A Study on the Development of Torso Pattern for an Automated Order–based Manufacturing System* – focused on women in the twenties –

ABSTRACT

An efficient torso pattern has been developed to cope with the future trend of order–based, individualized production like the E.C.(Electronic Commerce) in the apparel industry, and to make a database foundation of automatic garment pattern drafting. For this purpose, a non–contact three–dimensional anthropometric measurement system was used to provide a lot of accurate body data for better individual fit, and an automatic pattern drafting system that can easily generate various size patterns and construct a pattern database has been developed too. The subjects of this research were 18 to 24 year–old women whose data had been gathered through the Korean national investigation of anthropometry for industrial standards in 1997 and various body shapes were analyzed by the measurements. And a special software system has been developed to verify the validity of newly proposed drawing rules. The results of sensory evaluation for appearance and moving fitness of the new torso pattern showed a significant improvement in individual fit even for the figures with large deviation from standard shape compared with the results of the traditional one.

Key words : Torso pattern, Order–based production, Automatic pattern drafting,
Three–dimensional anthropometric measurement, Body cross section diagram.
1. 서 론

80년대 이후의 각종 제품 생산은 상품위주의 마케팅으로부터 고객위주의 마케팅으로 전환하고 있으며 이러한 경향은 의류산업에 있어서도 예외가 아니다. 즉 기존의 기성복 대량생산체계에서의 일률화된 형태와 맞춤형에 대한 불만이 증가함에 따라 소비자들의 개별화 요구도 높아져, 이러한 소비자의 요구를 해결할 수 있는 주문맞춤복에 대한 관심이 커지고 있다. 미국과 일본, 영국 등지에서는 이 미 이러한 개념의 ARN(The Apparel Research Network) 연구가 진행중으로 상당한 성과가 보고되고 있으며 또한 AAVS (ARN Asset Visibility System) 등 의류유통의 소매, 도매, 생산자를 잇는 네트워크를 구상중에 있기도하다. 이러한 의류산업의 변화에 부응하여 웨어타도의 방법도 변화해야하며, 급격한 컴퓨터의 발달과 보급은 이러한 환경변화를 적합하게 대응하고 있다.

기존의 원형개발 연구는 수작업에 의한 원형제작 및 대량생산 방식의 기성복 제작을 목적으로 원형제작의 용이성과 다수의 소비자가 대한 맞춤형의 적합성을 우선으로 하였다. 그러나 앞으로는 컴퓨터의 급격한 발달과 보급으로 전자상거래를 통한 1:1 주문생산방식도 도입되며 또한 3차원 인체측정 기기의 발달로 소비자의 다양한 인체측정치의 확보가 용이해지는 등의 환경변화가 예상됨에 따라 선진국에서는 이의 활용에 대한 연구가 활발히 진행되고 있다. 따라서 본 연구의 목적은 의류산업의 경쟁력 확보를 위하여 개인별 주문생산을 위한 자동제도 원형을 개발하고자 한다. 원형개발을 위한 채형연구에서 기존의 기성복 대량생산 체계에서는 다수의 소비자에 적합한 원형의 개발을 위해 채형을 몇 개의 군집으로 유형화하고 일반화된 계산식을 통해 그 각각에 적합한 유형별 원형을 개발하였으나, 본 연구에서는 개인별 습문생산에 초점을 맞추어 일반화된 계산식이 아닌 각 개인의 부위별 측정치를 원형에 직접 적용하여 각 개인의 채형특성이 원형상에 반영되는 원형을 개발하고자 한다. 특히 채형에 따라 민감하게 반응하는 인자로 보고되고 있는 다트와 어깨부위의 다양한 형태가 반영되어 개인별 맞춤형을 더욱 향상시키도록 하며, C++언어를 사용하여 원형의 자동제도 프로그램을 개발하고자 한다.

2. 연구 내용 및 방법

2.1 연구대상


2.2 인체측정 및 자료 분석방법

간부의 체형분석 및 토르소 원형의 설계를 위한 인체측정항목은 【표1】과 같고, 직접 측정과 3차원 측정을 병행하였다. 레이저방식의 3차원 인체측정기를 사용하여 수평단면 중
항도를 작성하였으며, 수평단면의 2차원 용량
선 추출은 육각형법에 대한 가중평균법을 적
용하였다. 또한 18-24세 여성이 인체주수의
분포범위와 평균체형에 대한 자료는 국민체위
조사 자료(1997)의 평균, 최소치, 최대치 및
백분위수를 참고로 하였다.

3. 토르소 원형 설계와 관능검사

3.1 토르소원형 용어의 정의

![그림 1] 토르소원형 각 부위의 용어 정의

<table>
<thead>
<tr>
<th>표 1</th>
<th>연구원형의 설계를 위한 측정항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>높이항목</td>
<td>키, 허리높이</td>
</tr>
<tr>
<td>길이항목</td>
<td>앞·뒤목길이, 앞·뒤등길이, 앞길이, 등길이</td>
</tr>
<tr>
<td></td>
<td>목 앞 점 - 팔목지점</td>
</tr>
<tr>
<td></td>
<td>목 앞 점 - 어깨끝점</td>
</tr>
<tr>
<td></td>
<td>목 앞 점 - 앞지방량점</td>
</tr>
<tr>
<td></td>
<td>목 뒤 점 - 팔목지점</td>
</tr>
<tr>
<td></td>
<td>앞지방량점 - 팔목지점</td>
</tr>
<tr>
<td></td>
<td>앞지방량점 수직선과</td>
</tr>
<tr>
<td></td>
<td>가슴둘레선과의 교점간의길이</td>
</tr>
<tr>
<td></td>
<td>진동길이, 어깨길이, 배길이</td>
</tr>
<tr>
<td></td>
<td>목 뒤 점 - 어깨끝점</td>
</tr>
<tr>
<td></td>
<td>진동길이 4cm 앞 - 어깨끝점</td>
</tr>
<tr>
<td></td>
<td>목 뒤 점 8cm 앞 - 어깨끝점</td>
</tr>
<tr>
<td></td>
<td>목 뒤 점 15cm 앞 - 어깨끝점</td>
</tr>
<tr>
<td></td>
<td>앞·뒤거리방점사이길이</td>
</tr>
<tr>
<td></td>
<td>앞거리방점 - BL-WL</td>
</tr>
<tr>
<td></td>
<td>뒤거리방점 - BL-WL</td>
</tr>
<tr>
<td></td>
<td>영등이최돌출점길이</td>
</tr>
<tr>
<td></td>
<td>앞·멀·뒤영등이길이</td>
</tr>
<tr>
<td>들깨항목</td>
<td>목말toLocale, 진동둘레</td>
</tr>
<tr>
<td></td>
<td>가슴둘레, 가슴둘레앞·뒤로</td>
</tr>
<tr>
<td></td>
<td>하리둘레, 하리둘레앞·뒤로</td>
</tr>
<tr>
<td></td>
<td>배둘레, 배둘레앞·뒤로</td>
</tr>
<tr>
<td></td>
<td>영등이둘레, 영등이둘레앞·뒤로</td>
</tr>
<tr>
<td>나비항목</td>
<td>앞목너비, 뒤목너비</td>
</tr>
<tr>
<td></td>
<td>어깨너비, 가슴너비, 유효간격</td>
</tr>
<tr>
<td></td>
<td>하리너비, 영등이너비</td>
</tr>
<tr>
<td>두께항목</td>
<td>목 말래, 진동두께</td>
</tr>
<tr>
<td></td>
<td>가슴둘레두께</td>
</tr>
<tr>
<td></td>
<td>하리둘레, 배둘레, 영등이두께</td>
</tr>
<tr>
<td>기타항목</td>
<td>목목계, 로리저수</td>
</tr>
<tr>
<td></td>
<td>영등이둘레-가슴둘레</td>
</tr>
<tr>
<td></td>
<td>하리둘레/영등이둘레</td>
</tr>
<tr>
<td></td>
<td>가슴편평도(너비/두께)</td>
</tr>
<tr>
<td></td>
<td>하리편평도, 영등이편평도</td>
</tr>
</tbody>
</table>
3.2. 외관 및 동작적합성 관능검사

6명의 피험자에 대해 기존원형(위수영, 1995)과 연구원형을 평균(두께 0.38mm, 무게 161.2g/m²)으로 제작하여 외관에 대한 27항목과 5등급별(선자세, 걷는자세, 허리를 90도 굽히자세, 뒤로 섞은 자세, 앉은자세)로 9부위(목, 어깨, 가슴, 등, 전등돌래, 가슴돌래, 허리돌래, 배돌래, 엉덩이돌래)에 대한 동작적합성 관능검사를 실시하였으며, 리커트 타임의 5점 평정척도로 의복구성학 전공자 6인이 평가하였다.

3.3. 통계처리 및 분석

외관 관능검사의 평가 점수에 대한 6인의 상호일치도를 검토하기 위해 신뢰도 계수 (Chronbach's α)를 구하였으며, 기존 토로소원형과 연구 토로소원형의 비교를 위해 외관 및 동작별, 부위별 동작적합성 평가에 대해 t-test를 실시하였다.

4. 연구 결과 및 고찰

4.1 원형연구를 위한 체간부 형태분석


<table>
<thead>
<tr>
<th>체간부의 부위</th>
<th>치수의 분류</th>
<th>평균형 참고치수</th>
<th>토로서원형의 영향</th>
</tr>
</thead>
<tbody>
<tr>
<td>가슴돌래</td>
<td>작은형, 평균형, 큰형</td>
<td>78.00 ~ 85.20cm</td>
<td>앞 · 뒷봉, 허리바디의 양, 열선, 전등돌래</td>
</tr>
<tr>
<td>허리돌래</td>
<td>가는형, 평균형, 굽은형</td>
<td>62.20 ~ 69.00cm</td>
<td>허리바디의 양, 열선</td>
</tr>
<tr>
<td>엉덩이돌래</td>
<td>작은형, 평균형, 큰형</td>
<td>86.20 ~ 92.20cm</td>
<td>허리바디의 양, 열선</td>
</tr>
<tr>
<td>하리돌래와 엉덩이돌래의 비</td>
<td>하리를 잘록한 형, 평균형, 하리를 막edImage 형</td>
<td>0.71 ~ 0.76</td>
<td>하리돌래 감음분량, 열속기기의 극목, 다탕형</td>
</tr>
<tr>
<td>목자비와 두께</td>
<td>가는형, 평균형, 굽은형</td>
<td>35.20 ~ 37.95cm</td>
<td>목자비와 두께의 너비, 길이</td>
</tr>
<tr>
<td>어깨끝심 사이길이</td>
<td>총은형, 평균형, 굽은형</td>
<td>33.90 ~ 36.20cm</td>
<td>어깨끝심의 길이, 전등돌래선</td>
</tr>
<tr>
<td>어깨각도</td>
<td>숨은형, 평균형, 처진형</td>
<td>19.00 ~ 24.00°</td>
<td>어깨각도, 전등돌래선, 열선</td>
</tr>
<tr>
<td>허리돌래</td>
<td>총은형, 평균형, 굽은형</td>
<td>26.30 ~ 29.30cm</td>
<td>앞 · 뒷봉, 허리돌래, 전등돌래선, 열속기기</td>
</tr>
<tr>
<td>가슴돌래선에서 하리돌래선까지의 길이</td>
<td>작는형, 평균형, 긴형</td>
<td>0.82 ~ 0.89</td>
<td>앞 · 뒷삼각형, 긴형참여</td>
</tr>
<tr>
<td>하리돌래선에서 엉덩이돌래선까지의 길이</td>
<td>작는형, 평균형, 긴형</td>
<td>0.19 ~ 0.22</td>
<td>앞 · 뒷 · 엉덩이돌래</td>
</tr>
<tr>
<td>배두께</td>
<td>북방형, 평균형, 플랫형</td>
<td>1.78 ~ 3.20cm</td>
<td>앞허리 다양한탐 및 긴이, 엉덩이돌래의 길이, 배두께, 열선</td>
</tr>
<tr>
<td>엉덩이돌래</td>
<td>북방형, 평균형, 플랫형</td>
<td>3.10 ~ 4.80cm</td>
<td>앞허리돌래, 위허리의 돌래, 엉덩이돌래의 길이, 열선</td>
</tr>
<tr>
<td>엉덩이돌래</td>
<td>총은형, 평균형, 굽은형</td>
<td>30.20 ~ 32.40cm</td>
<td>앞 · 뒷 허리돌래, 열속기기, 다탕형</td>
</tr>
</tbody>
</table>

* 평균형 참고치수는 1999년도 국민체위조사자료에 의거한 25 ~ 75%의 치수를 참고하였음.
4.2 토르소 원형의 설계

4.2.1 옆선의 설정

외부의 역습기선이 아름다운 외관을 갖기 위해서는 측면에서 볼 때 신체를 자연스럽게 이동하는 선이 되어야 한다. 본 연구원형에서는 어깨끝점과 엉덩이두께의 이동분과(배꼽
출점의 수직선과 엉덩이돌출점의 이동분과)를 연결한 선을 옆선으로 설정하여, 숙인체형이
나дет헌체형에서도 옆선이 신체의 측면두께를 자연스럽게 이동하는 토르소 원형의 옆선이

4.2.2 가슴둘레선의 설정

[그림 2] 가슴둘레선의 설정

일차적으로 찾아보기 힘든 수평둘레선
을 가로수준 기초선으로 설정한 후, 동의 여
리 특정요인을 반영시키기 위하여 보다 구
체적으로 [그림2]와 같이 가슴둘레선을 설정
하였다. 즉 뒤길에서는 목둘레→가슴둘레선,
목둘레→견갑골→가슴둘레선의 길이를 비교하
고, 앞길에서는 목앞점→젖꼭지점과 목앞
점→젖꼭지점의 길이를 비교하여, 더 아래쪽으로
설정되는 항목, 즉 원형상에서 y좌표가 더 작
은 쪽을 선택해 가슴둘레 수준을 설정하여 가
슴과 등면의 요철 및 체형의 특성이 원형에
반영될 수 있도록 하였다.

이렇게 설정된 가슴둘레에 필요한 여유분은
가슴둘레의 앞·뒤로 각각 측정하고 이에
동작 기능성을 고려한 여유분을 구하여 각 개
인에 대한 적합도를 높이도록 하였다.
을 위한 원형의 가슴둘레의 여유분은 2.5
4cm로 가슴둘레의 대소에 관계없이 일정치수
의 여유분이 적용되고 있으나, 개인별 주문생
산을 위한 본 연구원형에서는 가슴둘레의 개
인차를 고려하기 위해 각 개인의 가슴둘레의
일정 비율을 여유분으로 적용하였다. 즉 국민
체위조사자료에 근거하여 가슴둘레가 25%이
내인 78.0cm미만의 가슴둘레가 작은집단, 25%
75% 사이인 78.0cm~85.20cm에 해당
하는 평균집단, 85.20cm이상인 가슴둘레가 큰
집단의 세 집단으로 나누고, 2회의 예비실험
을 거쳐 가슴둘레가 작은 집단은 가슴둘레의
3.5%, 평균인 집단은 4%, 가슴둘레가 큰 집단
은 4.5%의 여유분을 각각 설정하여 각 개인
의 체형이 원형에 반영되도록 하였다.

4.2.3. 허리둘레선의 설정

허리둘레선의 설정은 [그림3]과 같이 목둘
레 연직선상에서의 가슴둘레선→허리둘레선까
지의 길이와 목둘레 연직선상에서의 가슴둘레
선→허리둘레선까지의 길이를 비교하여 원형
상에서 y좌표가 더 작은 쪽을 선택하여 허리
둘레 수준을 설정하였다.
고, 2차에 걸친 예비실험을 통해 각각 4%, 3.5%, 3%의 역유분을 설정하여 참량한 허리에는 다소 많은 역유분을, 깃짓한 허리는 허리에는 이보다 적은 역유분을 설정하여 가슴에서 허리를 거쳐 영등이둘레선에 이르는 양선의 설정에 류적이 자연스럽고 어둡다운 외관을 유지할 수 있도록 하였다.

4.2.4. 영등이둘레선의 설정

영등이둘레선의 설정은 [그림 5]와 같이 영등이앞·خلف·뒤배의 각각 반영하여 영등이둘레선의 착시수평으로 유지될 수 있도록 하였으며, 역유분도 영등이둘레가 25%이내인 86.20cm미만인 영등이둘레가 작은 집단, 25%~75%사이인 86.20cm~92.20cm에 해당하는 평균 집단, 92.20cm이상인 영등이둘레가 큰 집단으로 분류하여 각각 3%, 3.5%, 4%의 각기 다른 비율로 역유분을 설정하고 영등이둘레앞·뒤배의 측정치를 각각 반영하여 개인별 주문성행 채체에서의 개인맞춤새를 항상시킬수 있도록 하였다.

[그림 5] 영등이둘레선의 설정
4.2.5 목밀둘레선의 설정
개개인에 적합한 목밀둘레선의 제도를 위해 앞목너비·길이, 뒤목 너비·뒤목길이를 각각 반영하여 목밀둘레선을 [그림6]과 같이 제도하였다. 뒤목안내치의 각도는 예비시험을 거쳐 22.5°를 적용하였고, 앞목의 목밀둘레선은 앞목너비·길이를 반영한 타원의 호로서 제도 하였다.

[그림 6] 목밀둘레선의 제도

4.2.6. 어깨선의 설정
본 연구에서는 개인별 주문생산시의 적합도 향상을 위해 보다 세분화된 측정자료를 통해 어깨선의 각도를 설정하도록 하였다. [그림 7]과 같이 목열점을 중심으로 하고 어깨길이를 반지름으로 하는 원과, 목뒤점, 목뒤점아래 4,8,15cm의 4부위를 각각 중심으로 하고, 각 부위에서 어깨끝까지의 길이를 반지름으로 하는 원과의 교점 중 가장 최상단 위치의 (y 좌표가 가장 큰) 점을 어깨끝점으로 설정하였 다. 이렇게 여러 측정치 중 가장 긴 길이의 측정치로 설정된 어깨끝점은 동의 가장 돌출 된 부위를 통과하는 길이로, 동면의 특징을 반영하는 원형을 얻을 수 있다.

4.2.7. 진동둘레선의 설정
현재 삼차원 인체스캐너에서 가장 문제가 되고 있는 부위가 거드랑점이므로 본 연구에서는 기존의 여러 토르소 원형을 고찰하여 [그림 8]과 같이 앞·뒤거드랑점에서 내린 수직 안내선과 진동길이수준(첫가슴둘레수준)과의 교점에서 진동둘레의 1/11 만큼 연장하고, 밑으로 3cm를 내려(猪又, 1982: 위수영, 1990) 거드랑점을 설정하여 어깨끝점에서 앞·뒤거 드랑점을 지나 거드랑점으로 연결되는 진동둘레선을 베키어곡선1)으로 제도하였다. 이렇게 제도된 진동둘레선은 개인의 진동두께의 측정치와 뒤거드랑점 사이길이, 앞거드랑점 사이길이가 각각 반영되므로 개개인에 적합한 진

[그림 7] 어깨선의 설정

[그림 8] 진동둘레선의 제도

1) Bezier Curve : 컴퓨터그래픽과 CAD에서 사용되는 기본적인 곡선으로, 복 개의 세어점으로부터 다항함수를 만들어 곡선을 표현한다.
동돌레선을 기대할 수 있으나, 앞으로 소매와의 접합시 여유분 및 길이의 설정에 있어서 더 많은 연구가 이루어져야 할 것으로 생각된다.

4.2.8. 다트의 설정

위진동다트, 앞가슴다트

위와 같이 여가글점을 설정한 후, [그림 9]와 같이 여가글점에서 덜겨드랑점까지의 길이를 반지름으로 하는 파호상에 덜겨드랑점 사이길이를 표시하여 덜겨드랑점을 설정하고, 그 덜겨드랑점에서 가슴돌레선까지의 측정치를 원형상에 올긴다. 이 지점에서 가슴돌레선까지의 거리를 ●이라 하고, ●=1cm를 위진
동다트으로 하였다. 이렇게 설정된 다트량을 진동길이수준의 9%지점에서의 수평선상으로 올겨 이를 위진동다트로 하였고, 앞길에서도 같은 방법으로 앞가슴도랑점에서 가슴돌레선까지의 측정치를 원형상에 올겨 이 지점에서 앞가슴도랑점까지의 납은 거리 ▲를 가슴다트량으로 하였다 (平澤, 1990).

허리다트의 위치 및 분량

본 연구에서는 레이저방식의 삼차원 스캔을 통해 각 개인별로 [그림 10]과 같은 수평단면 중합도를 작성하여 각 개인에 적합한 다트의 위치-전갈각각점, 덜겨드랑점에서 중심좌표로 1.5cm이동한점, 전폭지점, 앞가슴도랑점에서 중심좌표로 1.5cm이동한점-을 설정하였고, 각 구간내에서의 돌레차이를 다트량으로 산출하여 보다 각 개인에 대한 적합도를 높이도록 하였다. 다트의 길이 역시 배질이, 허리돌레앞-뒤호와 영등이돌레앞-뒤호의 차이 및 영등이의 돌출정도를 함께 고려하여 설정하였다. 이

그리고 산출된 다트는 앞에서 고찰한 앞선의 설정에 의해 굴착이나 반신체 등의 자세에 따른 체형의 차이가 다트에 반영되어 각 개인의 체형에 적합한 다트의 산출을 가능해주고 개인별 맞춤체를 더욱 향상시킬 수 있다.

앞

[그림 10] 수평단면 중합도

4.3 연구 토르소 원형

이상과 같이 완성된 토르소원형은 [그림 11]과 같다.
4.4 원형제도 프로그램

본 연구에서는 범용 원형 제도 시스템을 C++ 언어를 사용하여 제작하였다. 지금까지 원형의 자동제도에 관한 연구는 여러 연구자들에 의해 수행된 바 있으나 기존의 원형 자동제도 시스템들은 특정 원형만의 제도를 위한 프로그램으로, 새로운 원형을 제작하기 위해서는 메번 새로운 프로그래밍을 필요로 하였기 때문에 용용성이 부족한 단점을 가지고 있었다. 그러나 본 시스템에서는 원형을 제도하는데 필요한 다양한하고 복잡한 기능을 프로그램 상에 미리 구현시켜 놓은 후, 사용자가 대화식으로 원형을 제도해 나가는 과정 자체를 일련의 명령어의 집합으로 변환시켜 저장하는 방법을 사용하기 때문에 새로운 원형의 제작시에도 프로그램의 변경없이 화면상에서 자유롭게 다양한 원형을 제도할 수 있으며, 입력된 원형의 변경도 자유자재로 할 수 있어 향후에도 여러 원형의 다양한 제도방법을 쉽 게 데이터베이스화 할 수 있다는 장점을 가지고 있다.

【그림 12】와 같이 제작된 프로그램은 여러 치수의 원형을 자동적으로 제도하기 위해 측정항목의 편집이 자유로운 사이즈표를 도입하여 활용할 수 있도록 하였으며, 원형제도의 기본 성능을 갖는 안내선을 도입하여 제도점의 좌표를 상대적으로 계산할 수 있도록 하였다. 또한 원형상의 곡선 및 타원호 등 모든 선을 구현할 수 있으며, 곡선상의 거리도 수치화로의 방 법을 이용하여 계산할 수 있다. 또한 다트링의 계산 및 효과적인 분배를 위해 3차원 스캐너로 측정된 데이터로 신체 수평단면 중심도를 작성하여 【그림 13】과 같이 허리 다트의 양을 수학적으로 계산할 수 있었으며, 완성된 원형을 실물크기로 출력하여 원형의 적합성을 빠르게 확인할 수 있도록 하였다. 본 연구에서 개발한 원형 제도 시스템은 수평 단면 중심도 제작 시스템은 향후 예상되는 측정항목의 증가 또는 원형 제도 방식의 개선, 또는 가공물 착취기술의 발전 등의 변화에도 별도의 프로그램 변경 없이 신속하게 대응할 수 있는 구조를 가지고 있기 때문에 이후의 원형 제작에 관한 연구에 있어 새로운 도구로 기여할 수 있을 것으로 기대된다.

【그림 12】 원형 제도 프로그램 실행화면
4.5 관능검사 결과 및 분석

4.5.1 외관에 대한 관능검사 결과 및 분석

체판부의 형태적 다양성을 고려하여 최대한 체형의 다양성이 반영되도록 [표 3]과 같이 6명의 페혈자를 선정하고, 기존 원형과 연구 원형에 대한 평균간 유의차를 보기 위해 가슴 둘레를 기준으로 6명의 페혈자를 S집단, M집단, L집단으로 나뉘어 t-test를 행하였다.

외관에 대한 관능검사 결과는 [표 4]와 같이 각 집단에서 연구 원형의 평균이 기존 원형의 평균보다 높았으며, 기존 원형의 경우 M집단의 관능값 평균이 다른 두 집단에 비해 높은 것에 반해, 연구 원형의 경우에는 S집단과 L집단에 대한 평균값이 M집단의 평균값보다 높아 본 연구 원형이 평균을 벗어난 체형에 대한 맞춤세가 향상되었음을 알 수 있었다. 또한 세 집단 모두에서 목둘레 군주를 항목이 유의하게 향상되었으며 S집단과 L집단에서 가슴둘레선 및 여계선, 체형과의 조화 항목이 유의하게 향상되어, 각 개인의 신체측정치가 반영된 연구 원형이 기존 원형보다 맞춤세가 향상되었음을 알 수 있었다.

4.5.2 동작적합성에 대한 관능검사 결과 및 분석

인체부위별 동작적합성에 대한 관능검사결과 [표 5]와 같이 모든 집단에서 연구원형의 평균값이 기존원형보다 크게 나타났다. 특히 M집단에서는 기존 원형과 연구 원형의 평균값이 근소한 차이를 보인데 비해, L집단과 S집단에서는 평균집단의 평균값이 기존원형보다 크게 향상되어 연구 원형이 평균집단보다
### 표 4) 외관에 대한 관능검사 평균과 t-test 결과

<table>
<thead>
<tr>
<th>항목</th>
<th>가습량</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기존</td>
<td>연구</td>
<td>t값</td>
<td>기존</td>
</tr>
<tr>
<td>1. 알중심선</td>
<td>4.16</td>
<td>4.60</td>
<td>-0.94</td>
<td>3.96</td>
</tr>
<tr>
<td>2. 두중심선</td>
<td>4.20</td>
<td>4.63</td>
<td>-0.89</td>
<td>3.93</td>
</tr>
<tr>
<td>3. 목밀돌레선</td>
<td>3.81</td>
<td>4.22</td>
<td>-0.87</td>
<td>3.24</td>
</tr>
<tr>
<td>4. 가습돌레선</td>
<td>3.48</td>
<td>4.52</td>
<td>-2.58*</td>
<td>4.33</td>
</tr>
<tr>
<td>5. 하리돌레선</td>
<td>3.41</td>
<td>4.11</td>
<td>-1.45</td>
<td>3.87</td>
</tr>
<tr>
<td>6. 영양돌레선</td>
<td>3.44</td>
<td>3.43</td>
<td>0.12</td>
<td>3.83</td>
</tr>
<tr>
<td>8. 어깨추경</td>
<td>3.17</td>
<td>4.21</td>
<td>-2.15</td>
<td>3.80</td>
</tr>
<tr>
<td>9. 진통돌레선</td>
<td>3.44</td>
<td>4.25</td>
<td>-1.58</td>
<td>3.73</td>
</tr>
<tr>
<td>10. 열촉기선</td>
<td>3.20</td>
<td>4.17</td>
<td>-2.38</td>
<td>3.89</td>
</tr>
<tr>
<td>11. 가습다트</td>
<td>3.62</td>
<td>4.68</td>
<td>-2.21</td>
<td>3.97</td>
</tr>
<tr>
<td>12. 양혀리다트</td>
<td>3.77</td>
<td>4.30</td>
<td>-2.36</td>
<td>3.69</td>
</tr>
<tr>
<td>13. 두개례다트</td>
<td>3.60</td>
<td>4.69</td>
<td>-2.27</td>
<td>3.67</td>
</tr>
<tr>
<td>14. 뒤텔례다트</td>
<td>3.24</td>
<td>3.81</td>
<td>-1.65</td>
<td>3.78</td>
</tr>
<tr>
<td>15. 가습여류</td>
<td>3.81</td>
<td>4.20</td>
<td>-0.86</td>
<td>3.47</td>
</tr>
<tr>
<td>16. 하리여류</td>
<td>3.39</td>
<td>4.74</td>
<td>-2.51*</td>
<td>3.57</td>
</tr>
<tr>
<td>17. 영양여류</td>
<td>3.76</td>
<td>3.98</td>
<td>-0.44</td>
<td>3.80</td>
</tr>
<tr>
<td>18. 진통여류</td>
<td>2.91</td>
<td>3.20</td>
<td>-1.79</td>
<td>3.27</td>
</tr>
<tr>
<td>20. 독품여류</td>
<td>3.82</td>
<td>4.22</td>
<td>-0.87</td>
<td>3.07</td>
</tr>
<tr>
<td>21. 목밀돌레군주름</td>
<td>3.17</td>
<td>4.79</td>
<td>-3.35**</td>
<td>3.53</td>
</tr>
<tr>
<td>22. 알전등군주름</td>
<td>3.80</td>
<td>4.02</td>
<td>-0.41</td>
<td>3.07</td>
</tr>
<tr>
<td>23. 두전등군주름</td>
<td>3.27</td>
<td>4.66</td>
<td>-2.24</td>
<td>3.87</td>
</tr>
<tr>
<td>24. 뒤텔례군주름</td>
<td>3.41</td>
<td>4.41</td>
<td>-2.48*</td>
<td>3.67</td>
</tr>
<tr>
<td>25. 염길</td>
<td>3.69</td>
<td>4.18</td>
<td>-1.96</td>
<td>3.21</td>
</tr>
<tr>
<td>26. 위길</td>
<td>3.27</td>
<td>4.20</td>
<td>-1.92</td>
<td>3.28</td>
</tr>
<tr>
<td>27. 체형과 조화</td>
<td>3.52</td>
<td>3.27</td>
<td>-0.54</td>
<td>3.62</td>
</tr>
<tr>
<td>평균</td>
<td>3.53</td>
<td>4.23</td>
<td></td>
<td>3.64</td>
</tr>
</tbody>
</table>

### 표 5) 인체부위별 동작적합성의 평균과 t-test 결과

<table>
<thead>
<tr>
<th>부위</th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기존</td>
<td>연구</td>
<td>t값</td>
</tr>
<tr>
<td>1. 목밀돌레</td>
<td>3.42</td>
<td>3.62</td>
<td>-2.53*</td>
</tr>
<tr>
<td>2. 두부분</td>
<td>3.65</td>
<td>3.73</td>
<td>-0.97</td>
</tr>
<tr>
<td>3. 가습부분</td>
<td>3.89</td>
<td>3.48</td>
<td>1.32</td>
</tr>
<tr>
<td>4. 동부분</td>
<td>3.32</td>
<td>3.43</td>
<td>1.79</td>
</tr>
<tr>
<td>5. 진통돌레</td>
<td>3.26</td>
<td>4.58</td>
<td>-3.39**</td>
</tr>
<tr>
<td>6. 가습돌레</td>
<td>3.79</td>
<td>3.24</td>
<td>2.01</td>
</tr>
<tr>
<td>7. 하리돌레</td>
<td>3.69</td>
<td>3.52</td>
<td>0.68</td>
</tr>
<tr>
<td>8. 뒤텔례</td>
<td>3.52</td>
<td>3.93</td>
<td>-2.64*</td>
</tr>
<tr>
<td>9. 영양돌레</td>
<td>3.72</td>
<td>3.65</td>
<td>1.15</td>
</tr>
<tr>
<td>평균</td>
<td>3.58</td>
<td>3.69</td>
<td></td>
</tr>
</tbody>
</table>
5. 요약 및 결론

컴퓨터의 급격한 발달과 보급으로 기존의 기성복 대량생산체제와는 다른 개인별 주문생산 방식의 도입이 예상되고 있으며, 3차원 인체측정 기기의 발달로 소비자의 다양한 인체측정치의 확보가 용이해지고 전자상거래를 통한 1:1 주문생산방식이 도입되는 등의 사회적 환경 변화가 일어나고 있다. 이에 본 연구에서는 이러한 환경변화에 대응하여 컴퓨터 자동제도를 통해 개인별 적합도를 높인 토르소원형을 제시하고자 하였으며, 연구방법 및 결과는 다음과 같다.

1. 18-24세 여성들을 대상으로 국민체외조사자료(1997)를 토대로 신체 부위별 체수 분포를 고찰하고 체각부부위별 형태의 다양성을 분석하였다.

2. 기존의 토르소 원형을 비교, 분석하여 개인별 제형에 대한 적합도를 높일 수 있는 토르소원형을 설계하였다. 가슴둘레와 허리둘레, 배둘레, 엉덩이둘레는 각각의 앞 · 뒤향 치수를 측정하여 가슴이나 배와 엉덩이의 돌출 정도가 원형에 반영되도록 하였고 가슴둘레산

이나 허리둘레선, 엉덩이둘레선 등의 가로수 준선 설정시에도 여러 신체측정치의 비교를 통해 개인의 체형특성과 원형에 반영될 수 있도록 하였다. 가슴둘레와 엉덩이둘레의 여유분 설정은 개인의 신체측정치에 대한 비율로 설정하였고, 허리둘레의 여유분은 엉덩이둘레와의 비율로 설정함으로써 개인별 신체적합도를 높이도록 하였다. 목판둘레선과 어깨선의 제도시 여려 측정치를 함께 고려하였으며, 진동둘레선은 진동두께 및 앞 · 뒤향두께 사이 길이를 이용하여 배지어 곡선으로 제도하였 다. 또한 디트의 위치 설정 및 다트라인의 배분에 각 개인의 수평간면 중합도를 이용하여 개인에 적합한 다트라인 및 위치를 산출하였다.

3. 연구원형의 신체적합도를 검증하기 위하여 S집단, M집단, L집단으로 구분하여 외관 및 동작적합성에 대한 관찰검사를 실시한 결과 개인의 체형적합도를 높이기 위한 연구원형이 특히 평균체형에서 벗어난 체형에 대한 신체적합도가 향상되었음을 알 수 있었다. 앞으로는 의류산업에 있어서도 주문생산 방식이 더 본격화될 것임으로 이에 대응하여 보다 세분화된 인체의 입체형상에 대한 삼차원 인체측정치를 통해 보다 구체적이고 폭넓은 연구대상의 다양한 체형에 대해 확대 연구되어야 할 것이다.

참고 문헌

남은주·이형숙(2001). 여성복구성. 서울: 교
학연구사.
平澤和子(1985). 平面程度法における形態因子 (第1報) - スカート原型(青年女子). 日本家

저자 소개

◆ 황수연 (Sooyeon Hwang)
서울대학교 생활과학대학 의류학과 박사과정
휴학중
연락처: whitia@hanmail.net
학력
1994.3 - 1998.2 서울대학교 생활과학대학 의류학과 (가정학 학사)
1998.3 - 2000.2 서울대학교 대학원 생활과학대학 의류학과 (가정학 석사)
2000.2 - 2001.7 (주)한섬, 상품기획실근무.

◆ 남윤자 (Yunja Nam)
서울대학교 생활과학대학 의류학과 부교수
연락처: 연구실 > (02) 880-6844
E-mail > yunja@snu.ac.kr
서울대학교 의류학과 (학사·석사·박사)
현제 서울대학교 생활과학대학 의류학과 부교수
관심분야: 의복인간공학, 인체측정학(3-D 포함), 의복설계

논문접수일 (Date Received): 2001/11/10
논문계제승인일 (Date Accepted): 2001/12/5