 주파수응답함수는 식 (9)에 의하여 계산된다.

\[
H(\omega) = C_n (i\omega \mathbf{I} - A_n)^{-1} B_n + D_n
\] \((9) \)

여기서, \(\omega \)는 주파수(excitation frequency)이다.

따라서 식 (4)에서 주어진 출력행렬 \(C \)와 \(D \)을 고려할 때, 식 (9)의 주파수응답함수는 주진 입력에 대한 충진변위응답의 주파수응답을 나타낸다.

\[\text{2.2 최초통과확률(first passage probability) 및 신뢰성} \]

앞서 구한 주파수응답함수로부터 얻어지는 출력응답 \(y(t) \)가 평균 0인 추계적 프로세스(zero mean stochastic process) \(Y(t) \)를 따르 있다고 할 때, \(Y(t) \)가 시간 \(t \) 동안 특정값(threshold) \(a \)를 초과한 초과확률 \(p(a) \)은 식 (10)으로 정의될 수 있다.

\[
p(a;\tau) = P(\alpha \leq \max_0 \leq \tau Y(t)) \] \((10) \)

그런데, 일반적으로 식 (10)에 대한 정해(exact solution)를 구할 수는 없으므로, Lutes & Sarkani\(^{(11)}\)는 근사해법으로서 식 (11)을 제시하였다.

\[
p(a;\tau) = 1 - A \exp \left[-\int_0^\tau \alpha(\omega; \tau) \, d\tau \right]
\] \((11) \)

여기서, \(A \)는 시간 \(t=0 \)일 때 확률과정 \(Y(t) \)의 크기가 \(a \)를 초과하지 않을 확률이며, \(\alpha(\omega; \tau) \)는 확률과정 \(Y(t) \)가 \(a \)를 초과하지 않는 조건 하에서 시간 \(\tau \)에서의 조건부 평균 초과확률(conditional mean crossing rate)을 의미한다. 일반적인 경우, 확률과정 \(Y(t) \)에 대한 조건부 결합밀도함수(conditional joint density function)는 알려져 있지 않으므로 조건부 평균 초과확률을 얻는 것은 불가능하다. 대신, 무조건부 평균 초과확률(unconditional mean cross rate)을 도입함으로써 이에 대한 근사값을 구할 수 있으며, 이를 포이슨 근사(Poisson approximation)라 한다. 무조건부 평균 초과확률 \(\nu(\omega; \tau) \)를 할 때, 식 (11)의 초과확률은 식 (12)로 재정의된다.

\[
p(a;\tau) = 1 - A \exp \left[-\int_0^\tau \nu(\omega; \tau) \, d\tau \right]
\] \((12) \)

여기서, \(\nu(\omega; \tau) \)는 식 (13)으로 정의된다.

\[
A = P(\{Y(0)<a\}) = \int_{-\infty}^a f_y(y;\tau) \, dy
\] \((13a) \)

\[
\nu(\omega;\tau) = \int_{-\infty}^\tau f_y(y;\omega;\tau) \, dy - \int_{-\infty}^\tau f_y(y;\omega;\tau) \, dy - \int_{-\infty}^\tau f_y(y;\omega;\tau) \, dy
\] \((13b) \)

여기서, \(f_y(y;\tau) \)는 확률과정 \(Y(t) \)의 주파수밀도함수(marginal probability density function; marginal PDF)이며, \(f_y(y;\omega;\tau) \)는 확률과정 \(Y(t) \)와 그 미분변화율(derivative) \(\dot{Y}(t) \)의 결합밀도함수(joint PDF)를 나타낸다. 또한, \(\nu(\omega;\tau) \)와 \(\nu'(\omega;\tau) \)는 확률과정 \(Y(t) \)가 시간 \(t \)에서 각각 음의 방향으로 \(-a \)를 양의 방향으로 \(a \)를 초과할 무조건부 평균 초과확률이다.

확률과정 \(Y(t) \)가 평균 0의 정상상태 가지시킨 간공간 zero-mean
stationary Gaussian process)을 따를 경우, 계수 A 및 조 과율 $\nu(\alpha t)$는 다음의 식 (14)로 간단히 표현될 수 있다\(^{(12)}\).

\[A = 1 - 2\Phi(-r) \]
\[\nu(\alpha t) = \sqrt{\frac{\sigma_x^2}{\pi \sigma_y}} \exp \left(- \frac{r^2}{2} \right) \]
\[(14a) \]
\[(14b) \]

이아지, $\Phi(\cdot)$는 표준정규누적확률함수(standard normal cumulative probability function)이며, 계수 $r = a/\sigma_y$은 한 계수 a를 응답의 표준편차(standard deviation)로 정규화한 계수이다. σ_x와 σ_y는 각각 확률과정 $Y(t)$과 미분변화율 $\dot{Y}(t)$의 표준편차이다. 식 (14b)에서 알 수 있듯이, 조과율 $\nu(\alpha t)$는 시간 t에 대하여 불변하는 상수가 된다.

비록 전송한 포이송 근사법이 실제 적합성이었다는 장점 을 가지지만, 교차사건들(crossing events)간의 확률적 의존 성을 고려하지 않으므로 확률과정의 밴드폭이나 초과후 지속시간에 따라 달라진 응답을 유발할 수 있는 단점을 가진 다. 이에 VanMarcke\(^{(13)}\)는 개선된 공식으로서 식 (15)를 제안하였다.

\[p(\alpha t) = 1 - B \exp \left[- \int_0^t \eta(\alpha u) du \right] \]
\[(15) \]

식 (15)에서 계수 B 및 초과율 $\eta(\alpha t)$는 식 (16)으로 정의된다.

\[B = \frac{P(E(t) < a)}{P(E(t) > a)} = \int_0^a f_E(e^0) de \]
\[\eta(\alpha t) = \frac{P(E(t) \geq a | E(t) < a)}{P(E(t) < a)} \left[1 - \exp \left(- \nu_c^2(\alpha t) \right) \right] \]
\[(16a) \]
\[(16b) \]

이아지, $E(t)$는 확률과정 $Y(t)$의 포라과정(envelope process)을 나타내며, $f_E(e^0) = E(t)$의 주변확률밀도함수. 그리고 $\nu_c(\alpha t)$는 포라과정 $E(t)$의 양방향으로의 무조건적 평균 초과율(unconditional mean up-crossing rate)을 의미한다.

VanMarcke 공식에서 평균 0의 정상상태가 가우시안 과정 에 대하여 Cramer & Leadbetter\(^{(14)}\)에 의하여 정의되는 포 랝함수(envelope function)를 사용할 때, 계수 B 및 초과율 $\eta(\alpha t)$는 더욱 간단히 정리되어 식 (17)이 된다\(^{(15)}\).

\[B = 1 - \exp \left(- \frac{r^2}{2} \right) \]
\[\eta(\alpha t) = \nu(\alpha t) \left[1 - \exp \left(- \frac{\sqrt{2} r^2}{2} \right) \right] \left[1 - \exp \left(- r^2 \right) \right] \]
\[(17a) \]
\[(17b) \]

여기서, 정규화된 밴드폭(normalized bandwidth) δ는 확률 과정 $Y(t)$의 밴드 폭을 특정하는 확률계수로서 식 (18)로 정의되며,

\[\delta = \sqrt{1 - \frac{\lambda_1^2}{\lambda_2}} \]
\[(18) \]

식에서의 계수 λ_i는 i번째 spectral moment로서 식 (19)로 정의된다.

\[\lambda_i = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \omega G_{Y \gamma}(\omega) d\omega \]
\[(19) \]

여기서, $G_{Y \gamma}(\omega)$는 확률과정 $Y(t)$의 one-sided PSD 함수로서 식 (9)의 주파수응답함수를 이용하여 $G_{Y \gamma} = 2H(\omega)^2$으로 정의된다. 따라서 λ_0 및 λ_i는 각각 σ_x^2 및 σ_y^2에 상응한다. 각 계수 λ_i는 식 (9)의 주파수응답함수로부터 얻어지는 PSD 함수를 식 (19)에 대입한 후 적분함으로써 얻을 수 있다.

이 연구에서는 축적응답으로서 축진상대변위를 정의하였 으므로, 확률 $p(\alpha t)$는 시간 t 동안 축진상대변위가 허용치 a를 초과하는 한계상태에 대한 확률변수이 되며, 식 (15)로부터 얻을 수 있다. 최종적으로 축진상대변위가 허용치 a를 초과하지 않을 확실히수당 β는 식 (20)에 의하여 산정된다.

\[\beta = \Phi^{-1} [1 - p(\alpha t)] \]
\[(20) \]

3. 제한조건을 갖는다. 다. 정적최적화기법

3.1 최성 정제조건을 갖는다. 다. 정적함수의 구성

다. 정적최적화방법에서는 식 (21)과 같이 여러 개의 목적 함수를 빈스터하시므로 정의함으로써 각 목적함수를 동시에 최소화하도록 진행된다.

\[\text{Min} \, F(x) = \text{Min} \left\{ \begin{array}{c} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{array} \right\} \]
\[(21) \]

여기서, x는 최적화문제의 설계변수로서, 이 연구에서는 구조물의 각 위치별 구조부재의 강성 및 가중치의 가중계수를 나타내다. 최소화 대상이 되는 목적함수 $f_j(x)$는 구조부재의 사용량 및 제어장치의 용량, 그리고 구조물의 최대응답 이 허용값 a를 초과하는 한계상태에 대한 표적함수를 줄 수 있다.
다목적최적화과정에서는 목적함수가 많아질수록 검색해야 하는 설계변수는 기하급수적으로 증가한다. 이 연구에서는 구조물의 파괴확률을 최적화과정에서 항상 만족하는 제한조건으로 치환함으로써 목적함수의 개수를 줄일 수 있도록 최적화문제를 구성하였다. 이에 대한 목적함수는 목표 신뢰성에 대한 제한조건을 가지는 형식으로 식 (22a)에서 정의된다.

\[f_1(x) = \frac{1}{n \times k_{max}} \sum_{j=1}^{n} \left(1 - \frac{k_{j}(x)}{k_{max}} \right) \ max \left[0, \beta_i - \beta(x) \right] \]

\[f_2(x) = \frac{1}{n \times c_{max}} \sum_{j=3}^{n} \left(1 - \frac{c_{j}(x)}{c_{max}} \right) \ max \left[0, \beta_i - \beta(x) \right] \]

여기서, \(n \) 은 설계 가능한 총 충수, \(k_{max} \) 및 \(c_{max} \)는 정규화를 위하여 도입한 최대 강성 및 감쇠계수이다. 그리고 \(n_k \)와 \(n_c \)는 강성 및 감쇠계의 총 개수이며, \(k_j \) 및 \(c_j \)는 각각 \(j \) 번째 강성 및 감쇠계이다. 또한, 최적화과정에서 제한조건을 허용적인 것으로 만족하도록 가중치 \(\theta \)를 적용하였다. 한편, \(\beta_i \)는 목표신뢰성지수(target reliability index)로서 주어진 한계상태에 대하여 설계자가 미리 정하는 신뢰성의 목표치이다. 또한, \(\beta(x) \)는 설계변수 \(x \)에 대한 구조시스템의 신뢰성지수로서, 다음의 과정을 통하여 산정된다. 설계변수 \(x \)는 구조물의 각 위치별 강성 및 감쇠계수에 해당하므로, 이로부터 식 (1)의 부가적인 강성행렬 \(K \)와 감쇠행렬 \(C \)을 구성할 수 있다. 부가 강성 및 감쇠를 원 구조물에 적용함으로써 전체 시스템에 대한 주파수응답함수를 식 (9)로부터 얻을 수 있으며, 이에 대한 식 (19)의 적분을 통하여 식 (20)의 신뢰성지수 \(\beta(x) \)를 산정할 수 있다.

3.2 다목적최적화기법

다목적최적화문제에서는 본질적으로 다수의 최적해가 존재하며, 이를 Pareto 최적해라 한다\(^{11,16} \). 이는 여러 개의 목적함수가 서로 상충하는 특성에 기인한다. 즉, 대부분의 공학문제에서 어느 하나의 목적함수에 대하여는 우수한 해가 존재할 수 있지만 모든 목적함수에 대하여 절대적으로 우수한 해는 유일하지 않는 것이 일반적이다. 예를 들어, 개체 “A”는 다른 개체들에 비해 대부분의 목적함수에서 열등하지만 첫 번째 목적함수에 대해서는 가장 우수한 해이고, 개체 “B”는 두 번째 목적함수에 대해서 가장 우수한 해라고 하자. 비록 두 개체 모두 하나의 목적함수를 제외한 모든 열등하지만 가장 우수한 성능을 보이는 목적함수에 대해서는 다른 어느 개체보다 우수하다고 할 수 있다. 이처럼 여러 개의 목적함수에 대해서 절대적으로 열등하지 않은 해, 또는 특정 목적함수에 대해서 다른 해들보다 우수한 성능을 보이는 해 모두 최적해라고 할 수 있다. 이러한 개념에 따라, 다목적최적화기법은 실험 가능한 해 영역 내에서 서로 열등하지 않으며 우수하지도 않은 해(non-inferior or non-superior solutions)들을 가장 효과적으로 구하는 것을 목표로 한다. 대표적인 방법으로 NPGA(Niched-Pareto GA)\(^{15}\), MOGA(Multi-Objective GA)\(^{16}\), NSGA(Non-dominated Sorting GA)\(^{17}\), SPEA(Strength Pareto Evolutionary Algorithm)\(^{18}\), PAES(Pareto Archived Evolutionary Strategy)\(^{19}\), PESA(Pareto Enveloped-based Selection Algorithm)\(^{20}\) 그리고 Micro GA\(^{21}\) 등이 있다. 여기서 주목할 점은 모든 다목적최적화기법이 유전자양리즘을 적용하고 있다는 점이다. 이는 유전자 양리즘이 단순한 해를 동시에 검색할 수 있는 "multi-point parallel searching" 특성을 가지므로 다목적최적화문제에 매우 효과적으로 적용될 수 있기 때문이다. 이 연구에서는 여러 알고리즘 중에서 가장 널리 사용되고 있는 방법 중의 하나인 NSGA-II 기법\(^{22}\)을 사용하였다. 이는 NSGA\(^{17}\)의 개선된 알고리즘으로서 세부적인 사항은 Deb 등\(^{23}\)에서 확인할 수 있으며, 여기서는 앞 알고리즘과 대별되는 2가지 특성인 non-dominated sorting 개념과 밀집도를 판별하는 crowding distance(밀집도)를 기술한다.

NSGA-II는 기존 유전자양리즘과 동일한 방식으로 다수의 개체(individual)를 임의 생성함으로써 한 세대(generation)를 구성하게 된다. 각 개체는 최적화문제에서 다루는 설계변수 정보를 나타낸다. 여기서는 각 출수에서 설계되는 강성 및 감쇠계수에 해당한다고임의 생성된 개체들은 식 (22)을 이용하여 목적함수를 산정하게 되며, 이들은 그림 2와 같이 목적함수 공간에 분포한다.

![그림 2] Non-Dominated Sorting Concept
그림 2는 2개의 목적함수를 최소화하는 최적화문제에서 2개 개체를 생성한 경우이다. NSGA-II는 목적함수 \(f_i(x) \)과 \(f_2(x) \)의 값에 따라 각 개체의 우열을 결정하게 된다. 예를 들어, 개체 \(P(x_i) \)은 목적함수 \(f_1(x) \)에 대해서 개체 \(Q(x_i) \)보다 작은 값으로 우위한 개체가 된다. 그러나 목적함수 \(f_1(x) \)에 대해서는 개체 \(Q(x_i) \)보다 큰 값을 가지므로 우위한 개체가 된다. 그러나 바꾸게 되어 \(f_1(x) \)에 대해서는 개체 \(P(x_i) \)보다 우수하지만 목적함수 \(f_2(x) \)에 대해서는 열등하다. 따라서 두 목록함수 모두 동일한 중요도를 가질 때, 어느 개체가 더 나은지 알 수 없다. 이 때, 두 개체 \(P(x_i) \)과 \(Q(x_i) \)은 서로 지배되지 않는 (non-dominated)고 하며, 어떠한 개체가 다른 모든 개체들에 의하여 지배되지 않을 때, 이는 Pareto 최적화가 된다. 따라서 Pareto 최적들은 어떠한 개체에 의해서도 지배되지 않으므로, 최상위 순위 (rank)를 가지며 'rank 1'로 분류된다. 한편, 'rank 1'인 개체들은 제외했을 때 가장 우수한 개체들은 'rank 2'로 분류된다. 즉, 'rank 2'인 개체들은 'rank 1'인 개체들에 의해서만 지배되며, 그 외의 개체들에 대해서 지배되지 않는 개체들이다. 이러한 방식으로 2개의 개체에 대하여 순위를 그림 2와 같이 결정할 수 있으며, 이를 non-dominated sorting 한다.

한편, 각 개체의 순위만으로 우수개체를 보존한 경우, 유전자 알고리즘은 다음으로 간주된다 Pareto 최적해를 특정 목적함수 공간으로 집중시키는 현상을 유발할 수 있다. 이는 다목적최적화기법의 목적이 해의 다양성 (diversity)를 구현하기 흔하도록 한다. 이를 방지하고 Pareto 최적해가 목적함수 공간에서 균등하게 분포되도록 유도하기 위하여, 각 개체의 분포에 존재하는 각 목록해의 밀집도를 평가할 수 있는 밀집도가 평가된다. 이는 동일한 순위를 갖는 개체들에 대해서 목적함수 공간에서 다양하게 분포되도록 하기 위함으로, 평가 대상이 되는 개체와 동일한 순위를 갖는 개체들에 대하여 산정한다. 그림 3에 나타낸 바와 같이, 특정 개체의 밀집도는 그와 인접한 두 개체에 대하여 각 목적함수별 거리의 정규화된 합으로서 식 (23)과 같이 정의된다.

\[
\sigma_d = \sum_{k=1}^{m} \frac{d_k}{d_{k}^{\text{max}}}
\]
(23)

여기서, \(\sigma_d \)는 \(i \)-번째 개체의 밀집도이며, \(m \)은 목적함수의 개수이다. 만약, 최외측의 두 개체는 항상 산정될 수 있도록 무한대 (\(\infty \))의 밀집도 값으로 할당한다.

식으로부터 알 수 있듯이, 밀집도가 클수록 해당 개체는 주변에 위치한 최적해와 멀리 떨어져 있음을 의미하며, 반대로 밀집도가 작을수록 해당 개체는 인접한 개체들이 밀집되어 있음을 의미한다. 따라서 해의 다양성을 위해서는 큰 값의 밀집도를 갖는 개체가 우선적으로 선택되어야 할 것이다.

두 가지 최도인 순위와 밀집도를 이용한 개체 선택은 다음과 같다. 먼저 각 개체의 순위에 따라 'rank 1'의 개체가 우선적으로 선택된다. 그리고 'rank 1'인 두 개체 사이에서 \(f_1(x) \)의 값이 큰 개체가 우선적으로 선택된다. 선택된 개체들은 양 세대의 부모 개체가 되며, 이들은 기존 유전자 알고리즘과 동일한 방식으로 교배 (crossover) 및 돌연변이 (mutation) 과정을 거쳐서 다음 세대의 자손 개체를 생성하게 된다. 이러한 방식으로 양 세대의 부모 개체들을 교배시켜 얄 세대의 부모 개체들을 교배시꺼지다.
변위가 허용치를 초과할 때 전체 시스템이 파괴한다고 가정할 때, 대상 구조물은 설계 지진에 대하여 10.75%의 파괴확률을 갖는 매우 취약한 구조물이다.

4.2 구조물-감쇠기 복합시스템의 최적설계

구조물의 안정성을 향상시키기 위한 방법으로 보강부재 및 감쇠장치를 이용한 동합최적설계를 수행하였다. 설계변수로는 각 충격 기동강성과 감쇠계수로서 40개의 변수가 사용되었으며, 이들은 0부터 최대 기동강성 값 (=k_{max}) 5400(MN/m)과 최대 감쇠계수(=c_{max}) 2.5×10^7(N•s/m) 이내의 범위에서 검색되었다. 이처럼 많은 설계변수로 인하여 넓은 검색 영역을 가지므로, 최적해를 검색하기 위해서는 매우 많은 검색시간이 요구될 것으로 예측된다. Pareto 최적해의 수렴성은 검증하기 위하여 최대 반복횟수에 따른 Pareto 최적해의 검색결과를 그림 6에 도시하였다. 그래프에서 알 수 있듯이, 6000회 이상 유전자 검색을 수행한 결과 Pareto 최적해들이 수렴하는 것을 알 수 있으나, 8000회의 반복횟수에 대해서도 미세한 양이나 Pareto 최적해들이 개선되는 결과를 확인하였다. 이를 바탕으로 최종적으로 적용한 최대 반복횟수는 10,000회이며, 한 세대별 개체는 50개를 생성하였다.
목표신뢰성지수의 경우 파포화도 10^3, 10^4, 10^5에 해당하는 \(\beta = 3.090\), \(\beta = 3.719\) 및 \(\beta = 4.265\)의 3가지 경우를 고려하였으며, 각 목표신뢰성지수별 최적화계를 반복 수행하였다. 세 가지 목표성능을 만족하는 Pareto 최적해를 검색한 결과 그림 6에 도시하였다. 수평축은 강성량에 대한 목적함수로서 식 (22a)의 \(f_1(x)\)이며, 수직축은 식 (22b)의 감쇠량에 대한 목적함수 \(f_2(x)\)이다. 이들은 모두 목표신뢰성지수를 만족하는 것을 확인하였으며, 이에 따라 각각 정규화된 중간강성 및 감쇠량의 합과 동일한 값을 나타내었다. 따라서 Pareto 최적해의 분포로부터 강성의 사용량과 감쇠기의 사용량은 서로 상호작용하고 있음을 확인할 수 있다. 이는 강성량을 많이 사용하였으나 감쇠기를 많이 사용하여 목표신뢰성을 만족할 수 있음을 의미한다. 제시한 방법에 따른 최적해들은 다목적함수의 동적으로적결과이므로, SMD_MOGA(Simultaneous Design based on Multi-Objective GA)로 표기하였다. 또한, 최적화과정의 검증을 위하여 두 가지 설계방법에 따른 결과를 비교 도시하였다. 첫 번째는 순차적 최적화방법을 따른 설계로서 먼저 강성량을 목적함수로 사용하여 그 사용량을 최소화한 후 감쇠량을 최소화하였다. 이는 단일목적함수 기반 최적화결과에 따르면 SQD_SOGA(Sequencial Design based on Single-Objective GA)로 표기하였다. 두 번째는 강성 및 감쇠를 동시에 최적 설계하므로 이들의 사용량을 단순히 합하여 단일목적함수로 사용하여 최적화 결과로서 SMD_SOGA(Simultaneous Design based on Single-Objective GA)으로 표기하였다. 그림 7에서 알 수 있듯이, 순차적 최적화방법에 따른 결과는 강성이 먼저 최소화한 후 감쇠를 최소화함으로써 SMD_MOGA로부터 얻어진 Pareto 최적해 중에서 가장 최우측의 최적해로 변형하는 것을 알 수 있다. 한편, SMD_SOGA에 의한 결과는 강성과 감쇠를 동일한 중도로 최적화하였으므로 역시 SMD_MOGA로부터 얻어진 Pareto 최적해 중 하나의 최적해인 것을 알 수 있다. 이상의 결과로부터 제시하는 방법이 순차적 설계방법 및 임의 가중치를 이용한 단일 목적함수 기반의 최적결과를 포함하는 다양한 설계안을 제공해 주는 것을 검증하였다. 그러므로 제시하는 방법은 목표신뢰성을 만족하면서도 보강부재 및 감쇠장치의 배치를 다양하게 할 수 있는 여러 설계안을 제공해 줄 수 있는 장점을 가진다.

한편, 세 가지 목표신뢰성지수를 만족하도록 설계된 Pareto 최적해들은 목표성능이 높아짐에 따라 사용되는 강성량 및 감쇠량은 증가함을 알 수 있다. 또한, 대상구조물의 목표성능은 신뢰성지수 3.719 이하(또는 파포화도 10^5 이상)로 유지하기 위해서는 보강부재의 배치만으로도 충분하지만 4.265 이상의 신뢰성지수를 확보하기 위해서는 강성과 감쇠장치를 병용하여야 함을 알 수 있다. 이들은 모두 목표신뢰성지수를 만족하므로 성능의 측면에서는 모두 합리적인 해라 할 수 있으며, 각 강성 및 감쇠장치의 배치에 따른 소요비용을 평가함으로써 가장 경제적인 설계안을 결정할 수 있게 된다. 이는 단순한 재료비용뿐만 아니라 설계비용 및 유지비용 등의 다양한 항목으로 구성될 수 있으며, 때로는 건물주의 기호에 영향을 받을 수도 있다. 이러한 경제성 평가는 이 연구의 범위를 넘어서므로 논하고, 여기서는 앞서 언급한 SMD_SOGA, SQD_SOGA 및 감쇠장치가 가장 많이 사용하는 최적해(SMD_MOGA; 그림 7에서 도형 “□”로 표기)를 3개의 대표 설계안으로 선정하였다. 각 설계안들의 총별 강성(구조보강으로 인한 부가적 강성) 및 감쇠(설정강성감쇠기로 인한 부가적 감쇠)의 배치는 그림 8에 나타내었다. 이 시스템들의 총별 파포화도는 그림 5에 도시하였다. 그림 8(a)에서 총별 강성의 분포는 고층부로 부
4.3 내진성평가

다음으로는 지진하중의 탁월주파수 성분 및 밸드폭의 변화에 따른 다양한 지진하중에 대한 각 시스템의 내진성을 평가하였다. 지진발생동안의 주요 평가응답으로는 이 연구에서는 타구하고 있는 충격상태변위의 최대값을 고려할 수 있다.

\[\mu_y = p \cdot \sigma_y \] \hspace{1cm} (24)

여기서, \(Y_i \)는 시간 \((0, \tau)\)동안 출력응답 \(y(t) \)의 최대값을 나타내며, \(\mu_y \)는 그 평균을 의미한다. 또한, \(\sigma_y \)는 출력응답 \(y(t) \)의 표준편차로서 식 (19)의 0차 spectral moment \(\lambda_0 \)의 제품 근 근소한

\[p = \sqrt{2 \ln(\mu_y, \tau) + \frac{0.5772}{\sqrt{2 \ln(\mu_y, \tau)}}} \] \hspace{1cm} (25a)

\[p = 1.253 + 0.209 \times \mu_y, \tau \] \hspace{1cm} (25b)

여기서, \(\tau \)는 강진저축시간으로서 20초를 고려하였으며, \(\mu_y \)의

이와 같이 도출된 결과로 시스템의 내진성을 평가할 수 있었다.
는 식 (26)에 의하여 정해지는 계수이다.

\[\nu_e = 2\nu_y(0) \quad 0 < \delta \leq 0.1 \quad (26a) \]

\[\nu_e = (1.63\delta^{0.45} - 0.38) \times \nu_y(0) \quad 0.1 < \delta \leq 0.69 \quad (26b) \]

\[\nu_e = \nu_y(0) \quad 0.69 < \delta < 1 \quad (26c) \]

여기서 \(\delta \) 는 식 (18)의 정규화된 bandwidth이며, \(\nu_y(\xi) \) 는 특정값 (threshold) \(\xi \) 볼 초과할 양평균 평균초과율 (two-sided mean crossing rate)로서 식 (27)로 표현된다.

\[\nu_y(\xi) = \frac{1}{\pi} \sqrt{\frac{\lambda_0}{2\lambda_0}} \exp\left(-\frac{\xi^2}{2\lambda_0}\right) \quad (27) \]

이상의 측간상대변위 응답의 최대값 산정과정을 정리하면 다음과 같다. 식 (19)을 이용하여 spectral moments \(\lambda_0, \lambda_1 \) 및 \(\lambda_2 \)를 산정한 후 이로부터 양방향 평균초과율 \(\nu_e(\xi = 0) \) 및 식 (18)의 \(\delta \)를 계산한다. \(\delta \) 및 \(\nu_y(0) \)에 대하여 식 (26)의 \(\nu_e \)를 산정할 수 있으며, 이로부터 식 (25)의 peak factor를 얻을 수 있다. \(\sigma_y \) = \(\sqrt{\lambda_0} \)으로 최종적으로 식 (24)에 의하여 측간상대변위의 최대값 \(\mu_1 \)을 산정할 수 있다.

세 가지 설계인 SMD_SOGA, SQD_SOGA, 및 SMD_MOGA의 측대 측간상대변위응답을 입력진동하중의 탃�일주파수 성분을 변화시키면서 산정한 결과를 그림 10에 나타내었다. 여기서 밴드 폭 및 진동계는 설계하중과 동일한 값 \(\zeta = 0.6, \phi_0 = 0.0433 \)을 사용하였다. 그림 10에서 지진주파수 성분 변화에 따른 최대 응답은 각 시스템의 1차 모드 고주파수 부근에서 발생하고 있음을 알 수 있다. SMD_MOGA의 측대 응답이 다른 두 시스템(SQD_SOGA, SMD_SOGA)보다 다소 작은 주파수 성분에서 발생하는 것은 두 시스템(SQD_SOGA, SMD_SOGA)보다 강성을 보다 적게 사용하기 때문이다. 한편, 입력진동하중의 탃�일주파수 성분이 구조물의 1차 모드 고주파수보다 작은 경우(대략 10rad/sec 이하)에는 SMD_MOGA의 최대 응답이 가장 크게 발생하고 있으나 입력진동하중의 주파수 성분이 고주파수 대역의 주파수 성분을 많이 포함할수록, 즉 탃�일주파수가 점점 증가할수록 SMD_MOGA의 최대 응답은 미소한 양이나마 다른 두 시스템보다 작아지고 있으며 목표가능성이가 증가 할수록 그 차이는 커지고 있다.

그림 11은 탃�일주파수 및 지진계기를 고정된 값 \(\omega_y = 5\pi \) (rad/sec), \(\phi_0 = 0.0433 \)을 사용하고, 밴드폭 \(\zeta \)을 변화시킬 때의 결과이다. 수평층은 밴드폭 \(\zeta \)의 변화에 따른 입력하중 프로세스의 밴드폭의 영향계수 \(\delta \)이며, 수직측은 최대 측간상대변위를 나타낸다. 탃�일주파수로 고주파수 대역을 사용하였으므로, 그러므로 확장하였듯이, SMD_MOGA가 다른 두

(a) 목표선행도 3.090을 만족하는 세 설계안의 최대 측간상대변위

(b) 목표선행도 3.719를 만족하는 세 설계안의 최대 측간상대변위

(c) 목표선행도 4.265를 만족하는 세 설계안의 최대 측간상대변위

(그림 10) 지진가속도의 탃�일주파수별 최대 측간상대변위
(a) 목표신키도 3.090을 만족하는 세 설계안의 최대 흔들진상대변위

\[\beta = 3.090 \]

- SQD_SOGA
- SMP_SOGA
- SMD_MOGA

(b) 목표신키도 3.719를 만족하는 세 설계안의 최대 흔들진상대변위

\[\beta = 3.719 \]

- SQD_SOGA
- SMP_SOGA
- SMD_MOGA

(c) 목표신키도 4.265를 만족하는 세 설계안의 최대 흔들진상대변위

\[\beta = 4.265 \]

- SQD_SOGA
- SMP_SOGA
- SMD_MOGA

시스템의 최대 응답 크기가 다소 작으며, 밴드폭의 변화에 대해서도 일반적으로 우수한 응답저감 효과를 보여주고 있다. 한편, 목표신키도지수 \(\beta = 3.090 \)인 그림 11(a)에서 밴드폭이 작은 혼합폭(narrow-band) 지진압력하중에서 SMD_MOGA가 다른 시스템보다 다소 우수한 응답저감효과를 보이다가 정체폭(wide-band) 하중으로 갑수록 세 시스템은 모두 유사한 성능을 보인다. 반면, 목표신키도지수가 높아짐에 따라 정체폭 (wide-band) 입력측에 대하여 SMD_MOGA가 보다 우수한 성능을 보여주는 결과를 그림 11(c)에서 확인할 수 있다.

그림 11에서 지진파의 밴드폭이 증가함에 따라 시스템의 응답은 전체적으로 감소하지만 일정 수준이상에서는 유동하는 결과를 확인할 수 있다. 반대로 혼합폭(narrow-band) 지진하중에 대하여는 구조물의 응답이 매우 증가하는 현상을 확인할 수 있다. 그림 12(a)에서 확인할 수 있듯이, 이는 밴드폭이 작은 지진압력하중의 경우 지진파의 주파수분포이 집중됨으로 인해 그 세기가 매우 증가하기 때문이다. 그림 12(b)는 정규화된 밴드폭에 대한 Kanai-Tajimi PSD의 최대값을 도시한 결과로서 역시 혼합폭 입력지진하중에서 크기가 매우 증가하는 현상을 확인할 수 있다.
이상의 결과로부터 강성을 많이 사용하는 설계안은 감쇠기를 많이 사용하는 설계안보다 저주파수(장주기) 입력조건에 대해서는 효과적이나 고주파수 대역은 많이 포함하는 단주기 조건에 대해서는 감쇠기를 많이 사용하는 것이 효과적임을 알 수 있다. 또한 주파수 성분이 다양한 광대역 입력조건에 대해서는 강성을 많이 사용하는 것이 보다 강화한 성능을 입을 수 있음을 알 수 있다. 따라서 저진중류의 불확실성을 고려할 때 강소방 외 설계보다는 감쇠기를 이용한 설계방법이 보다 적합한 (robust) 성능을 보장할 수 있으며, 이는 목표성능이 높이지 않더라도 추가 적합성이라 할 수 있다.

5. 결론

이 연구는 구조물의 내진성능 향상을 위하여 보강구조부 계 및 수동형 감쇠기를 최적 배치하는 설계문제를 다루었다. 이는 두 시스템을 동시에 최적 설계할 수 있는 통합적설 계기법으로서 기존 순차적 설계를 포괄하는 장점이 있는 결과를 하여 복합시스템의 최적사용량에 대한 목목함수를 별도의 가중치없이 벡터형식으로 동시 최적화할 수 있는 다목적최적화기법을 도입하였다. 또한 구조물의 동작에 대한 목표성능도저수를 도입하고 이를 제한조건으로 치환함으로써 여러 개의 목목함수를 갖는 다목적최적화문제를 보다 효율적으로 다루었다.

실제를 통하여 제시하는 방법의 수립성을 확인하였으며, 이로부터 다양한 Pareto 최적해를 제시하였다. 비교의 대상으로 기존 설계방법에 상응하는 순차적 설계방법 및 가중합방법에 따른 단일 목적수 최적화방법을 도입하였으며, 이로부터 제시하는 통합최적설계방법에 따라 검색된 Pareto 최적해들이 보다 포괄적이면서 유연한 설계만을 제시할 수 있음을 검증하였다. 또한 이로부터 강성 및 감쇠장치의 사 용량에 따라 3가지 대표설계안을 선택하고, 다양한 지진하중에 대한 개별변수연구를 수행하였다. 3가지 설계안을 비교한 결과, 장주기 성분의 지진하중에 대하여는 강성을 많이 사용하는 것이 유리한 반면, 일반적인 고주파 대역은 많이 포함하는 단주기 조건에 대해서는 감쇠기를 사용하는 것이 보다 강한 성능을 확보할 수 있음을 확인하였다.

제시하는 방법은 강소방와 감쇠장치의 사 용량에 따라 다양한 최적설계안을 손쉽게 도출할 수 있으므로, 후처리과정에서의 비용분석을 통하여 보다 합리적인 설계만을 제시하는 데 도움을 줄 수 있다. 그러므로 구조물의 내진성능 향상을 위한 설계방법으로서 효율적으로 적용될 수 있을 것으로 기대된다.

김사의 글

이 논문은 2006년 정부(교육인재시절의 지원)으로 한국학술진흥재단의 지원을 받아 수행된 연구(KRF-2006-214-D00164)이며, 그 재정적 지원에 감사드립니다.

참고 문헌