Effect of Some Herbal Extracts on Entomopathogenic Nematodes, Silkworm and Ground Beetles

Dong Woon Lee¹, Hyeon Cheol Choi², Tae Su Kim¹, Jong Kyun Park¹, Jung Chan Park,
Hwang Bin Yu, Sang Myoung Lee³ and Ho Yul Choo*

Division of Applied Life Science (BK21), Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Gyeongnam, 660-701
¹Department of Applied Biology, Kyungpook National University, Sangju, Kyungpook, 742-711
²Young II Chemical Co., LTD., Sungnam, Gyeonggi, 463-050
³Southern Forest Research Center, Korea Forest Research Institute, Jinju, Gyeongnam, 660-300, Republic of Korea

ABSTRACT : Effect of four nematicidal herbal extracts (Daphne genkwa, Eugenia caryophyllata, Quisqualis indica and Zingiber officinale) and 3 acridical herbal extracts (Pharbitis nil, Xanthium strumarium, and Desmodium caudatum) on entomopathogenic nematodes [Steinernema carpocapsae Pocheon strain (ScP) and Heterorhabditis sp. Gyeongsan strain (HG)], silkworm (Bombyx mori), and ground beetles (Synamus sp.) were investigated in the laboratory and field. D. genkwa was highly toxic to ScP and HG (100% mortality) at the concentration of 5,000 ppm in X-plate. All the infective juveniles of HG were dead after 3 days by E. caryophyllata and Q. indica. The mortality of ScP and HG was below 10% by D. genkwa, D. caudatum, E. caryophyllata, Q. indica and Z. officinale at the concentration of 1,000 ppm two days after treatment while mortality of HG was 62.8% by D. genkwa at the concentration of 1,000 ppm in X-plate. However, 1,000 ppm had not effect on nematode survival and pathogenicity of ScP in sand column. On the contrary, E. caryophyllata had effect on pathogenicity of HG. Mean number of dead Galleria mellonella larva of HG was 0.5 in E. caryophyllata treatment. Q. indica did not effect silkworm reared on mulberry leaves at the treatment of 1,000 ppm in 10 days after treatment. However, there were 20.0 and 100% mortalities in the treatment of D. genkwa 3 and 10 days after treatment, respectively. The weight of silkworm was low in D. genkwa and did not pupate. The weight of pupa and cocoon were not different in E. caryophyllata, P. nil, Q. indica, X. strumarium and Z. officinale. D. genkwa, E. caryophyllata, P. nil, Q. indica and Z. officinale had no effect on ground beetles, Synamus sp. in forest soil.

KEY WORDS : Herbal extracts, Environmental friendly agricultural materials, Entomopathogenic nematode, Silkworm, Ground beetles, Safety

초 록 : 삶ان충 환성을 저닌 4종의 약용식물, 원화(할 StringTokenizer: Daphne genkwa), 정향(Eugenia caryophyllata), 사군자(Quisqualis indica) 및 건강(생강: Zingiber officinale)과 살비활성화 가진 혼탁(나팔꽃: Pharbitis

*Corresponding author. E-mail: hychoo@gma.ac.kr

— 335 —
nil), 창이자(도모바리: Xanthium strumarium), 청주황(월양주: Desmodium caudatum) 추출물을 이용하여 천식 미생물인 곤충병균성 선충 [Steinernema carpocapsae 포천병사(Scp)와 Heterorhabditis sp. 경산병균(HG)], 유충사진의 누에(Bombyx mori) 및 환경지표종인 멜론바레(Synchus sp.)에 미치는 영향을 조사하였다. 실험 X-plate에서 한약재 추출물을 5,000 ppm 처리에서는 원화의 경우 두 선충 모두 처리 2일 후 100% 치사하였고, HG는 정량과 사군자 처리에서 100% 치사되었다. 1,000 ppm 농도에서는 두 선충 모두 처리 2일 후 10% 이하의 낮은 치사율을 보였으며 원화 처리에서 HG선충이 62.8%의 치사율을 보였다. Sand column 검정에서 1,000 ppm 농도의 한약재 추출물 처리는 Scp 선충의 생존과 병원성에 차이를 보이지 않았으나 HG선충은 정량 추출물 처리에서 가장 낮은 병원성을 보여 0.5마리의 헐.Dispose면한 유충만을 치사시켰다. 원화, 정량, 사군자, 육목, 창이자, 건강이 누에의 생존에 미치는 영향에서는 원화 추출물을 처리한 토양을 급상한 처리구에서는 급상 3일 후에 20%의 치사율을 보였고, 10일째에는 모든 누에가 사용되기 과정과 반대하기로 형성한 못하였다. 누에의 체도는 원과 처리에 가장 낮았으나 원화 처리를 제외한 모든 추출물 처리에서는 누에 반대기의 무게 변화가 주의해야하기가 하였다. 원화, 정량, 사군자, 육목, 건강은 면지 범례에 영향을 미치지 않았다.

검색어: 한약재 추출물, 창환경 농자재, 곤충병균성선충, 누에, 면지험, 안전성

작물의 증종개발이나 화학비료의 사용, 농약의 개발과 이용에 의해 농업생산성의 증대를 가져왔으나 부수적으로 과도적이나 농업생태계로, 저항성의 증강 같은 문제를 도출시켰다(Kim, 2005). 특히 해충의 경우 농약임계도의 변화로 인하여 잠재적공의 해충화나 곤충단의 단순화, 자연계의 병행 파괴와 같은 문제들을 야기하고 있고, 이러한 문제를 농업적으로 극복하기 위하여 곤충병균성자재이나 곤충병균성선충, 패로몬, 식물제 deem 살충점질과 같은 생물농약이 대체되므로 강구되고 있다(Menn and Hall, 1999). 특히 식물 살충제들은 포유동물에 대한 낮은 독성과 낮은 해충 저항성 축면 의학성, 비교적 해충에 대한 낮은 위험성, 비교적 적은 가격 등의 장점들을 갖추고 있어(Prakash and Rao, 1996) 지상부 해충은 물론 지하부 해충이나 식물기생 산충의 방제 인자로 활용하고자 하는 연구들에 활발히 수행되고 있는데(Hackney and Dickerson, 1975; Hiremath et al., 1995; Alexander and Willenmaier, 2002; Zasada et al., 2002; Kong et al., 2006; Elbadri et al., 2008a, b; Ranger et al., 2009) pyrethrum이나 rotenone와 같은 식물계 해충 살충 물질들은 160여 년 전부터 상업화되어 이용되고 있으며(Isman, 1999) 남(ねん) 나무의 생물살충제는 세계 39개국에서 150종 이상의 제품이 생산되고 있다(Koul, 2004).

우리나라는에서는 한약재 유래 병해충 방제용 활성물질의 탐색에 대한 연구가 활발히 이루어지고 있는데(Chun et al., 1999; Lee et al., 2000; Elbadri et al., 2008a, b) 이러한 결과들을 바탕으로 다양한 창환경 농자재들이 시판되고 있다. 본 실험에 이용한 패포나무(Daphne genkwa)와 정량나무(Syzgium aromaticum), 사군자(Quisqualis indica) 및 창화(Zingiber officinale)는 식물기생병균성 산충에 살충활성이 있는 한약재이며(Elbadri et al., 2008a, b), 패포나무(Pachyrrhizus nil)의 도모바리(Xanthium strumarium)는 잠바이유에 대하여 살충활성을 가지는 한약재인가(Unpublished data) 정량나무나 창화, 도모바리는 살충활성이 가지고 있다(Prakash and Rao, 1997; Gokee et al., 2006). 패포나무는 생약으로는 주로 꽃봉오리약으로 사용하는데 꽃에 genkwani, apigenin 등이 함유되어 있고, 정량나무는 생약으로 마크호 꽃봉오리약에 사용하고 phenylpropanoid 계열의 Eugenol이 다양 함유되어 있다. 사군자는 친염살충제로 사용하고 있는 약용 식물이며, 생약에는 gingerol, zingiberone, zingiberol, shogaol 등이 함유되어 있다. 나팔꽃의 싹에는 pharbitin이나 gallic acid, nifolic acid 등이 함유되어 있고, 도모바리 매향에는 xanthinin이나 xanthanol, isoxanthanol 등이 함유되어 있다. 전장균(Desmodium caudatum)은 swertisin, canavanine 등을 함유하고 있는데 접지면역에 쓰는 구리 가 방지용으로 이용되는 식물제이다(Bae, 2000).

창환경자재는 화학 비료나 농약을 투여하지 않고 작물의 생장을 충전하거나 방충해를 방치할 수 있는 농자재로, 식물제 추출물이나 천연자원 가공물질 등이 이에
속하는데 룬물에 직접적으로 영향을 미치지 않더라도 자
연적이고 친환경적으로 룬물의 성장에 도움이 되는 것
들도 친환경자재에 포함될 수 있다. 그러나 친환경자재
역시 명확하게 배재할 수 있는 룬체계가 어렵기 때문에, 룬
에나 물과 같은 유용성과 이전의 비정형 생물에
약화력을 미칠 수도 있었다.

대표적인 식물유래 살충제물질인 네오(nem)의 경우 무상
병해에 대해 농도의 의존적 치사율을 보여 룬이 비정형적
점에 대해 영향을 미치다고 하였고(Banken and Stark,
1997), Stark (2004)도 룬이 비정형 생물에 유해하다고
하여 식물유래 살충할성제제들이 유용성과 비정형
생물에 유해함을 제시하였다. 우리나라에서는 살충이나
살충의 또는 살비활성을 가지는 식물제와 식물지 추출물
또는 친환경 룬체제가 비정형 생물이나 전적이며 비치
는 영향을 연구한 시례가 매우 적는데 Yu et al. (2006)
은 일부 친환경성제제들이 기생성 친환경재에 유해함
을 보고하였고, Hwang et al. (2009)은 벌육수과 고사
름 포함한 친환경 룬체제가 포식성 전적이며 이 용량에
영향을 미친다고 하였다.

곤충병원성 선충군 룬체제의 해충에 대하여 환경요원
이나 부작용 없이 해충의 발도를 감소시킬 수 있는 활
용가치가 높은 생물학적 방해제용 방식으로(Nickle,
1984) 기주범위가 넓고, 기주만해 능력이 뛰어나며 기
주에 따라 농도의 병원성과 48시간 이내에 기주를 치사시
키는 신속한 효과를 갖고 있어, 수목주의 집업생 해충
은 물론 토양이나 곤실 내 농작물 전류 문제 등으로 인해
농작물 사망을 예방할 수 있는 경우에 매우 유용하며, 인축에
대해 안전하기 때문에 환경친화적 해충방제수단으로
너리 활용되고 있다(Gaguler and Kaya, 1990). 현재 우리나라으로는 건축이 생물학적 방해제로 사용되어
시계를 제한해 하충방제를 중심으로 활용되고 있다.

누에(Bombus mori)는 의류 소재로서 경사를 생산하
는 것 이외에도 비의류 소재로서 비누나 화장품과 같은
천연미용제료, 동축하차와 같은 기능성식품의 원료, 실
혈동물이나 생물자원으로 이용 등 다양한 산업적 기
차를 가지고 있는 현충이다(Nam and Ma, 2000). 누에는
환경변화에 의한 스트레스에 의한 해충을 해방
받는 곤충으로 개발 또는 상용화 되어 있는 모든 농약
들은 농업에 대한 영향을 조사하고, 이를 고지하고 있다.

지표 보행성 막쟁벌레인 면갈벌레(Carabidae)는 환경
오염이나 식물화의 질적 변화가 많은 환경변화의 지표
으로 활용되고 있는데(Desender et al., 1994) 우리나라
산지에서도 보편적으로 사용하는 종으로 특히 Synochus
속의 유난막염벌레(S. nitidus)와 붉은열막염벌레
(S. cycloederus)가 우점이다(Lee and Lee, 1995; Kubota
et al., 2001; Kwon et al., 2003; Yeon et al., 2005).

따라서 본 연구는 삼성출 및 삼충, 살비 활성을 가지
있으며 친환경자재로서 이용 가능성이 있는 7종의 약
용성 식물 추출물이 자원용충 룬체와 생물학적 방해제
병원성제로 곤충병원성 선충, 그리고 환경지표종인 면
지레에 미치는 영향에 대해 알아보고자 수행하였다.

재료 및 방법

한약재 추출

실험에 이용한 한약재들은 밤꽃나무의 곱슬오리인 원
화와 정향나무의 꽃봉오리인 정향, 사귀차의 종자인 사
근차, 생강의 뿌리줄기인 건강, 나팔꽃의 싹인 흔족,
도고매의 열매인 장치, 원장환의 과일과 잎인 정주
향을 이용하였다. 원종은 예족에 서귀포의 자생지
에서 채취하여 이용하였으며 나머지 한약재는 서울 경
동시장의 한약 건재상에서 수입으로 구입하여 이용하
았었다.

각 한약재들의 추출을 위하여 준비된 식물체들은 설
험실 실험에서 1~2주 동안 움직이지 않도록 조건시킨 뒤, 가
정용 빗겨기(HMF-370, Korea)를 이용하여 고온
분말이 될 때까지 분쇄하여 3 mm 체로 제조하였다. 식물체들이 과 건강과 원장환은 methyl alcohol 추출법으
로 추출하였고, 열매분말을 이용한 원화와 정향, 사귀
차, 흔족, 장치는 hexane 추출법을 이용하여 추출하
였다.

Methyl alcohol 추출은 식물체 분말 100 g을 계량하여
500 ml Erlenmeyer flask에 넣고, 식료가 잡길 때까지
methyl alcohol을 부었다. 그리고 실온의 48시간 동안
정지시키고, 여과기(Sanyo 90 mm Ø, No. 2, Japan)를
이용하여 고형물을 걸러내고, 양분수 500 ml 등근 플
라스크에 넣었다. 고형물은 다시 500 ml Erlenmeyer flask
에 넣고, 매번 물이 잡길 때까지 넣은 다음 동일한 방법
으로 양분수를 수집하였는데 3차례에 걸쳐 수행하였다.
양분수는 단단 플라스크는 Rotary vacuum evaporator
(EYELA, N-12, Japan)을 이용, 강압 농축하여 식료를
제제한 뒤 10 ml glass vial에 담아 수용량을 계산하고,
4℃에서 보관보관 하였다.

Hexane 추출은 식물체 분말 100 g을 계량하여 500 ml
Erlenmeyer flask에 담고, 시료가 잡길 때까지 hexane를 부었다. 그리고 실온에 48시간 동안 정지시켜, 여과지(Sanyo 90 mm Ø, No 2, Japan)를 이용하여 고형품을 거리내고, 액상품은 500 ml 라운드 플라스크에 넣었다. 고형품은 다시 500 ml Erlenmeyer flask에 넣고, hexane이 잡길 때까지는 다음 동일한 방법으로 액상품을 수집하였는데 3차례에 걸쳐 수행하였다. 액상품이 담긴 플라스크는 Rotary vacuum evaporator (EYELA, N-12, Japan)를 이용 갯갈 농축하여 시료를 정제하여 10 ml glass vials에 담아 수용을 계산하고, 4℃ 냉장보관하였다. 각 약제 추출물의 수용은 원화가 3.7%, 정량은 22.3%, 사구가 12.1%, 건강이 7.0%, 흡관이 11.4%, 강아지가 9.8%, 원장품이 17.2%였다.

시험 공시종

콘충병원성 선충

콘충병원성 선충은 국내에서 시료받고 있는 Steinernema carpocapsae GSN-1 계통(ScP)과 Heterorhabditis sp. Gyeongsan 계통(Hg)을 콘충바이병나방(Galleria mellonella)에서 증식시킨 실험에 이용하였는데 수확한지 2주 이내의 건강한 선충을 이용하였다.


누에

경상북도 농업기술원에서 분양받은 백옥잠을 경북대학교 상주캠퍼스 일부장치 잔실에서 3월까지 일반 농법으로 건식시켜 사육한 뒤 잡여제 추출물을 처리된 농법을 유효한 때까지 급장하였다.

먼지벌레

정남 전주시 가좌동의 남부산림연구소 가좌시험원에서의 피들 테스트를 이용하여 먼지벌레를 채집하였는데 적정 9 cm의 플라스틱 용기에 부동백과 고생류 등을 넣어 유인하여 채집하였다. 채집된 먼지벌레는 마다가스카르 플라스틱 용기(55 cm × 35 cm × 20 cm)에 넣어 상온(24 ± 0.5℃)에서 사육하였다. 동종포식 및 자연 치사율을 줄기 위하여 채집한 후 2일 이내 실험에 사용하였다.

곤충병원성 선충에 미치는 영향

X-Plate 실험

원화와 정장, 사구가, 건강, 원장품의 한약재 추출액을 2,000 ppm, 10,000 ppm으로 흡식하여 사용하였는데 추출액 1 g 당 3 ml의 메탄올을 첨가하여 시료를 녹인 후 살균수를 첨가하여 사용하였다. 흡식한 추출액을 X-plate에 각각 3 ml씩 낮고, 각각의 cell에 콘충병원성 선충, ScP와 HG 300마리씩 3 ml씩 피펫으로 처리하였다. 5,000 ppm 처리구는 처리 3일후에 조사하였으며 1,000 ppm 처리구는 3일째까지 매일 치사기인을 이용하여 치사 유무를 조사하였다. 치사된 개체는 레이스 처리한 후 처리한 후 치사유무를 판정하였다(Kaya and Stock, 1997; Lee et al., 1999). 무처리구는 한약재 추출물 처리구와 동일한 조건으로 메탄올을 처리 한 후 X-plate에 각각 3 ml씩 넣고, 선충을 접종하였으며 4반부으로 처리하였다.

Sand column 실험

Sand column 실험은 직경 2.5 cm, 높이 3 cm 피프로의 2.5 cm 지경에 2 mm 간격의 철판을 고정시킨 용기 를 이용하여 실험을 수행하였다. 살균시켜 전조사진 모래를 살균수를 이용하여 수분을 10%로 조절한 후, 용기의 끝면 아래부분에 콘충바이병나방 노속유충을 5마리 넣고, 모래를 제운 뒤, 용기 외부로 탈출을 막기 위하여 투명한 껍지를 커버하였다. 용기의 외부에는 수분 10% 함유한 모래를 가득 채운 후, 용기를 한 개 더 연결시키고, 여기에 도 수분 10% 함유한 모래를 가득 채웠다. 위 껍지를 상부에 X-plate 실험과 동일한 방법으로 조사한 한약재 추출물을 2,000 ppm 농도로 조절하여 추출물 0.5 ml에 500마리 농도로 조절한 콘충병원성 선충 0.5 ml를 혼합해 넣은 위 sand column 위에 살포하고, 72시간 후에 sand column 내 선행수와 콘충바이병나방의 치사유무 등을 조사하였다. 각각의 용기를 내부 모래에 존재하는 선행은 Baermann 칼데기 방법으로 분리하여 살아있는 선행수를 조사하였으며 콘충바이병나방 유충의 치사율을 조사한 후 유충을 해부하여 몸속에 있는 치사선수도를 조사하였다. 한 개의 용기를 한 반씩으로 3반씩 처리하였으며 대조군은 살균수에 한약재 추출물 처리 시와 동일한 농도의 메탄올을 처리하여 살포하였다.

누에에 미치는 영향

X-plate 실험과 동일한 방법으로 흡식한 1,000 ppm
농도의 한약재 추출물(원화, 정향, 사군자, 후추, 장이자, 건강)을 한 가지 당 10-15입이 담긴 봉투에 가정용 스프레이로 살포한 후, 수분을 제거하기 위해 30분간 응전시켰다. 응전시킨 뒤에 모두 가지에서 뽑아낸 가정용 지퍼백에 넣은 후, 경북대학교 상주캠퍼스 부속농장 잠실의 지하장고에 보관하였다. 무처리군은 한약재 추출물 처리와 동일한 농도의 메탄올을 물에 첨가하여 살포한 뒤 응전시키 이용하였으며 4팀 1일째부터 10일간 하루 3번씩 급상하였다. 두 가지의 생육 상황을 고려하여 양을 조절하여 급상하였다. 두 가지의 사육은 25 cm × 30 cm 크기의 플라스틱 바구니에 신희지 두 장을 깔고, 각각의 한약재 추출물을 처리한 봉투를 넣고, 4팀 1일째의 두께 15마리씩을 넣은 후, 변형기가 되기 전까지 한약재 추출물을 처리한 봉투가 급상하였 다. 5팀 1일째 각각의 유종 무게를 조사하였으며 고지 형성 후 조치무게와 변형기에 무게를 조사하였다. 실험은 두께 15마리의 한반복으로 3반복 수행하였다.

먼지벌레에 미치는 영향

한약재 추출물(원화, 정향, 사군자, 후추, 건강)이 먼지벌레에 미치는 영향은 먼저별레를 제작한 남부산림연구소 가족시험실에서 수행하였다. 스틱폼 용기(55 × 35 × 20 cm)를 토양에 5 cm 깊이로 묻은 후, 산지의 표면토양과 높이가 같도록 스틱폼 용기에 내 2-3 cm 정도의 토양을 넣었다. 토양이 들어있는 용기 내에 각 처리구 당 먼지벌레(Synuechus sp.) 10마리씩을 방사하고 각 처리구 당 X-plate 실험과 동일한 방법으로 희석한 1,000 ppm 농도로 희석시킨 각각의 약물을 추출액 50 ml씩 가정용 스프레이로 살포하였다. 무처리군은 실온수에 한약재추출물 처리에 사용한 양과 동일한 농도의 메탄올을 첨가하여 처리하였다. 실험은 3반복으로 실시하였으며, 처사율 조사는 처리 후 5일 동안 매일 조사하였다.

통계분석

X-plate에서 한약재 추출물이 곤충병원성선충에 미치는 영향과 한약재 추출물이 농업에 먼저별레의 생존에 미치는 영향은 처사율을 구하여 arcsinh 변환하여 Tukey's Studentized Range Test로 처리평균간 차이를 검정(PROC ANOVA)하였으며 sand column내에서 곤충병원성선충의 생존수와 골절부채명나방 처사율, 골절부채명나방 유충 체내 정착 침각수, 농예 유충과 변형기 및 조사 무게는 Tukey's Studentized Range Test로 처리평균간 차이를 검정(PROC ANOVA)하였다(Cho, 2006).

결과

약물 친속 추출물이 곤충병원성 선충에 미치는 영향

X-plate 실험

5종의 약물설 추출물은 약물병원성 선충에 처리한 결과, 처리 추출물에 따라 곤충병원성 선충의 생존에 미치는 영향이 차이가 있었다. 5,000 ppm 처리에서는 ScP의 경우 원화 추출물 처리에 처리한 3일 후 100% 침각하였으며 사군자로도 높은 침각율을 보였다(Fig. 1). 반면, 원화과 건강처리에는 낮은 침각율을 보였다(df=5, 18, F=307.7, P<0.0001). HG는 원화와 건강암, 사군자 추출물 처리 모두에서 100% 침각하였고, ScP에서는 낮은 침각율을 보였던 원화 처리에서도 53.7%의 침각율을 보였다(df=5, 18, F=471.3, P<0.0001). 1,000 ppm 농도의 한약재액에 곤충병원성선충을 처리하였을 때에는 5,000 ppm 처리에 비하여 현저히 낮은 침각율을 보였다(Fig. 2). ScP의 경우 처리 1일째와 2일째에는 무처리군과 침각율이 차이가 없었고, 처리 3일째에만 차이를 보였는데 가장 높은 침각율을 보인 원화처리에서도 2.9%의 매우 낮은

Fig. 1. Mean mortalities (%) of entomopathogenic nematodes, Steinernema carpocapsae GSN-1 strain (ScP) and Heterorhabditis sp. Gyoeungsan strain (HG) by different herbal extracts at 5,000 ppm after 3 days of exposure in X-plate. The same lower and upper case letters above the bars in each treatment indicate no significant difference among the means (Tukey's Studentized Range Test at P<0.0001).
치사율을 보였으나(df=5, 18, F=8.1, P<0.0004). HG의 경우도 처리 1일째와 2일째에는 5.3%이하의 낮은 치사율을 보였고, 처리 3일째에는 원화 처리에서 62.8%의 치사율을 보였다(df=5, 18, F=99.9, P<0.0001).

Sand column 실험

한약재 추출물이 성충의 토양 내 이동에 미치는 영향을 알아보기 위하여 sand column 내에서 토양 깊이별 성충의 생존수를 알아본 결과, ScP는 무처리구와 생존수 차이가 없었으며 대부분 0-2.5 cm 이내의 표면층에 서식하였다(Fig. 3A). 반면 HG는 사균자 처리에서 생존 성충수가 적었으며(df=5, 18, F=3.6, P<0.0192) 0-2.5 cm 구간과 2.5-5 cm 두 구간에 분산되어 분포하고 있었다(Fig. 3B).

Sand column 내에서 한약재 추출물이 곤충병원성 성충의 병원성에 미치는 영향을 알아보기 위하여 곰벌부재병난방용의 치사증 수를 조사한 결과, Fig. 4에 같이

저 처리의 차이가 있었다(df=5, 18, F=3.3, P<0.0267).

이들 결과를 합치면, 한약재 추출물의 병원성에 영향을 미치는 것을 알 수 있다.
Fig. 5. Effects of 1,000 ppm herbal extracts on establishment of entomopathogenic nematodes, Steinernema carpocapsae GSN-1 strain (ScP) and Heterorhabditis sp. Gyeongsan strain (HG) in Galleria mellonella larvae after 3 days of inoculation in sand column.

Fig. 6. Effects of herbal extracts on mortality of silkworm (Bombyx mori) larvae. Silkworm larvae were fed on mulberry leaves treated with 1,000 ppm herbal extracts from first day on 3rd instar to last day on 5 instar.

Fig. 7. Effects of herbal extracts on silkworm (Bombyx mori) larval weight (A), pupa weight (B), and cocoon shell weight (C). Silkworm larvae were fed on mulberry leaves treated with 1,000 ppm herbal extracts from first day on 3rd instar to last day on 5 instar. All silkworms were fed on Daphne genkwa treated mulberry leaves in larval stage. The same lower case letters above the bars in each treatment indicate no significant difference among the means (Tukey’s Studentized Range Test at P<0.0001).

한약제 추출물이 눈에 미치는 영향

한약제 추출물이 눈에의 생존에 미치는 영향을 알아 보기 위하여 실험을 수행한 결과 사군차 처리에서는 처리 10일째까지 치사한 눈이 없었으나 원화는 급상 3일 후부터 20%의 치사율을 보였고(df=6, 14, F=11.2, P<0.0001), 5일째에는 73.3%(df=6, 14, F=41.3, P<0.0001), 10일째에는 모두 눈이 치사하였으며 정상이나 건강추출물 처리에서는 처리 10일째까지 2.2%의 낮은 치사율을 보여 무처리와 차이가 없었다(df=6, 14, F=73.4, P<0.0001)(Fig. 6).

5일 1일째 눈의 채종은 원화 추출물을 처리한 봉일 급상 처리에서도 한 0.2 g 내외로 무처리와 차이를 보였으며 다른 추출물 처리체에서 차이를 보이지 않았다(df=6, 14, F=38.6, P<0.0001)(Fig. 7A). 특히 원화 추출물 처리체 눈에는 처리 3일째부터 치사하는 개체가 나 타나기 시작해 처리 10일 만에 처리체의 모든 개체가 치사되었다.

한약제 추출물 처리 봉일을 규상한 눈의 반대가 무게를 측정한 결과, 유효가에 모든 개체가 치사한 원화 추출물 처리를 제외하고는 무처리와 비교하여 차이가 없었다(Fig. 7B). 눈에고치의 무게도 무처리와 차이가 없었다(Fig. 7C).
작은 양의와 형태를 둔 Daphne genkwra의 잎은 런크로의 영향을 미치지 않았다(Fig. 8).

한약재 추출물이 민지벌레에 미치는 영향

환경평가를 위한 지표중으로 활용가능한 Synochus 속의 민지벌레들을 이용하여 한약재 추출물이 생존에 미치는 영향을 조사한 결과, 정장 추출물 처리구에서 부처리에 비해 10% 가량 높은 살충률을 보였으나 통계 적 유의성은 없었다(Fig. 9).

정장 추출물 처리구는 처리 1일 후부터 10% 이상의 치사율을 보였으며 접착 증가하여 5일일때는 20%의 치 사율을 보였으나 곤충병원성 천충과 두개에 높은 치 사율을 보였던 원화 추출물 처리자에서 살충률은 매우 낮았으며 사군자 추출물 처리구에서는 치사한 개체가 전혀 없었다.

고 참고


본 실험에 이용 된 원화와 원감종, 정장, 사군자, 건강의 추출물들은 뿌리흡수체 M. incognita에 살충작용이 있으며 (Unpublished data) 정장과 원화, 원감종은 논의 부화를 저해하고(Elbadi et al., 2008b), 정장과 생강은 소나무계돌 sẵn(Bursaphelenchus xylophilus)에도 살충작용이 있는 것으로 알려진 식물체이다(Elbadi et al., 2008a).

따라서 본 실험에서는 식물체추출물과 곤충병원성 천 충을 동시에 사용 할 경우를 가정하여 혼합하여 보관 할 경우(X-plate 실험)의 혼합하여 토양에 살포하는 경우
Lee et al.: Effect of herbal extracts on entomopathogenic nematodes etc.

(sand column 실험)를 가장하여 실험을 수행하였는데 X-plate상에서 수행한 실험이는 양약추출물의 농도가 곤충병합성 선충의 성생에 영향을 미쳤다. 즉, 1,000 ppm 농도에서는 ScP의 경우 5% 이하의 낮은 치 사율을 보였으나 5,000 ppm 농도에서는 전장플록과 건강 을 제외하고 높은 치사율을 보였다. 당근뿌리흡식충에 대해서도 외한 추출물 처리 시 1,000 ppm 농도에서는 처치 21일 후 45.5%의 농이 부화하였으나 10,000 ppm 농도에서는 21.8%의 농이 부화되어 농도 의존적 저해 가 일어났다(Elhadiri et al., 2008b). 그리고 HG는 외 한 처리의 경우 1,000 ppm 농도에서도 60% 이상의 치 사율을 보였고, 전체적으로 ScP를 비하여 치사율이 높 게 나타났다. 곤충병합성 선충의 성생은 온도나 건조, 영류농도, 선자료, 농약 등의 인자에 영향을 받는데 이 러한 인자들에 대한 내성의 정도는 유리관 어종의 조성이 나 무개, 전기간과 같은 자연재료들의 개체 개념 등에 따라 상이하고, 특히 유리관응은 종마다 영향받아 점차 성립에 따라 상이하며 이러한 것이 성장과 밀접한 관련이 있는 것으로 알려져 있다(Glazer, 2002).

두 곤충병합성 선충 모두 5,000 ppm 농도의 외한 추 출물 처리에서 100% 치사하였는데 패탈나무(황황)와 동 속에 속하는 사방(Daphnia odora)의 경우 odoracin과 odoratin이라는 성충활 성장 물질이 뿌리로부터 분리 되었고, Aphelochlamides besseyi 선충에 대한 성충활 효 과도 보고되었다(Praakash and Rao, 1997).

곤충병합성 선충을 양약추출물과 혼합하여 토양에 처리한 경우 토양 내에서 성생분과 토양 동력은 ScP의 경우 처리범위로 차이가 없었다. 반면 HG의 경우 사 근자 처리의 건강 처리구에서 성생수에 차이를 보였고, 표면에서 2.5 cm 구간은 성충 수가 정량처리에서 가장 적었다. 결론부에서나방에 대한 병원군은 ScP의 경우 처리 간 차이가 없으나 HG의 경우 정량처리에서 가장 낮게 나타났다. 이는 토양향해 방책을 위하여 HG와 정량을 혼합하여 실험한 경우 HG의 병원군에 영향을 줄 수 있는 가능성을 시사하는 결과이다. 그리고 외한 추출물은 X-plate에서는 처치 3일째 1,000 ppm 농도에서도 HG의 생존에 영향을 미쳤으나 sand column에서 동일 농도 처리에서 전장플록이나 사근자 처리에 비하 여 다소 낮은 병원성을 보였는데 이는 X-plate보다 추 출물에 직접 노출되는 시간이 짧고, 토양 내에서 이동 에 의해 접촉할 기회가 적기 때문에 생각된다. 한편 ScP의 경우 치료 부근에서 관찰되는데 이는 HG의 경우 상대적으로 토양 내 속으로의 이동이 많았는데 이는 두 선후의 토양 내 수직적 분포의 일반적 양상으로 알려져 있다(Ferguson et al., 1995).

회의 수출물은 1,000 ppm 농도에서 무에에 강한 살충 활성을 보였다. 조류의 식물나무와 동숙에 속하는 사방 에의 경우 뿌리와 수패로부터 분리된 daphodrin A와 B, C가 담배자세미나방(Spodoptera litura)과 팔라브구미 (Callosobruchus chinensis)에 살충활성이 있는 것으로 알려져 있는데(Inamori et al., 2007) 무에에 대하여 원 외 수출물 처리가 살충활성이 높은 것으로 보아 식이성 해충에 대한 환경질에 필요로 것으로 생각되며 아울 러 봉하 주변에서 외한 추출물이 나무목을 사용 하는 것은 제한적이어야 할 것으로 생각된다. 외한 수출 물을 제한 할 식량물질들은 무에의 생육이나 고지형성 에 영향을 주지 않는 것으로 나타났다.

한약계 추출물 성분이 포함된 방책제를 곤충이나 산 간지 주변의 괴작직에 처리하였을 때 비가별레와 같은 비가점 토착 생물에 미치는 영향을 검토하기 위하여 산 간지에서 실현을 수행한 결과 처치 5일째까지 무처리구와 지사용에 차이를 보이지 아니하여 영향을 주지 않는 것으로 나타났다.

전환경 농지내나 전환경유기농 재배지에서 사용이 가능한 선충제 또는 살충 활성을 가지고 있는 몇 가지 한약계 추출물 비변형 병원군 친절 미생물인 곤충병합성 선충 과 유충균이라는 두, 환경 지표종인 면지벌레에 미치는 영향을 조사한 결과 정당 추출물은 sand column 내에서 곤충병합성 선충 HG의 병원성에 영향을 주었고, 외한 추출물은 무에에 대하여 높은 살충활성을 보였다. 따라서 이들 추출물의 사용 시 주의를 요하며 비록 본 실험에서 다루어지지 못한 다른 여러 가지 식물체 추출 물도 이러한 비교적 유용 생물에 대한 모니터링이 필요할 것으로 생각된다.

사 사

본 연구는 농림수산식품부 농림기술개발사업의 지원에 의해 수행한 결과이다. 곤충병합성선충 실험 조사에 도움을 주신 경상대학교 선충실험실원들에 사의를 표 한다.

Literature Cited


(Received for publication July 17 2009; revised September 16 2009; accepted September 17 2009)