A new CMOS voltage-controlled fully-differential transconductor is presented. The basic structure of the proposed transconductor is based on a four-MOS transistor cell operating in the triode or saturation region. It achieves a high linearity range of ±1 V at a 1.5 V supply voltage. The proposed transconductor is used to realize a new fully-differential Gm-C low-pass filter with a minimum number of transconductors and grounded capacitors. PSpice simulation results for the transconductor circuit and its filter application indicating the linearity range and verifying the analytical results using 0.35 µm technology are also given.

Keywords: CMOS transconductor, Gm-C filters.

I. Introduction

Transconductance elements are useful building blocks in analog signal processing systems, especially in continuous time filters [1]-[15]. Transconductance-C or Gm-C filters have recently received great interest since they are suitable for integration and can operate at high frequencies. Although on-chip active filters consume power, chip area, and limit the overall dynamic range, they enable high integration and bandwidth tuning [1]. Therefore, the design of highly linear and tunable transconductors has become mandatory.

Several realizations for CMOS transconductors have been introduced in the literature [2]-[12]. The realization given in [2] is based on using a differential stage with MOS transistors operating in the saturation region with their sources connected to their substrates. The realizations given in [3] and [4] provide a CMOS transconductor with a balanced output current based on the use of a wide input range differential transconductor. The CMOS transconductor given in [5] is based on the use of a simple MOS differential pair. The use of a four-MOS transistor cell to realize CMOS transconductors was first introduced by Czarnul [6] and used in [7] through [9]. The realization given in [10] is based on the use of MOS transistors operating in the non-saturation region, while the one given in [11] is based on the use of multiple-input floating gate transistors. The use of a cross-coupled quad-cell-based input stage together with an additional linearizing symmetrical differential pair was given in [12].

In this paper, a new CMOS fully-differential transconductor is presented. Fully-differential transconductor structures avoid the use of a current mirror for current subtraction, as in single-ended transconductors, by generating two output currents and effectively performing the subtraction by taking the output current across two nodes instead of at a single node referred to
The structure of the proposed transconductor depends on a four-MOS transistor cell to obtain a linear transconductor with a wide input operating range.

The basic structure of the fully-differential transconductor and its symbol are shown in Figs. 1(a) and 1(b), in which the voltage-to-current converter (V-I) generates two output currents, \(I_{o1} \) and \(I_{o2} \), where output current \(I_o \) is linearly proportional to the differential input voltage \((V_1 - V_2) \) such that

\[
I_o = I_{o2} - I_{o1} = I_a - I_b = G(V_1 - V_2),
\]

where \(G \) is the equivalent transconductance.

In section II, the realization of the CMOS fully-differential transconductor is introduced. In section III, the proposed transconductor is used to design a new fully-differential third-order low-pass filter with a minimum number of components and grounded capacitors. Finally, conclusions are stated in section IV. PSpice simulation results for the transconductor circuit indicating the linearity range and confirming the analytical results are also given.

Fig. 1. (a) The basic structure of the fully-differential transconductor and (b) the symbol of the fully-differential transconductor.

Fig. 2. The CMOS circuit of the four-MOS transistor cell [6].

\[I_o = I_{o2} - I_{o1} = I_a - I_b = G(V_1 - V_2), \]

where \(G \) is the equivalent transconductance.

\[
I = K(V_0 - V_1)(V_D - V_i) + a_1(V_D^2 - V_i^2) + a_2(V_D^3 - V_i^3) + \cdots, \quad (2)
\]

\[
K = \mu_n C_{ox} \frac{W}{L}, \quad (3)
\]

where \(\mu_n \) is the electron mobility; \(C_{ox} \) is the gate oxide capacitance per unit area; \(W/L \) is the transistor aspect ratio; \(V_0 \) is the threshold voltage (assumed equal for all NMOS transistors); and \(K \) is the transistor transconductance parameter. Assuming that all body terminals are connected to the proper supply voltages, the differential output current is given by

\[
I_o = I_{o2} - I_{o1} = I_a - I_b = K(V_2 - V_1)(V_D - V_i),
\]

\[
V_1 \text{ (or } V_2) \geq V_D + V_i, \quad V_1 \text{ (or } V_2) \geq V_D + V_T. \quad (4)
\]

Therefore, a linear relation between the differential output current \(I_o = I_{o2} - I_{o1} \) and the differential input voltage \((V_1 - V_2) \) can be obtained with \(V_{C1} \) and \(V_{C2} \) being independent of \(V_1 \) and \(V_2 \).

Therefore, the transconductance \(G \) is given by

\[
G = K(V_{C2} - V_{C1}), \quad (5)
\]

which can be controlled by the differential voltage \(V_{C2} - V_{C1} \).

It is interesting to note that by using the square-law equation of the drain current in the saturation region given by

\[
I_D = (K/2)(V_{GS} - V_T)^2, \quad (6)
\]

the same relation between the differential output current \(I_{o2} - I_{o1} \) and the differential input voltage \((V_1 - V_2) \) as given in (4) is obtained. Therefore, proper operation for
Fig. 3. The CMOS circuit of the proposed fully-differential transconductor.

the input voltages \(V_1 \) and \(V_2 \) is to make the four transistors ‘on’ provided that the drain voltages are equal. The proposed CMOS transconductor shown in Fig. 3 is formed using M1 to M4 as the basic MOS transistors; M5, M6, and M9 as current sources; and M7 and M10 as source followers, where M12 and M13 sense the current in M8 and M11, respectively, while M14 and M15 are used as constant current sources. The loop formed by M7 and M8 ensures that the voltage at the source of M7 is constant and can be obtained as

\[
I_7 = I_{81} = \frac{K_7}{2} [V_{B1} - V_{S7} - V_T]^2, \tag{6}
\]

\[
V_{S7} = V_{B1} - \left[V_T + \frac{2I_{81}}{K_7} \right]. \tag{7}
\]

The role of transistor M8 is to form a negative feedback action, which provides the necessary currents needed by transistors M1 and M3 without changing the voltage so as to satisfy (7).

Similarly, the loop formed by M10 and M11 operates in the same manner, hence

\[
V_{S10} = V_{B1} - \left[V_T + \frac{2I_{11}}{K_{10}} \right]. \tag{8}
\]

If M7 and M10 are matched, then from (7) and (8),

\[
V_{S7} = V_{S10} = V_{B1} - \left[V_T + \frac{2I_{10}}{K_{10}} \right]. \tag{9}
\]

And the input voltage range will be increased to

\[
V_1 (or \ V_2) \geq V_{C1} + V_T, \ V_1 (or \ V_2) \geq V_{C2} + V_T. \tag{10}
\]

The circuit shown in Fig. 3 can be extended to realize a multiple output transconductor by repeating the output stage, which consists of transistors M12 through M15 as shown in Fig. 4. Performances of both the four-MOS transistor cell and the proposed fully-differential transconductor are simulated using PSpice. The transistor aspect ratios of the proposed

Fig. 4. The CMOS circuit of the proposed multiple output transconductor.
transconductor are given in Table 1. The supply voltage used is given by $V_{DD} = 1.5 \, V$, I_{B1} is set to 120 μA, and the control voltages used are given by $V_{C1} = -1.5 \, V$, $V_{C2} = -1.2 \, V$ to keep the basic transistors M_1 through M_4 on and to satisfy (10). Figure 5 shows the differential output current for the proposed transconductor versus $(V_1 - V_2)$, which is scanned from $-1 \, V$ to $1 \, V$, compared with that of the four-MOS transistor cell. It is seen

Table 1. Transistor aspect ratios of the proposed transconductor.

<table>
<thead>
<tr>
<th>Transistors</th>
<th>Aspect ratio (W/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_5, M_6, M_9</td>
<td>64/2</td>
</tr>
<tr>
<td>M_8, M_9, M_{11}, M_{12}, M_{13}</td>
<td>40/2</td>
</tr>
<tr>
<td>M_{10}</td>
<td>96/2</td>
</tr>
<tr>
<td>M_{14}, M_{15}</td>
<td>10/2</td>
</tr>
</tbody>
</table>

that the linearity range becomes wide and that the transconductance of the proposed transconductor seems constant over a wide range. Simulation results showed that the 3 dB frequency of the proposed transconductor when terminated by 1 KΩ is 300 MHz as shown in Fig. 6. Figure 7 shows the third-order intermodulation (IM3) of the differential output current when 1 V$_{p-p}$ sinusoidal voltage signals of 80 MHz and 90 MHz are applied at the input. The IM3 is about 30 dB. The input of the third intercept point (IIP3) is equal to 1.2 V$_{p-p}$ which can be obtained directly from the third intercept point (IP3) plot shown in Fig. 8.

III. The Proposed Fully-Differential Filter

Any active filter implementation requires basic functions such as integration, lossy integration, and addition [15]. The addition or subtraction in the filters based on differential transconductors is achieved by simply connecting the output of the transconductors that deliver the signal to be summed.
In this section, the application of the proposed transconductor to realize a fully-differential low-pass third-order filter is given.

A. Integrator

The basic building block in the construction of Gm-C filters is the integrator. The symbol of the differential current integrator is shown in Fig. 9, in which the differential output current can be obtained as

\[I_o = \frac{G}{sC} (I_i - I_f), \]

where \(I_o = Io+ - Io- \) is the differential output current, \(I_i = Ii+ - Ii- \) is the differential input current, and \(I_f = If+ - If- \) is the differential feedback current.

B. New Fully-Differential Low-Pass Third-Order Filter

An example of the use of the proposed differential transconductor in the realization of an active filter is shown in Fig. 10. The filter has low-pass output in a differential form. The circuit includes three transconductors and six grounded capacitors, which makes the filter suitable for very-large-scale-integration implementation. The transfer function of the low-pass output is given by

\[I_o = \frac{1}{\tau_j \tau_j s^3 + (\tau_j \tau_j + \tau_j s^3 + 2\tau_j s + 1)}, \]

where the time constant \(\tau_j = C_j/G_j \).

Figure 11 shows the PSpice simulation results of the Gm-C filter using the proposed transconductor with \(G_1 = G_2 = G_3 = 50 \mu A/V \) and \(C_1 = C_2 = C_3 = 0.4 \text{ pF} \) to obtain a maximally flat magnitude low-pass response designed for a DC gain of 1 and \(f_c = 20 \text{ MHz} \). It is clear that the ideal and actual responses are almost identical at low frequencies, but there is a difference at high frequencies due to parasitic effects, which can be reduced by using compensation methods. Figure 12 shows the IM3 of the differential output current when sinusoidal current signals of 8 and 9 MHz are applied at the input. The IM3 is about 20 dB due to the use of a wide linear transconductor.

IV. Conclusions

In this paper, a tunable transconductor based on the four-MOS transistor cell, which can operate in the linear or saturation region, has been presented. A third-order maximally flat low-pass filter with a minimum number of blocks, which is
based on lossless/lossy integrators, has been introduced. The proposed blocks and their applications have been confirmed using PSpice simulation.

References

Ahmed M. Soliman was born in Cairo, Egypt, on November 22, 1943. He received the BSc degree with honors from Cairo University, Cairo, Egypt, in 1964, and the MS and PhD degrees from the University of Pittsburgh, PA, USA, in 1967 and 1970, all in electrical engineering. He is currently a Professor in the Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997 to September 2003, he served as a Professor and Chairman of the Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985 to 1987, he served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987 to 1991 he was the Associate Dean of Engineering at the same university. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University, and the American University in Cairo. He was a Visiting Scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In 1977, He was decorated with the First Class Science Medal from the President of Egypt for his services to the field of Engineering and Engineering Education. He is a Member of the Editorial Board of the IEE Proceedings Circuits, Devices and Systems and a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. He also served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and has been Associate Editor of the Journal of Circuits, Systems and Signal Processing since January 2004.