A Study on $\pi/4$-DQPSK with Nonredundant Multiple Error Correction

Seog-Il Song and Young-Yearl Han

In this paper, to enhance the performance of $\pi/4$-DQPSK ($\pi/4$-differential quadrature phase shift keying), the scheme using nonredundant multiple error correction is proposed and investigated. This scheme for the differential detection of $\pi/4$-DQPSK uses the signal output which is delayed for more than two time slots as the parity check bit and applies it to nonredundant multiple error correction. The proposed system was used for studying the performance of $\pi/4$-DQPSK with Nonredundant Error Correction (NEC) in additive white Gaussian noise (AWGN) and Nakagamifade modeled mobile communication channel, and it was observed that the performance increased as the error correction capability increased.

I. INTRODUCTION

One of the most serious problems that occur in mobile communication systems is the fading of signal amplitude due to multipath channel. Currently, the most accurate model for wireless multipath channel is known as the Nakagami Fading Channel model [1].

To combat the effect of the fading, there are several transmission strategies which could be divided into four basic categories: (1) Those that send a pilot tone with data signal to allow coherent demodulation to be used, such as transparent tone-in-band and tone calibration technique; (2) Those that insert a digital pilot symbol sequence into data stream to measure and compensate for the channel's fading; (3) Those that employ coding which introduce time diversity technique; and (4) Those that employ noncoherent detection to minimize sensitivity of the fading, such as a differential demodulation. In the first three categories, an additional channel bandwidth is required, and the systems are somewhat complex. In comparison with three methods, the noncoherent detection is regarded as a simple method to effectively recover data from faded channels [2]–[6], [24].

$\pi/4$-QPSK is an attractive modulation scheme for digital communications because it has a compact spectrum having a reduced envelope fluctuation (compared with conventional QPSK) [7]–[9] and it is easy to demodulate it with noncoherent detection. Its reduced envelope fluctuation introduces less spectral spreading over the nonlinear but power efficient channels.

However, noncoherent detection schemes such as differential detection and discriminator detection suffers from degraded performance when compared with the corresponding coherent detection.
A particularly attractive method to improve noncoherent detector's performance is the nonredundant error correction (NEC) scheme which does not require any signaling redundancy, any additional bandwidth and additional transmit power. By now, nonredundant single error correction (NSEC) technique has been applied to binary DPSK, multidifferential PSK, DMSK, M-phase DMSK, Duobinary MSK, and π/4-DQPSK [10]–[15].

In this paper, the new type of nonredundant multiple error correction (NMEC) scheme that can correct consecutive errors is applied to π/4-QPSK system. We investigate the performance of π/4-QPSK system with NMEC in the communication channel modeled with Nakagami fading and additive white Gaussian noise. In Section II, π/4-QPSK signaling is briefly reviewed and nonredundant single, double and triple error correction schemes are discussed for π/4-QPSK system. In Section III, the bit error rate (BER) performance of π/4-QPSK system with NMEC is analyzed by computer simulation using acception-rejection method in the communication channel modeled with Nakagami fading and additive white Gaussian noise. Finally, conclusion is given in Section IV.

II. π/4-QPSK NONREdundant MULTIPLE ERROR CORRECTION

1. π/4-QPSK signalling in the transmitter

The block diagram of π/4-QPSK modulation is shown in Fig. 1 where the input signal is split into i channel and Q channel by the serial of parallel converter. \(\sqrt{a} \) represents a square root of raised cosine filter with a roll-off factor of a and a Nyquist bandwidth of \(f_s/2\) where \(f_s\) is the symbol rate. The differential encoder and signal mapper convert \(I/Q\) into \(X/Y\) using mapping rules of (1).

\[
\begin{align*}
X_i &= I_{i-1} \cdot X_i \cdot Q_{i-1} \cdot Y_{i-1} \\
Y_i &= Q_{i-1} \cdot X_i + I_{i-1} \cdot Y_{i-1}
\end{align*}
\]

where the subscripts of \(I\), \(Q\), \(X\), and \(Y\) represent the timing instances. \(I\) and \(Q\) are binary symbols of \(\{\pm 0.707\}\) and \(X\) and \(Y\) have 5 levels of \(\{0, \pm 0.707, \mp 1\}\). The signal mapper can be considered as a converter that transforms the input phase \(\theta_i\) to an output phase \(\phi_i\) as (2).

\[
\phi_i = \theta_i + \phi_0
\]

where \(\phi_0 = \tan^{-1} Q_i / I_i\) and \(\phi = \tan^{-1} X / Y\).

The phase difference between adjacent symbols of π/4-QPSK signal, \(\theta_{i-1} = \theta_i - \theta_{i-1}\), represents the incoming data \(I\), \(Q\). As \(\theta_i\) is \(\mp \pi / 4\) and \(\mp 3\pi / 4\), the phase \(\phi_i\) of π/4-QPSK signal has one of the 8 phase states such as 0, \(\mp \pi / 4\), \(\mp 3\pi / 4\), and \(\pi\). Since the π/4-QPSK signal without phase transition of π has less envelope fluctuation compared with conventional QPSK, the π/4-QPSK signal experiences less spectrum spreading over a nonlinear channel [10], [16].

The phase of the modulated output signal at the \(i\)th timing instance is written as \(\phi_i\) and has one of the eight phase states of 0, \(\mp \pi / 4\), \(\mp 3\pi / 4\) and \(\pi\). From (2), the following results can be obtained

\[
\phi_i = \sum_{j=0}^{i-1} \theta_j \in \{\pm 4\pi / 4, \pm 8\pi / 4, \pm 12\pi / 4, \pm 16\pi / 4\}
\]

\[
\phi_{i} - \phi_{i-1} = \sum_{j=0}^{i-1} \theta_j \in \{\pm 4\pi / 4, \pm 8\pi / 4, \pm 12\pi / 4, \pm 16\pi / 4\}
\]

(4)

Applying Modulo operator to both sides of (4), it is written as follows:

\[
\left(\sum_{j=0}^{i-1} a_{j} \right)_{\mod 8} = 4\pi / \{\phi_{i} - \phi_{i-1}\} \mod 2\pi
\]

(5)

Using (5), the phase difference \(p_{h_i}\) between \(i\)th symbol and the symbol delayed by \(k\) time slots is shown as (6).

\[
p_{h_1} = (\phi_{i} - \phi_{i-1})_{\mod 2\pi} \in \{\pm 4\pi / (4k+2), \pm 8\pi / (4k+2), \pm 12\pi / (4k+2), \pm 16\pi / (4k+2)\} \mod 2\pi
\]

\[
p_{h_2} = (\phi_{i} - \phi_{i-2})_{\mod 2\pi} \in \{\pm 4\pi / (4k+2), \pm 8\pi / (4k+2), \pm 12\pi / (4k+2), \pm 16\pi / (4k+2)\} \mod 2\pi
\]

\[
p_{h_3} = (\phi_{i} - \phi_{i-3})_{\mod 2\pi} \in \{\pm 4\pi / (4k+2), \pm 8\pi / (4k+2), \pm 12\pi / (4k+2), \pm 16\pi / (4k+2)\} \mod 2\pi
\]

...
To eliminate \(\pi /4 \) in (6), we multiply \(4/\pi \) on each side and express it as (7) where \(\Phi \) represents \((x+y) \mod 8 \) or \((x-y) \mod 8 \), the mod 8 represents the modulo 8 adder.

\[
\begin{align*}
PH_1 & = 4/\pi \cdot ph_1 = (a_i) \mod 4 = a_i \\
PH_2 & = 4/\pi \cdot ph_2 = (a_i + a_{i-1}) \mod 8 = a_i @ a_{i-1} \\
PH_3 & = 4/\pi \cdot ph_3 = (a_i + a_{i-1} + a_{i-2}) \mod 8 = a_i @ a_{i-1} @ a_{i-2} \\
& \vdots \\
PH_n & = 4/\pi \cdot ph_n = (a_i + \cdots + a_{i-n}) \mod 8 = a_i @ a_{i-1} @ \cdots @ a_{i-n} \quad \text{(7)}
\end{align*}
\]

2. Detection of the Data Differential Phase in \(\pi/4 \)-QPSK Receiver

The detection of data for received \(\pi/4 \)-QPSK signal means to extract the phase difference, \(\Phi \), between its adjacent symbols. Fig. 2 shows the differential detector to obtain the phase difference between \(\pi/4 \)-QPSK adjacent symbols. BPF eliminates a noise spread out near the carrier frequency. The BPF output signal is multiplied with adjacent symbol produced by a delay element, the delay time of which is equal to time slot width \(T_s \). The BPF output signal is also multiplied with \(\pi/2 \) phase shifted adjacent symbol. The resulting signals are as follows.

\[
Y_i(t) = \cos \{ n \cdot \Phi(t) \} \cdot \cos \{ n \cdot (t - T_s) + \Phi(t - T_s) \} = 1/2 \cos \{ 2n \cdot (t - k/2T_s) + \Phi(t) + \Phi(t - T_s) \} \quad \text{(8)}
\]

\[
Y_i(t) = \cos \{ n \cdot \Phi(t) \} \cdot \cos \{ n \cdot (t - T_s) + \Phi(t - T_s) \} = 1/2 \cos \{ 2n \cdot (t - k/2T_s) + \Phi(t) + \Phi(t - T_s) \} \quad \text{(9)}
\]

If the sampling angle frequency, \(n \), satisfies the condition, \(n \cdot T_s = 2m \pi \left(n \text{ : integer, } t = kT_s \right) \), the in-phase quadrature components \(Y_n, Y_{n\pm1}, Y_{n\pm2}, Y_{n\pm3} \in \left\{ \pm0.707 \right\} \) can be obtained by eliminating the high frequency term shown in (8) and (9) through LPF. Then, these components are sampled and have one of two discrete levels through a threshold detector. Finally, the phase difference between two adjacent symbols is obtained by using logic circuit (Logic odd) consisting of P/S (Parallel to Serial converter) and phase mapper. As shown in Table 1, in-phase and quadrature components are mapped to \(0, \pm1 \), one of odd integer values such as \{1, 3, 5, 7\} by phase mapper according to the transmitted differential phase data \(a_i \).

\[
Y_i(t) = \cos \{ \Phi(t) \} \cdot \Phi(t - T_s) \].
\]
The relationship between differential phase data and parity shown in Table 1, in-phase and quadrature components are mapped to in-phase and quadrature components are obtained for current symbol and the symbol delayed by its 2Tc in Fig. 3. The in-phase and quadrature components are mapped to the transmitted differential phase data ai. Using this method, various parties can be generated with the received data obtained by passing the received signal through the parity detection circuit.

Table 1. The relationship between li, Qi, Bi, ai and ln, Qn, Yn all Yn.

<table>
<thead>
<tr>
<th>l</th>
<th>q(t)</th>
<th>a</th>
<th>i</th>
<th>r_odd</th>
<th>r_even</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 4. Delay circuits for parity detection.

3. Nonredundant Single Error Correction in π/4-DQPSK Receiver

A. Parity Generation for Single Error Correction

To obtain a general method of nonredundant error correction for up to 3π/4-DQPSK signals we use the methods described in [10]—[13]. The following is a description of the nonredundant single error correction for π/4-DQPSK signal.

Let θi = π/4 • ai and ai = ±1, ±3, then the relationship between ai and data dibit li, Qi are given in Table 1. In the receiver, Tc and 2Tc delayed differential phase detectors are used to obtain data and parity in the receiver, respectively. In other words, the output of Tc delayed differential phase detector is defined as the phase difference of received carrier between adjacent symbols. In the same way, the output of 2Tc delayed differential phase detector is defined as the phase difference of received carrier between the current symbol and its second previous symbol. Let i, and i represent data and parity differential phases at the i sampling instant, respectively, then

\[\Phi_i = \Psi_i = \Phi_i \]

where \(\Phi_i \) and \(\Phi_i \) represent the received carrier phase at \(t_i \) and \((i-2)Tc \) sampling instant assuming Nyquist channel without fading and noisefree,

\[\Phi_i = \Phi_{i-1} = \Phi_{i-2} \]

By eliminating \(\pi/4 \) at the above equations, normalized data and parity differential phases can be obtained in (15).

\[\Lambda_i = a_i \in \{1, 3, 5, 7\} \]

If there are some errors caused by intersymbol interference and noise, normalized data and parity differential phases are expressed as follows.

\[\Lambda_i = (a_i + \epsilon_{i}) \mod 8 \in \{0, 2, 4, 6\} \]

where \(\epsilon_{i} = 6 \) and \(\epsilon_{i} = 2 \) represent errors included within data and parity differential phases, respectively. The errors \(\epsilon_{i} \) and \(\epsilon_{i} \) could be 0, ±2 and ±4. The data and parity shown in (15) is equivalent to those in the case of 1/2 single error correcting self orthogonal convolutional code [17]. Therefore, for error correction, the parity obtained in the receiver is possibly used without additional decoding in the transmitter.
B. Syndrome Generation for Single Error Correction

Syndrome feedback decoding [12] technique is used to correct errors contained in the data with the data and parity obtained above. The block diagram of the syndrome feedback decoder is shown in Fig. 6. We use a_{i-1}, its one bit delay a_{i-1}, and 6_{i}, which is parity receive detection.

Equations (18) and (19) can be expressed using a_{i-1}, a_{i-1}, a_{i}, and 6_{i}, which is parity receive detection.

$$S_{i} = (a_{i+1} + a_{i+2}) \mod 8$$

$$S'_{i} = (S_{i} - E_{i+1}) \mod 8$$

where E_{i+1} is the estimation of the error $e^{i+1} = e^{i+1}$. If it is assumed that the error e^{i+1} is correctly estimated or is zero, (20) is satisfied.

$$S_{i+1} = (S'_{i+1} \mod 8 = (e_{i+1} - e_{i+1}) \mod 8 = e^{i+2} \mod 8$$

If there is only one nonzero element among the e^{i+1}, e^{i+2}, 6_{i+1}, the error e^{i+1} can be correctly determined. E_{i+1} is zero if $S_{i} = S_{i+1}$, and n ($n \in \{1, 3, 5, 7\}$) if $S_{i} \neq S_{i+1}$, and n. Therefore, the output data can be correctly recovered by subtracting E_{i+1} from a_{i+1}.

4. Nonredundant Double Error Correction in $\pi/4$-QPSK Receiver

A. Parity Generation for Double Error Correction

As shown in Fig. 7, the parity for double error correction, P_{2}, is generated using a_{i+1}, a_{i+2}, and 6_{i}, where a_{i+1} is the one bit delay of the phase difference of received carriers between the current symbol and its two bit delayed symbol. And a_{i} is the phase difference of received carriers between the current symbol and its six bit delayed symbol. That is, as shown in (21), the parity P_{2} is obtained by subtracting $a_{i} \oplus a_{i+1}$ (the output of $2T_{s}$ delayed differential phase detector in Fig. 7) from $a_{i} \oplus a_{i+1} \oplus a_{i+2} \oplus a_{i+3} \oplus a_{i+4} \oplus a_{i+5}$ (the output of $6T_{s}$ delayed differential phase detector in Fig. 7). In Fig. 7, the operation rules of the Logic odd and Logic even are shown in Table 1.
Equation (21) corresponds to $1/2$ double error correcting orthogonal convolutional code [18]. Hence, syndromes are formed as follows:

$$S_{i-5} = e^{P_i-5}e^{d_{i-5}}$$
$$S_{i-4} = e^{P_i-4}e^{d_{i-4}}$$
$$S_{i-3} = e^{P_i-3}e^{d_{i-3}}$$
$$S_{i-2} = e^{P_i-2}e^{d_{i-2}}e^{d_{i-5}}$$
$$S_{i-1} = e^{P_i-1}e^{d_{i-1}}e^{d_{i-2}}e^{d_{i-4}}$$
$$S_i = e^{P_i}e^{d_{i-1}}e^{d_{i-2}}e^{d_{i-3}}e^{d_{i-4}}$$

(22)

where e^{d_i}, e^{P_i} are errors of the data and the parity at the i^{th} sampling instant, respectively. Figure 8 shows how syndromes described as the above equation are generated.

Syndrome feedback decoder for double error correction is implemented using four regenerated syndromes shown in (23).

$$S_{i-5} = e^{P_i-5}e^{d_{i-5}}$$
$$S_{i-2} = e^{P_i-2}e^{d_{i-2}}e^{d_{i-5}}$$

Here, we know that all of syndromes shown in (23) commonly include the error term, $e^{d_{i-5}}$ but data error terms of $e^{d_{i-1}}$, $e^{d_{i-2}}$, $e^{d_{i-3}}$, and $e^{d_{i-4}}$ do not appear repetitively in four syndromes, where such set of equation is said to be orthogonal on $e^{d_{i-5}}$.

Fig. 7. Block diagram of differential detection of $\pi/4$-QPSK with double NEC.

Fig. 8. Block diagram of general scheme of double NEC for $\pi/4$-QPSK.

$$P_{\pm} = a_i \oplus a_{i-1} \oplus a_{i-2} \oplus a_{i-3}$$

(21)
As shown in Fig. 8, the process to correct the error of the five bit delayed data, λ_{i-5}, is described as follows: In syndrome feedback decoder, the estimated error, $e_{d,i-5}$ of λ_{i-5}, returns back to obtain four regenerated syndromes. The estimated error can be determined by applying the rule of maximum likelihood to four regenerated syndromes. Finally, the data can be corrected by subtracting the estimated error from the contaminated original data.

How to get the estimation of the error using the rule of maximum likelihood between four regenerated syndromes is explained in more detail as follows: If $e_{d,i-5}$ has the value of n ($n \in \{1, 3, 5, 7\}$) and no other errors exist, all syndromes are equal to n. If $e_{d,i-5}$ has the value of n and another error variable in the 12 error variables has the same value as n, then three of four regenerated syndromes are equal to n and the other syndrome becomes zero. From these cases, it is evident that the error $e_{d,i-5}$ has the value of n if more than three of syndromes have the same value as n.

Finally, the five bit delay, λ_{i-5}, of the data input λ_i is corrected by subtracting the estimated error, $E_{2,i-5}$, from the contaminated data, λ_{i-5}.

5. Nonredundant Triple Error Correction in π/4-DQPSK Receiver

In a similar manner as the double error correction, the triple error correction can be achieved and is described in this subsection.

A. Parity Generation for Triple Error Correction

As shown in Fig. 9, the parity differential phase for triple error correction, P_a, is generated using λ_{i-8}, λ_{i-1}, and λ_{i-12}, where λ_{i-8} is the eight bit delay of the data, λ_{i-1} is the one bit delay of the phase difference of received carriers between the current symbol and its five bit delayed symbol and λ_{i-12} is the phase difference of received carriers between the current symbol and its twelve bit delayed symbol, respectively. That is, as shown in (26), the parity P_a is obtained by subtracting $a_{i-1}a_{i-2}a_{i-3}a_{i-4}a_{i-5}$ (the output of ST delayed differential phase detector in Fig. 9) and a_{i-8} (the
fig. 9), in Fig. 9, the operation rules of the Logic odd and Logic even are shown in Table 1.

\[P_{5i} = a_i@a_{i-1}@a_{i-2}@a_{i-3}@a_{i-4} \]

(B. Syndrome Generation for Triple Error Correction)

Equation (24) corresponds to 1/2 triple error correcting orthogonal convolutional code [17]. Hence, syndromes are formed as follows:

\[S_{i-11} = e^{r_{-11}} \otimes d^{d_{-11}} \]

\[S_{i-10} = e^{r_{-10}} \otimes d^{d_{-10}} \]

\[S_{i-9} = e^{r_{-9}} \otimes d^{d_{-9}} \]

\[S_{i-8} = e^{r_{-8}} \otimes d^{d_{-8}} \]

\[S_{i-7} = e^{r_{-7}} \otimes d^{d_{-7}} \]

\[S_{i-6} = e^{r_{-6}} \otimes d^{d_{-6}} \]

\[S_{i-5} = e^{r_{-5}} \otimes d^{d_{-5}} \]

\[S_{i-4} = e^{r_{-4}} \otimes d^{d_{-4}} \]

\[S_{i-3} = e^{r_{-3}} \otimes d^{d_{-3}} \]

\[S_{i-2} = e^{r_{-2}} \otimes d^{d_{-2}} \]

\[S_{i-1} = e^{r_{-1}} \otimes d^{d_{-1}} \]

\[S_i = e^{r_{0}} \otimes d^{d_{0}} \]

where \(e^d \), \(e^r \) are errors of the data and the parity at the \(t^n \) sampling instant, respectively. Fig. 10 shows how syndromes described as the above equation are generated.

Syndrome feedback decoder for triple error correction is implemented using six regenerated syndromes shown in (26).

\[S_{i-11} = e^{r_{-11}} \otimes d^{d_{-11}} \]

\[S_{i-10} = e^{r_{-10}} \otimes d^{d_{-10}} \]

\[S_{i-9} = e^{r_{-9}} \otimes d^{d_{-9}} \]

\[S_{i-8} = e^{r_{-8}} \otimes d^{d_{-8}} \]

\[S_{i-7} = e^{r_{-7}} \otimes d^{d_{-7}} \]

\[S_{i-6} = e^{r_{-6}} \otimes d^{d_{-6}} \]

\[S_{i-5} = e^{r_{-5}} \otimes d^{d_{-5}} \]

\[S_{i-4} = e^{r_{-4}} \otimes d^{d_{-4}} \]

\[S_{i-3} = e^{r_{-3}} \otimes d^{d_{-3}} \]

\[S_{i-2} = e^{r_{-2}} \otimes d^{d_{-2}} \]

\[S_{i-1} = e^{r_{-1}} \otimes d^{d_{-1}} \]

\[S_i = e^{r_{0}} \otimes d^{d_{0}} \]

Here, as in the case of double error correction, all of the regenerated syndromes shown in (26) commonly include the error term, \(e^e \) and data error terms except \(e^d \) do not
appear repetitively in six regenerated syndromes, where such set of equation is said to be orthogonal on $e^{2 \pi i}$. Like the syndrome equations related with $e^{2 \pi i}$ and the other 12 error variables in (23), the received error can be corrected if there are less than three errors in the error variables which do not contain zero in the relationship between $e^{2 \pi i}$ and other error variables. It is evident that the error $e^{2 \pi i}$ decided by the majority logic has the value of n if more than four of the regenerated syndromes in (26) have the same value as n.

In conclusion, while at most three errors occur, the estimated error, $E_{3(n-1)}$, of $E_{3(n-1)}$ can be determined to have the value of n if more than four of four syndromes have the same value as n. Finally, the eleven bit delay, $E_{11(n-1)}$, of the contaminated data, $E_{11(n-1)}$, is corrected by subtracting the estimated error, $E_{11(n-1)}$, from the contaminated data, $E_{11(n-1)}$.

Fig. 11. Example of error correction of nonredundant error correction (NEC) for $\pi/4$-DQPSK.

Figures 11(b) and 11(c) explain examples of three nonredundant multiple error correction schemes of $\pi/4$-DQPSK data. In Fig. 11, x_i is the transmitted original data, $x_i (= d_i)$'s are received data for three error correction schemes, and the dotted box indicates error occurrence. P_{s1}, P_{s2}, and P_{s3} are generated parities for three error correction schemes, where we assume that the generated parity has no error. In single error correction scheme of Fig. 11(a), it is possible to correct received data perfectly when only one error occurs without any adjacent error. However, it cannot correct the received data when two consecutive errors occur. In double error correction scheme of Fig. 11(b), it is noticeable that correction is made for the two consecutive errors that occur in delayed sections where parity is generated, but can not correct more than two errors. In Fig. 11(c), three consecutive errors are corrected accurately in delayed sections where parity is generated.

III. $\pi/4$-DQPSK NEC Computer Simulation

The probability density function (pdf) of the phase error due to Gaussian noise in the coherent detector is written in (27) [19].

$$f(\theta) = e^{-\pi/2} \frac{1}{2} \frac{R}{\pi} \exp (- R \sin \theta) \cdot \cos \theta (1 + \text{erf} \sqrt{R \cos \theta}),$$ (27)

where $-\pi \leq \theta \leq \pi$, θ: phase error, R: Signal to Noise Ratio (S/N)

The pdf of the phase error due to Nakagami fading in coherent detection can be derived as follows. In the general BPSK coherent demodulator, the received signal $S(t)$ is mixed with an additive noise $n(t)$.

$$S(t) = d \cos \theta \tau + n(t),$$ (28)

From $n(t) = n_c \cos \Theta \tau + n_s \sin \Theta \tau$, the signal is split into in-phase component $x = d + n_c = A \cos \Theta$ and quadrature component $y = n_s = A \sin \Theta$, where $A = \sqrt{x^2 + y^2}$, $\Theta = \tan^{-1} y/x$. The statistical characteristics of the in-phase and quadrature components of a noise i.e., n_c and n_s, have the same Gaussian distribution with zero mean and standard deviation σ, respectively. And these two random variables are statistically independent of each other. The pdf of the signal amplitude d influenced by Nakagami fading is expressed as follows [20].

$$f_d(d) = \frac{2m^m d^{2m-1} e^{-\frac{md^2}{\sigma^2}}}{\Gamma(m) \sigma^{2m}},$$ (29)
where \(d > 0, \ m \leq 1/2, \ \Omega = E[d^2]. \)

\[\Gamma(\cdot) : \Gamma \text{ function}, \]

\[m : \text{ Nakagami fading factor} \]

By obtaining the joint pdf of \(x \) and \(y \) at first and transforming it to the pdf of \(A \) and \(\Theta \), the pdf of the phase error due to Nakagami fading can be solved [21]. Since \(d \) and \(n \) are independent of each other, the pdf of \(x, f(x) \) can be obtained as (30).

\[
f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_{D_{r,\Theta}}(d, x \cdot d \cdot d) \; d \Gamma \]

\[
= \frac{2m^2 e^{\frac{-x}{2m}}} {\Gamma(m)(2m)^m} \frac{1}{b} e^{\frac{-x}{2m e^{b}}} \int_{0}^{\infty} \frac{1}{\sqrt{2\pi a}} e^{-\frac{d^2}{2a}} \; d \Gamma, \tag{30}
\]

where \(K = \frac{m}{b} \frac{1}{2a}, \ b. \)

Using the following formula, \(f(x) \) is obtained as (32) (See p. 337 in [23]):

\[
f(x) = \frac{m^m (2m)^e}{\sqrt{\pi} \Gamma(m) 2^m} e^{\frac{-x}{2m e^{b}}} \cdot D_\Theta(z) = \frac{1}{\sqrt{2\pi a}} e^{\frac{-x}{2m e^{b}}}, \tag{31}
\]

where \(b > 0, \ a > 0 \)

\[f(x) = \frac{m^m (2m)^e}{\sqrt{\pi} \Gamma(m) 2^m} e^{\frac{-x}{2m e^{b}}} \cdot D_\Theta(z) = \frac{1}{\sqrt{2\pi a}} e^{\frac{-x}{2m e^{b}}} \tag{32} \]

where \(- \infty < x < \infty, \ D_\Theta(x) \) is called as a parabolic cylinder function defined in (33) (See p. 1064 in [23]).

\[
D_\Theta(x) = \frac{x}{\Gamma(m) e^{b}} \int_{0}^{\infty} \frac{e^{-y} y \cdot x^y \cdot e^{-x y}}{\Gamma(m) e^{b}}, \tag{33}
\]

where \(x < 0 \).

Since \(x \) and \(y \) are independent of each other, the joint pdf of two random variables \(x \) and \(y \) is obtained by multiplying each pdf.

\[
f(x, y) = \frac{m^m (2m)^e}{\sqrt{\pi} \Gamma(m) 2^m} e^{\frac{-x}{2m e^{b}}} \cdot D_{\Theta}(z) = \frac{1}{\sqrt{2\pi a}} e^{\frac{-x}{2m e^{b}}} \tag{34}
\]

From \(x = d + n = A \cos \Theta \) and \(y = n = A \sin \Theta \), the pdf function of \(A \) and \(\Theta \) is solved by transforming the pdf of \(x \) and \(y \).

\[
f(A, \Theta) = \frac{A}{2\pi} e^{-\frac{A^2}{2}} \cdot D_{\Theta}(z) = \frac{A}{2\pi} e^{-\frac{A^2}{2}} \tag{35}
\]

where \(A \) is the Nakagami fading factor.

Calculating the integral for amplitude \(A \) in (35) results to the pdf of the phase error \(\Theta \) as follows:

\[
f(\Theta) = \frac{A}{2\pi} e^{-\frac{A^2}{2}} \cdot D_{\Theta}(z) = \frac{A}{2\pi} e^{-\frac{A^2}{2}} \tag{36}
\]

The pdf of the phase error due to Nakagami fading, by integrating and then placing \(K, \frac{1}{2a}, \ b, \ l \) in (36) is as (37), where the S/N ratio, \(R, \) is \(\frac{\pi}{2a} \) and \(F_i(\cdot), \ iF_i(\cdot), \) are hyper geometry functions (See p. 1045 in [21]) which are as (38).

\[
f(\Theta) = \frac{1}{2\pi} \left(\frac{m}{m + R} \right)^L \cdot \frac{R \cos^2 \Theta}{m + R} \cdot F_i\left(m + \frac{1}{2} ; \frac{3}{2} ; \frac{3}{2} \right) \sqrt{\frac{R}{m + R} \cos \Theta}, \tag{37}
\]

where \(- \pi \leq \Theta \leq \pi \)

\[
iF_i(\alpha|\beta, z) = \frac{1}{\Gamma(\alpha)} \sum_{k=0}^{\infty} \frac{\Gamma(\alpha + k)}{\Gamma(\alpha + k + \beta)} \frac{z^k}{k!}, \tag{38}
\]

In coherent detection, errors occur when the phase error is altered to the error domain, whereas in differential detection, they occur when the sum of the phase error in the two successive time intervals is transited to the error.
domain. Therefore, making the reasonable assumption that the additive noise samples in the two successive time intervals are independent, the probability density of the phase difference can be obtained by convolving the density function of the phase error due to Gaussian noise in the coherent detector with itself [22]; namely,

\[f(\Delta \theta) = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(\theta)f(\theta + \Delta \theta) d\theta \]

(39)

where the random variable \(\Delta \theta \) is defined in terms of the noise phase component in the two successive time intervals. It is difficult to solve this equation accurately, so it can be considered as a convolution. Acceptation-Rejection method [13] is used to simulate the performance of \(\pi/4\)-DQPSK system with nonredundant error correction. Acceptation-Rejection method is applicable when the probability density function, \(f(x) \), has an upper and lower limit of a \(x \)’s range, and an upper bound of \(f(x) \). When the cumulative distribution can not be integrated and inverted, the Acceptation-Rejection method is a convenient method for generating random numbers of desired probability density function. Data and parity are made by adding generated random phase error that satisfies \(f(\theta) \) to the phase that is generated by Pseudo random Number (PN) code.

The data without the error correction circuit and the corrected data with the error correction circuit are compared to investigate the Bit-Error-Rate (BER) performance of \(\pi/4\)-DQPSK with NEC. The simulation results of BER performance in AWGN environment and in Nakagami fading with AWGN environment, are shown in Fig. 12 and Fig. 13, respectively. It proves out that nonredundant multiple error correction scheme for \(\pi/4\)-QPSK can improve the performance in both AWGN and Nakagami fading with AWGN environment. The theoretical \(\pi/4\)-DQPSK demodulation curve [22] is included as a reference for error correction capability. Specially, we can see that our simulation results in AWGN consists to those published in the reference [10]. More improvement is possibly obtained as Nakagami fading factor \((m) \) and the number of error correction order increase. An improvement at a BER of \(10^{-4} \) in AWGN can be achieved more than 1.2 dB. At \(m=15 \), we can get improvement more than 1 dB in Nakagami fading with AWGN environment.

IV. CONCLUSION

In this paper, a method for increasing the performance of \(\pi/4\)-DQPSK (\(\pi/4\)-differential quadrature phase shift keying) using nonredundant multiple error correction is proposed and investigated by using the relationship between the present differential demodulation and \(k \)th order differential detector. This error correction method is based on orthogonal convolutional code error correction which can be demodulated using a simple circuit. The complexity of the error correction design depends on the generation matrix of the orthogonal convolutional code. The performance of the nonredundant multiple error correction was studied using an additive white Gaussian noise and Nakagami fading modeled channel with the method of
Additional bandwidth or transmission power. The BER curve of Fig. 12 shows that 1.2 dB improvement is achieved at a BER of 10^{-4} for AWGN environment by a single error correction. It is also seen that the BER performance was improved as the number error correction increased. In Fig. 13, we can also see that more than 1 dB improvement is achieved by single error correction at a BER of 10^{-4} for Nakagami fading with $m=15$ and AWGN environment, and the performance increased as the Nakagami fading factor, m, increased.

The computer simulation was held assuming that the error occurs independently on data and parity, but practically, if error occurs to the data, the probability of error occurring to the parity increases. Therefore, the performance will be somewhat lower. Using nonredundant error correction methods by adding a simple circuit to the receiver will make a suitable performance gain without requiring additional bandwidth or transmission power.

REFERENCES

Seog-Il Song received the B.S. and M.S. degrees in electronics communication engineering from Hanyang University, Seoul, Korea in 1985 and 1987, respectively. Since 1987 he has been with Electronic and Telecommunications Research Institute. His research interests include mobile communication system, communication system performance evaluation, IMT-2000 and spread-spectrum systems.

Young-Yearl Han received the B.S. degree from Seoul National University, Seoul, Korea in 1960, the M.S. and Ph. D. degrees from the University of Missouri-Rolla in 1976 and 1979, respectively, all in electrical engineering. Currently he is a professor at the Hanyang University, Seoul, Korea. His research interests are in the areas of statistical signal processing and communication theory as applied to analysis and evaluation of digital communication system, with a current emphasis on mobile and wireless communication. He is listed in Marquis "Who's Who in the World" in the 15th Edition. He is a senior member of IEEE and was a vice president of the Korea Institute of Communication Sciences from 1990 to 1995.